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Isotopologues of potassium 2,2,2-
trifluoroethoxide for applications in
positron emission tomography and beyond

Qunchao Zhao1, Sanjay Telu 1 , Susovan Jana 1, Cheryl L. Morse 1 &
Victor W. Pike 1

The 2,2,2-trifluoroethoxy group increasingly features in drugs and potential
tracers for biomedical imaging with positron emission tomography (PET).
Herein, we describe a rapid and transitionmetal-free conversion of fluoroform
with paraformaldehyde into highly reactive potassium 2,2,2-trifluoroethoxide
(CF3CH2OK) and demonstrate robust applications of this synthon in one-pot,
two-stage 2,2,2-trifluoroethoxylations of both aromatic and aliphatic pre-
cursors. Moreover, we show that these transformations translate easily to
fluoroform that has been labeled with either carbon-11 (t1/2 = 20.4min) or
fluorine-18 (t1/2 = 109.8min), so allowing the appendage of complexmolecules
with a no-carrier-added 11C- or 18F- 2,2,2-trifluoroethoxy group. This provides
scope to create candidate PET tracers with radioactive and metabolically
stable 2,2,2-trifluoroethoxy moieties. We also exemplify syntheses of iso-
topologues of potassium 2,2,2-trifluoroethoxide and show their utility for
stable isotopic labeling which can be of further benefit for drug discovery and
development.

Trifluoromethylation finds extensive utility inmedicinal chemistry and
has led tomany drug-like compounds with improved pharmacokinetic
and physicochemical properties1. Over the past decade, substantial
advances have been made in trifluoromethylation methods2–4.
Fluoroform (HCF3) is a major industrial byproduct and now gains
attention as an affordable and atom-efficient source of the tri-
fluoromethyl group (CF3)

5,6. Strategies for installing a trifluoromethyl
group from fluoroform deploy nucleophilic or metal-mediated con-
versions (Fig. 1A). Nucleophilic trifluoromethylations rely on the
deprotonation of fluoroform in the presence of a strong base to gen-
erate the reactive trifluoromethyl anion7, which can subsequently
undergo reaction with a wide range of electrophiles8. Metal-mediated
trifluoromethylation reactions9 convert fluoroform into a more stable
copper(I) (CuCF3

10) or silver(I) (AgCF3
11) derivative, which can engage

productively in diverse reactions.
Positron emission tomography (PET) is a molecular imaging

modality that now plays a vital role in biomedical research, drug

discovery, disease staging, and disease diagnosis12,13. PET tracers
are produced at time of need and the majority are labeled with
cyclotron-produced short-lived carbon-11 (t1/2 = 20.4min) or fluorine-
18 (t1/2 = 109.8min)14–16.11C-Labeled tracers are valuable for studies that
demand multiple imaging sessions within the same day, whereas
18F-labeled tracers may be distributed to remote PET imaging facilities
that lack an on-site cyclotron and radiochemistry facility. The pro-
duction of PET tracers for biomedical applications relies on straight-
forward radiolabeling strategies. For carbon-11, [11C]iodomethane and
[11C]methyl triflate are of foremost importance for tracer syntheses
through reactions with carbon and heteroatom electrophiles14–17. For
fluorine-18, nucleophilic substitution on appropriate precursors with
[18F]fluoride is widely used18,19 (Fig. 1C). However, these andmany other
methods are limited with regards to the chemotypes that can be
labeled and to the possible molecular positions that are open to
labeling. Because of tracer metabolism, the position of radiolabel can
be a key determinant of PET tracer efficacy20.
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There is an ongoing need to expand the range of chemotypes that
may be considered as potential PET tracers through the development
of labeling synthons and methods21. Methods to label a single tracer
with either carbon-11 or fluorine-18 normally require different non-
radioactive precursors and entail major synthesis campaigns that may
consume excessive time and resources. Amore efficient approach is to
take advantage of chemical moieties that contain both carbon-11 and
fluorine-18 labeling sites and offer labeling via a single precursor. This
strategy can simplify the PET radiotracer development process and
more effectively address design requirements. In this respect,11C- and
18F-labeled fluoroforms22–24 are attractive synthons because they are
readily accessible through rapid on-line syntheses as precursors to
putatively metabolically stable trifluoromethyl groups (Fig. 1C).
Nonetheless, these labeling synthons have been applied almost
exclusively to labeling arenes. Application to labeling non-
functionalized aliphatic substrates has not been demonstrated.

The 2,2,2-trifluoroethoxy group25 has notablemetabolic stability26

and moderate lipophilicity and is found in numerous biologically
active compounds27–30. Several PET radiotracers feature a 2,2,2-
trifluoroethoxy moiety (e.g., tracers for COX-131,32, tauopathy33–36, and
Huntington aggregates37). Installation of a radiolabeled 2,2,2-tri-
fluoroethoxy group in such tracers has been approached through
either nucleophilic addition of [18F]fluoride to a geminal difluorovinyl
precursor31,33,36,37 or alkylation of a phenoxy precursor with [18F]2,2,2-
trifluoroethoxy tosylate31,35,38. However, both methods suffer from
limited substrate scope and lowmolar activity (ratio of radioactivity to
mass of tracer isotopologues) that may make the derived tracers
unsuitable for application20,39.

Herein, we describe a rapid and transition metal-free conversion
of fluoroform into highly reactive potassium 2,2,2-trifluoroethoxide
(CF3CH2OK) and demonstrate robust applications of this synthon in
one-pot, two-stage 2,2,2-trifluoroethoxylations of both aromatic and
aliphatic precursors (Fig. 1B). Moreover, we show that this transfor-
mation translates easily to both carbon-11 andfluorine-18 chemistry, so
allowing the appendage of complex molecules with 11C- or 18F- labeled
2,2,2-trifluoroethoxy groups (Fig. 1D). We also exemplify syntheses of
isotopologues of potassium 2,2,2-trifluoroethoxide and show their
utility for stable isotopic labeling.

Results and discussion
Synthesis and reactivity of potassium 2,2,2-trifluoroethoxide
Nucleophilic addition of fluoroform to aldehydes to produce carbinols
is well-known40. However, the reaction of fluoroformwith the simplest
aldehyde, formaldehyde, has not been explored. We considered that
this reaction should produce a very useful reagent, 2,2,2-trifluoroeth-
oxide. Because of the toxicity and volatility of formaldehyde41, we
decided to explore solid paraformaldehyde as an alternative for pro-
ducing 2,2,2-trifluoroethoxide. Treatment of fluoroform as limiting
reagent with a mixture of paraformaldehyde and t-BuOK in DMF pro-
duced 2,2,2-trifluoroethanol in 41% yield after water quench (Supple-
mentary Table 1, entry 1). Under optimal conditions, fluoroform was
converted into 2,2,2-trifluoroethanol in 88% yield within 30min (Sup-
plementary Table 1, entry 13). Increasing the reaction time did not
improve the conversion appreciably (Supplementary Table 1, entries 11
and 12). Other bases or solvents adversely affected yield (Supple-
mentary Table 1, entries 14–18). We next tested the reactivity of the
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putative intermediate, potassium2,2,2-trifluoroethoxide, by treatment
with 2-chloropyrimidine. To our delight, reaction proceeded smoothly
at room temperature to afford 2-(2,2,2-trifluoroethoxy)pyrimidine1 in
71% yield within 2 h (Fig. 2A). However, treatment of potassium 2,2,2-
trifluoroethoxide with 1-fluoronaphthalene gave only trace 1-(2,2,2-
trifluoroethoxy)naphthalene2, even at elevated temperature. We con-
sidered that an aryl hypervalent iodine center in an aryliodonium ylide
might show more reactivity. Indeed, treatment of potassium 2,2,2-tri-
fluoroethoxide with naphthalen-1-yl iodonium-(2,2-dimethyl-1,3-diox-
ane-4,6-dione)ylide at 60 °C produced 2 in 63% yield (Fig. 2A). Thus,
gratifyingly, we had succeeded in converting stoichiometric amounts
of fluoroform into a useful synthon, potassium 2,2,2-trifluoroethoxide,
in high yield and in showing the utility of this synthon for tri-
fluoroethoxylation of homoarene and heteroarene under mild condi-
tions. We anticipate that this transition metal-free transformation can
find wide applications in fluorine chemistry. Indeed, we readily pro-
duced several trifluoroethoxy compounds in high yields by this
chemistry as standards for use in the remainder of this study (see
Supporting Information, Supplementary methods).

Synthesis of [11C]potassium 2,2,2-trifluoroethoxide
We next aimed to explore this synthetic methodology for robust
broad-scope radio-trifluoroethoxylations as a potential route to PET
tracers. For this purpose, we routinely produce [11C]fluoroform by
CoF3-mediated fluorination of cyclotron-produced [11C]methane22.
Treatment of [11C]fluoroform (37–296MBq) with a mixture of t-BuOK
(50μmol) and paraformaldehyde (17 μmol) in DMF for only 3min at
room temperature gave an excellent yield (88%) of 11CF3CH2OH upon
hydrolysis of the putative intermediate (Fig. 2B, entry 1). Increasing the

reaction time to 5min only slightly increased the yield. A larger
quantity of paraformaldehyde (50 µmol) afforded 11CF3CH2OH in 97%
yield. The yield of 11CF3CH2OH was quantitative when [11C]fluoroform
was treated with 1: 2 molar mixture of paraformaldehyde and t-BuOK
for 4min (Fig. 2B, entry 5). These reaction conditions were therefore
deemed optimal. This success encouraged us to test the efficacy of
11CF3CH2OK for introducing the 11C-trifluoromethyl moiety into a wide
range of compounds.

Synthesis of 11C-2,2,2-trifluoroethoxy arenes
First, we examined the reactivity of 11CF3CH2OK towards heteroarenes.
To our delight, 11CF3CH2OK reacted at room temperature to produce a
wide range of desired 11C-2,2,2-trifluoroethoxy heteroarenes in mod-
erate to excellent yields within just 1min (Fig. 3A). Attractive features
to emerge from this labeling protocol were: (1) the 11CF3CH2OK, can be
used without isolation; (2) reaction conditions are mild and rapid; (3)
substrate scope is broad, and encompasses pyridines, pyrimidines,
pyrazine, thiazoles, triazines, quinolines, and isoquinolines; (4) in
addition to halides (F, Cl, and Br), leaving groups such as nitro ([11C]4)
and methyl sulfone ([11C]9) are highly effective; (5) functional group
tolerance is high, with aldehyde ([11C]3), bromo ([11C]4, [11C]6), nitrile
([11C]5), methoxy ([11C]7), and Boc protection ([11C]9) all well tolerated.
Heteroarenes having 1 to 3 nitrogen atoms ([11C]1, [11C]3–[11C]14) were
compatible with the reaction conditions and afforded the desired
11C-labeled products in acceptable yields (21–94%). Furthermore, the
late-stage 11C-trifluoroethoxylation of complex biomolecules was
highly effective as shown by the labeling of analogs of several drug-like
compounds [Imiquimod ([11C]15), Milrinone ([11C]18)], drug precursors
[Erlotinib ([11C]19), Canagliflozin ([11C]20), Pazopanib ([11C]21),
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Palbociclib ([11C]22)], the herbicide Clopyralid ([11C]17), and a purine
derivative ([11C]16)] in moderate to very good yields.
Notably, 11C-trifluoroethoxylation occurred preferentially at the more
electron-deficient site (e.g., the ortho- vsmeta-pyridinyl site for [11C]17)
or aryl ring (e.g., the pyridinyl vs homoarene ring in [11C]6 and [11C]20)
as expected for aromatic nucleophilic substitution reactions.

We found that homoarene precursors with common leaving
groups were more challenging for 11C-trifluoroethoxylation than the
reactive heteroarenes42. We anticipated that the use of a more pow-
erful hypervalent aryliodonium leaving group43,44 could alleviate this
issue. We opted to explore this possibility for the one-pot
11C-trifluoroethoxylation of homoarene substrates. First, we screened
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conditions for the reaction of [11C]potassium 2,2,2-trifluoroethoxide
with an iodonium ylide derived from Meldrum’s acid (naphthalen-1-
yl(2,4,6-trimethoxyphenyl)iodonium tosylate) (Supplementary
Table 3). We found that treating a mixture of [11C]CF3CH2OK with the
iodonium salt precursor (55 µmol) in DMF at 60 °C for 3min gave a
high and optimal yield of the desired [11C]2 (87%; Supplementary
Table 3, entry 2). The 2,4,6-trimethoxyphenyl group served as an
effective aryl spectator ring; no [11C]1,3,5-trimethoxy-(2-(2,2,2-tri-
fluoroethoxy))benzene, was produced. An increase in temperature did
not improve the yield of [11C]2. Reduction in precursor amount
reduced yield. Given the high yield obtained for [11C]2 with this
approach under optimal conditions, we proceeded to explore sub-
strate scope. Substituent electronics had substantial influence on
reaction yields ([11C]23–[11C]32). Electron-withdrawing groups in ortho-
and para-position gave high yields for the 11C-trifluoroethoxylation
(Fig. 3B). 11C-Trifluorethoxylation yields were lower for substrates with
para-electron-donating or meta-electron-withdrawing groups. Novel
cross-coupling synthons, [11C]24–[11C]27, were obtained in useful
yields.We draw attention to the syntheses of [11C]26 and [11C]28, where
mesityl was used as the partner aryl ring in the iodonium salt
precursor11.C-Trifluoroethoxylation was directed to the other aryl ring.
This is an interesting observation because here the ring chemoselec-
tivity is opposite to that seen for the non-copper mediated radio-
fluorination of aryl(mesityl)iodonium salts45.

We also explored aryliodonium ylides as precursors.
11C-Trifluoroethoxylation of three model ylides gave [11C]33–[11C]35, in
moderate to high yields. Moreover, [11C]36, an analog of the anti-
diabetic drug emplagliflozin (®Jardiance) was also obtained in mod-
erate yield (47%) from an ylide. This exemplifies how iodonium ylides
can serve asprecursors for trifluoroethoxylation reactions. In addition,
two activated fluoroarenes, with ortho-electron-deficient aryl rings,
gave [11C]37 and [11C]38 in moderate to good yields where fluoride was
the leaving group.

11C-2,2,2-Trifluoroethoxylation of aliphatic substrates
We were further interested in whether 11C-2,2,2-trifluoroethoxylation
would occur on aliphatic substrates as well as arenes. This considera-
tion prompted us to investigate the reactivity of 11CF3CH2OK with ali-
phatic substrates. We started with a model compound, a precursor to
Posaconazole (®Noxafil) with a tosylate leaving group to optimize
precursor amount and reaction temperature (Supplementary
Table 4). 11C-Trifluoroethoxylation produced excellent yields of [11C]45
(89%) under conditions found to be optimal for hypervalent iodonium
precursors (Supplementary Table 4, entry 3). Again, yield did not
increase with temperature (Supplementary Table 4, entry 4). Reduc-
tion in precursor amount drastically diminished yield (Supplementary
Table 4, entries 5 and 6). We next tested reaction scope by attempting
to prepare a range of 11C-labeled alkyl-2,2,2-trifluoroethyl ethers from
aliphatic precursors, including fourteen 11C-labeled biomolecules
(Fig. 4). [11C]41 was obtained from a long chain iodoalkyl precursor in
acceptable yield (45%). Benzyl halide and α-chloroacetyl precursors
were readily converted into their analogous 11C-2,2,2-trifluoroethoxy
ethers ([11C]42, [11C]47, [11C]48, [11C]51, [11C]52) in high yields (53–89%)
with good tolerance of other functional groups. Aliphatic tosylates
derived from a variety of commercially available drug-like molecules
MCPA (2-methyl-4-chlorophenoxyacetic acid),Helional, Ketoconazole,
Bendazac, anα-D-glucopyranoside derivative, Oxaprozin, Ospemifene,
Pterostilbene, and Cyhalofop-butyl reacted readily with 11CF3CH2OK to
provide the desired 11C-2,2,2-trifluoroethoxy ethers, [11C]39, [11C]40,
[11C]43–[11C]46, [11C]49, [11C]50, and [11C]53–[11C]56, in moderate to
excellent yields (34–93%). Precursors with leaving groups attached to
an ethylene glycol linker gave excellent yields of 11C-2,2,2-tri-
fluoroethoxy ethers. Notably, aliphatic 11C-trifluoroethoxylation
occurred in preference to reaction at aromatic sites.

Determination of molar activity of [11C]1 as a model compound
We measured the molar activity for a model product [11C]1, produced
by the 11C-trifluoroethoxylation of 2-chloropyrimidine, to verify that
this labeling technique is no-carrier-added (NCA) and gives highmolar
activity. Starting with about 10 GBq of cyclotron-produced [11C]
methane that has been produced from a 10 µA × 10min cyclotron
irradiation, [11C]1 was obtained with a molar activity of 60GBq/µmol,
corrected to the end of radionuclide production (ERP). Such a high
molar activity froma relatively limited cyclotron irradiation shows that
the labeling reaction is invulnerable to carrier addition and dilution of
molar activity15,39.

Synthesis of [18F]potassium 2,2,2-trifluoroethoxide
Fluorine-18 labeling of PET tracers at aliphatic carbon by nucleophilic
substitution of a good leaving group with [18F]fluoride19 can often
lead to an [18F]fluoroalkyl group that is vulnerable to radio-
defluorination in vivo and to accumulation of [18F]fluoride ion in the
bone including skull. This can hamper accurate quantification of
tracer uptake, especially in brain20,46,47.18F-Labeling in a 2,2,2-tri-
fluoroethoxy group instead of an 18F-fluoroalkyl group could be a
strategy to circumvent this issue. Having established an efficient
route for 11C-trifluoroethoxylation, we next focused on translation of
this labeling method from carbon-11 to fluorine-18 with a few repre-
sentative substrates. For this purpose, [18F]fluoroform was produced
from no-carrier-added [18F]fluoride and difluoroiodomethane48.
CF2

18FCH2OK was generated by treatment of the [18F]fluoroformwith
paraformaldehyde and t-BuOK in DMF in >95% yield. The reactivity of
CF2

18FCH2OK was assessed under the optimal conditions found for
11C-trifluoroethoxylations (Fig. 5).18F-Trifluoroethoxylations of aryl
and aliphatic precursors proceeded smoothly and provided corre-
sponding products in moderate to excellent yields similar to those
from 11C-trifluoroethoxylation. Heteroarenes, such as pyridine, qui-
noline, pyrimidine, isothiazole, and 1,3,5-triazine, with halogen leav-
ing groups were converted into the corresponding 18F-2,2,2-
trifluoroethoxy ethers in high yields (82–96%; Fig. 5A). Dependency
of labeling position on aryl ring position of the leaving group (e.g.,
ortho- vsmeta- as in [18F]4 and [18F]17) or on the nature of the aryl ring
(e.g., [18F]20) was as seen for 11C-labeling. Heteroaryl rings with more
structural complexity and diverse functionality were conveniently
labeled at room temperature within 5min and produced the
corresponding 18F-labeled compounds in excellent yields ([18F]15,
[18F]17–[18F]22; 56–77%; Fig. 5A). These results indicate high potential
for application of this labeling method to prospective structurally
complex PET tracers. Homoarene precursors, including diaryliodo-
nium salts ([18F]27 and [18F]31), aryliodonium ylides ([18F]35 and [18F]
36), and fluoro precursors ([18F]37 and [18F]38), afforded useful yields
of 18F-labeled products (27–69%; Fig. 5B), as for
the11C-trifluoroethoxylations. Remarkably, the unprotected hydroxyl
group in the Ataluren precursor was well tolerated ([18F]38) showing
compatibility of this labeling protocol to sensitive functionality.

Furthermore, we were keen to know whether potassium 18F-2,2,2-
trifluoroethoxide could be useful for labeling at aliphatic carbon, given
the limited availability of methods for constructing stable alkyl-CF2

18F
bonds49. In this regard, we tested identical reaction conditions to those
used for 11C-trifluoroethoxylation on diverse aliphatic substrates, pre-
pared from drugs, herbicides, and other biomolecules. To our delight,
this protocol successfully enabled the installation of a 18F-2,2,2-tri-
fluoroethoxy moiety onto aliphatic carbon in a variety of complex
structures in acceptable to excellent yields ([18F]44–[18F]46, [18F]
49–[18F]56; 15–95%; Fig. 5C). Taken together, these results show that
this methodology, based on the transformation of fluoroform into
potassium 2,2,2-trifluoroethoxide and subsequent functionalization of
aliphatic carbons, is equally versatile for both carbon-11 and fluorine-18
with the same non-radioactive precursor.
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Determination of molar activity of [18F]1 as a model compound
We measured the molar activity of [18F]1 to be 1.3 GBq/µmol, decay-
corrected. The method of [18F]fluoroform synthesis that we used was
one reported in the literature48 and known to give low molar activity.
We did not observe any significant release of fluoride ion in the pro-
duction of [18F]potassium 2,2,2-trifluoroethoxide under basic condi-
tions, as evidenced by absence of [18F]fluoride at the solvent front in
the HPLC analysis of derived [18F]2,2,2-trifluoroethanol (Supplemen-
tary Fig. 17). Therefore, the molar activity of the starting [18F]fluoro-
form determines the molar activity of 18F-labeled 2,2,2-trifluoroethoxy
products.

Synthesis of isotopologues of potassium 2,2,2-trifluoroethoxide
Isotopologues differ only in their isotopic substitutions and play an
important role in drug development50. Deuteration51 is widely prac-
ticed to improve themetabolic stability of PET tracers in 18F-fluoroalkyl
positions.13C-Labeling enables investigations of drug pharmacoki-
netics and metabolism by 13C-NMR spectroscopy and mass
spectrometry52,53. Simple methods for accessing stable isotopically
labeled compounds arehighlydesirable. The availability of isotopically
labeled fluoroforms (H13CF3, H

11CF3, and HCF2
18F) and paraformalde-

hyde [(CD2O)n and (13CH2O)n] and our method for the in situ genera-
tion of CF3CH2OK from fluoroform, provide an opportunity to explore

the incorporation of isotopically labeled 2,2,2-trifluoroethoxy groups
into a diverse array of substrates. For demonstration, we synthesized
isotopologues of 57, an analog of a well-known COX-1 PET tracer, [11C]
PS1332. Compounds [11C]57 and [18F]57 were readily obtained by treat-
ing a tosylate precursor with [11C/18F]CF3CH2OK under optimized
conditions. The reaction was equally effective when substituting par-
aformaldehyde with (CD2O)n and (13CH2O)n, leading to high yield
syntheses of [2H]57, [2H/11C]57, [2H/18F]57, [13C]57, [13C/11C]57, and
[13C/18F]57 (Fig. 6). Hence, this isotope labeling protocol has excep-
tional potential for broad application.

In summary, based on the transformation of paraformaldehyde
with fluoroform, we devised a highly effective one-pot method for
appending a wide range of aryl, heteroaryl, and aliphatic organic
compounds with an isotopically labeled 2,2,2-trifluoroethoxy group.
Especially, reaction of paraformaldehyde with [11C]fluoroform or [18F]
fluoroform efficiently provides 11CF3CH2OK and 18FF2CCH2OK,
respectively, as broadly useful no-carrier-added labeling synthonswith
ability to produce candidate PET tracers bearing either a 11C- or
18F-labeled 2,2,2-trifluoroethoxy group. Use of paraformaldehyde and
fluoroform labeled with stable isotopes (2H, or 13C) gives ready access
to isotopologues of 2,2,2-trifluoroethoxy compounds. Consequently,
the 2,2,2-trifluoroethoxy groupmaygarner increasing interest for both
drug and PET tracer development.
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Methods
General procedure for the one-pot 2,2,2-trifluoroethoxylation of
aromatic and aliphatic precursors from fluoroform and iso-
topically labeled paraformaldehyde
Isotopically labeled (13C and 2H) paraformaldehyde (3.0 equiv.)
and t-BuOK (3.0 equiv.) were added to a round-bottomed flask
equipped with a magnetic stirrer bar followed by DMF (6mL/

1 mmol) under argon atmosphere. A solution of fluoroform (1.0
equiv., 0.3 M) in DMF was added and the reaction mixture was
stirred at RT for 3 h. Precursor solution in DMF was added, and
the reaction mixture was stirred at RT or 60 °C for additional 2 h.
The reaction was then quenched with water (2 mL) and the mix-
ture was extracted with DCM (2 × 10mL). The organic phase was
washed with brine, dried (Mg2SO4), and concentrated under
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reduced pressure. The residue was purified by flash chromato-
graphy on silica gel to give the 2,2,2-trifluoroethyl ether. Pur-
ification methods and characterization data of all the individual
trifluoroethoxy compounds synthesized in this work can be
obtained in the Supplementary Methods Section 1.2, 1.3 and 2.4.

Synthesis of [11C]Fluoroform22

[11C]Methane (3.7–5.5 GBq) was produced from a cyclotron (PET-
trace; GE Healthcare) according to the 14N(p.α)11C reaction by
irradiating nitrogen (130 psi) containing hydrogen (7%) and then
trapped in a U-tube packed with Porapak Q (1 g, 80–100 mesh)
that was being cooled with liquid argon. Any untrapped radio-
activity was captured in a waste bag for safety. When radioactivity
in the cooled Porapak Q trap had maximized, as indicated by a
nearby radiation detector, the liquid argon coolant was removed.
The trap was then allowed to warm to room temperature while
being purged with a controlled flow of helium (20mL/min) to
direct and pass the [11C]methane sequentially through a Sicapent
column (to remove any moisture), a CoF3 column heated at
270 °C, a cooled trap for HF, and finally into a [11C]fluoroform
collection trap being cooled in liquid argon. This transfer gen-
erally took about 15 min. Then the [11C]fluoroform trap was placed
in a warm water bath (60 °C) for another 35–45 s to release [11C]
fluoroform into a vial containing DMF (0.8 mL) at –40 °C. The
yield of [11C]fluoroform from [11C]methane was usually 35–55%
accompanied by 10–50% [11C]fluoromethane (Supplementary
Fig. 12). This [11C]fluoroform solution in DMF was used for further
reactions. The percentage of radioactivity represented by [11C]
fluoroform in the HPLC analyte was calculated from the radio-
HPLC chromatogram from peak areas with a correction for
radioactive decay between radioactive peaks during the analysis.

The yields of the reaction products are based on the conversion
of [11C]fluoroform into radioactive products and are calculated by
decay-correction to the beginning of the HPLC analysis. We
confirmed that all the radioactivity injected onto the HPLC col-
umn was fully recovered.

Synthesis of [18F]Fluoroform48

[18F]Fluoride ion was produced on a cyclotron (PETtrace; GE
Healthcare) according to the 18O(p,n)18F reaction by irradiating
18O-enriched water (3 mL, 98 atom%) with a beam of protons
(16.5 MeV; 35–45 µA) for at least 75 min. [18F]Fluoroform was syn-
thesized within a lead-shielded hot-cell with a fully automated
apparatus (TRACERlabTM FX2N; GE Healthcare). Thus, [18F]fluoride
ion (3.72–11.1 GBq) in [18O]water (200–400 µL) and a solution
(100 µL) containing K2CO3 (3.4 µmol) plus K 2.2.2 (13.6 µmol) were
loaded into a glass vial. MeCN (2mL) was added, and the solvent
was azeotropically removed at 80‒100 °C under a stream of
nitrogen gas that was vented to vacuum. This step was repeated
after a second addition of MeCN (2mL). A solution of difluor-
oiodomethane (8.0mg, 45 µmol) in anhydrous acetonitrile
(1.0 mL) was then added to the dried [18F]fluoride-K2CO3/K 2.2.2
complex, sealed, and heated at 35 °C for 10min. [18F]Fluoroform
was flushed out of the vial with helium (20mL/min) and into the
[18F]fluoroform trap. The transfer generally required 5 min. Then
the [18F]fluoroform trap was put in warm water bath (60 °C) for
another 35–45 s to release [18F]fluoroform into a vial containing
DMF (0.8 mL). This DMF solution of [18F]fluoroform was
used for subsequent reactions. The yield of [18F]fluoroform pro-
duced by this method generally ranged between 35–65% from
dried [18F]fluoride with >98% radiochemical purity (Supplemen-
tary Fig. 15).

N

N

N
O

O
CF3

N

N

N
O

O

11CF3

D
D

N

N

N
O

O
CF2

18F

D
D

N

N

N
O

O
13C

CF2
18F

H
H

N

N

N
O

O
13C

11CF3

H
H

N

N

N
O

O
13C

CF3

H
H

N

N

N
O

O
CF3

D
D

N

N

N
O

O

11CF3

N

N

N
O

O
CF2

18F

N

N

N
O

OTs

MeO

MeO

The syntheses of various carbon, hydrogen, and fluorine isotopologues

[18F]57
84 ± 2%

[13C/18F]57
84 ± 1%

57
72%

[2H]57
48%

[13C]57
56%

CF3CH2OK

11CF3CH2OK

CF2
18FCH2OK

CF3CD2OK

11CF3CD2OK

CF2
18FCD2OK

CF3
13CH2OK

11CF3
13CH2OK

CF2
18F13CH2OK

+

Labeled moiety

57
PS 13 analogues

[2H/18F]57
86 ± 5%

HCF3

H11CF3

HCF2
18F

(CH2O)n

(CD2O)n

(13CH2O)n

N

N

N
O

O
CF3

4-anisyl

[11C]57
88 ± 2%

[13C/11C]57
92 ± 1%

[2H/11C]57
82 ± 2%

Fig. 6 | The synthesesofnine isotopologuesof amodel compound (ananalogof
the COX-1 PET tracer [11C]PS13). Yields were based on HPLC analyses of crude
reaction mixtures. Radioactive products were collected at least once with identity

confirmed with LC-MS. HPLC radiochemical yields (RCYs) matched isolated RCYs
and are reported as mean± SD for n = 3.

Article https://doi.org/10.1038/s41467-024-49975-7

Nature Communications |         (2024) 15:5798 8



General procedure for the 11C- and 18F- 2,2,2-trifluoroethoxyla-
tion of aromatic and aliphatic precursors from isotopically
labeled fluoroform and paraformaldehyde
About 30min before the end of radionuclide production, a mixture of
t-BuOK (112.2mg, 1.0mmol) and paraformaldehyde (15.0mg,
0.5mmol) in DMF (6mL) was prepared in a glovebox under argon and
kept there until close to the start of radiochemistry. The t-BuOK-par-
aformaldehyde reagentmixture inDMF (200 µL)was added to a 1-mLV
vial, septum-sealed, removed from the glovebox, and transferred to
the lead-shielded hot-cell for the radiochemistry. [11C]Fluoroform or
[18F]fluoroform (37–296MBq) in DMF (50–300 μL) was added to the
vial, mixed, and left at RT for 4min. A DMF solution (200 µL) of the
aromatic or aliphatic precursor (55μmol)was then added. The reaction
mixture was kept at RT for 1min or heated at 60 °C for 3min and then
quenched with water (100 μL). This crude product was analyzed with
radio-HPLC as detailed in SupplementaryMethods section. Areas of all
the radiochemical product peaks were decay-corrected to the begin-
ning of the HPLC analysis for radiochemical yields calculations. HPLC
analysis of each 11C- and 18F- labeled trifluoroethoxylated products and
the respective HPLC chromatograms can be obtained in Supplemen-
tary Methods Sections 6 and 7.

Data availability
Details about materials and methods, experimental procedures
including organic syntheses and radiochemistry, and NMR spectra and
HPLC chromatographs are available in the Supplementary Informa-
tion. Any further queries on the data can be directed to either S.T
or V.W.P.
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