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Characterising the genetic architecture of
changes in adiposity during adulthood using
electronic health records

Samvida S. Venkatesh 1,2 , Habib Ganjgahi2,3, Duncan S. Palmer 2,4,
Kayesha Coley 5, Gregorio V. Linchangco Jr.6,7, Qin Hui 6,7, Peter Wilson7,8,
Yuk-LamHo 9, KellyCho9,10, Kadri Arumäe11,MillionVeteranProgram*, Estonian
Biobank Research Team*, Laura B. L. Wittemans12,13, Christoffer Nellåker 2,13,
Uku Vainik11,14,15, Yan V. Sun 6,7, Chris Holmes3,16,17,
Cecilia M. Lindgren1,2,13,18 & George Nicholson 3

Obesity is a heritable disease, characterised by excess adiposity that is mea-
sured by body mass index (BMI). While over 1,000 genetic loci are associated
with BMI, less is known about the genetic contribution to adiposity trajectories
over adulthood. We derive adiposity-change phenotypes from 24.5 million
primary-care health records in over 740,000 individuals in the UK Biobank,
Million Veteran Program USA, and Estonian Biobank, to discover and validate
the genetic architecture of adiposity trajectories. Using multiple BMI mea-
surements over time increases power to identify genetic factors affecting
baseline BMI by 14%. In the largest reported genome-wide study of adiposity-
change in adulthood, we identify novel associations with BMI-change at six
independent loci, including rs429358 (APOEmissense variant). The SNP-based
heritability of BMI-change (1.98%) is 9-fold lower than that of BMI. Themodest
genetic correlation between BMI-change and BMI (45.2%) indicates that
genetic studies of longitudinal trajectories could uncover novel biology of
quantitative traits in adulthood.

Obesity, the accumulation of excess body fat1, which is associatedwith
increased disease burden2,3, has a strong genetic component4. The
heritability of bodymass index (BMI) is estimated to be 40–70%4–6, and
genome-wide association studies (GWASs) have implicated over 1000
independent loci associated with a range of obesity traits4. The
dynamic process of change in weight over time is also thought to have
a genetic component7,8. Recent studies reveal the shifting genetic
landscape of infant, childhood, and adolescent BMI, which detect age-
specific transient effects by performing age-stratified GWASs9–11. Adult
twin studies12–14 and an electronic health record (EHR)-based popula-
tion study15 indicate that long-term patterns of change in adiposity are
heritable and have a distinct genetic component to baseline obesity
levels. However, less is known about the specific variants and genes

that contribute to patterns of adulthood adiposity change. This pau-
city of GWASs of long-term trajectories of weight change can be par-
tially attributed to the challenges in building and maintaining large-
scale genetics cohorts that follow participants over their lifetime16.

Longitudinal data are a key feature of EHRs, whose increased
adoption in the clinic and integration into biobanks has powered
cost-efficient and scalable genetics research17,18. Despite biases in
EHR data, including sparsity, non-random missingness, data inac-
curacies, and informed presence, EHR-based genetics studies reliably
replicate results from purpose-built cohorts19–21. Recent advances in
the extraction of phenotypes from longitudinal EHRs at scale show
that, as expected22,23, the mean of repeat quantitative measurements
can outperform cross-sectional phenotypes for genetic discovery24,25.
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Repeat measurements further allow for the estimation of long-
itudinal metrics of trait change, such as trajectory-based clusters26,
linear slope27, and within-individual variability over time28, all of
which may provide additional information to uncover the genetic
underpinnings of disease.

A variety of approaches are available for harnessing the long-
itudinal component of trajectories in EHR data. Simple models target
the gradient of a linear fit over time, such as in a longitudinal linear
mixed-effects model framework28–30. More complex regression mod-
elling approaches are employed to investigate non-linear changes over
time. For example, semi-parametric regression models31 generate
flexible longitudinal patterns from combinations of basis functions,
such as B-splines, regularised to induce a suitable degree of temporal
smoothness32–35. Subgroups of individuals with similar non-linear tra-
jectories are often identified through clustering approaches, with
subgroup membership then tested for association with clinical out-
comes or genetic variation36–41. Although it is possible to fit full joint
models that incorporate both genetic data and longitudinal trajec-
tories simultaneously28, two-stage approaches wherein summary
metrics from models of longitudinal EHRs are taken forward for
genetic association analyses are popular for their computational
efficiency27.

In this study, we leveraged longitudinal EHRs linked to the UK
Biobank (UKBB)42, Million Veteran Program (MVP)43,44, and Estonian
Biobank (EstBB)45 to study the genetic architecture of change in
adiposity over adulthood. We developed a two-stage analytical pipe-
line, utilising statistical methods with a history of application in the
EHR data context, to derive linear and non-linear trajectories of BMI
and weight over time, and to identify clusters of individuals with
similar adiposity trajectories. In the second stage, we carried forward
the latent phenotypes from thesemodels, which capture both baseline
obesity trait levels and change in obesity traits over time, to perform
the largest reported genome-wide association analyses for adiposity
change in adulthood. Our results demonstrate the added value of EHR-
derived longitudinal phenotypes for genetic discovery.

Results
Longitudinal data help identify novel genetic signals for obesity
We obtained BMI and weight records for up to 177,098 individuals of
white–British ancestry with up to 1.48 million measurements in UKBB
longitudinal records from general practitioner (GP) and UKBB assess-
ment centre measurements (Table 1 and Supplementary Fig. 3). For
each individual, we estimated linear change in BMI or weight over time
using a linear mixed-effects (LME) model with random intercepts and
random longitudinal gradients (Fig. 1A)within six strata—defined as the
pair-wise combinations of two adiposity traits (BMI, weight) with three
sex subsets (women-only, men-only, combined sexes). We sought
replication of genetic findings in two external cohorts with long-
itudinal EHR data—MVP (N = 437,703) and EstBB (N = 127,769)—whose
demographic and obesity trait characteristics are distinct from UKBB.
Individuals inMVP are predominantly male (92.4%) and on average 3.5
units of BMI heavier than male participants in the UKBB; on the other

hand, participants in EstBB are of similar BMI to those in the UKBB, but
are on average 6–8 years younger than their UKBB counterparts
(Supplementary Data 23).

We first investigated whether the individual-level random-
intercept terms outputted by the longitudinal LMEmodel, by sharing
information across multiple BMI measurements, provided higher
statistical power for GWAS than one based on a single, cross-
sectional BMI measurement per individual. Despite our GWAS being
4-fold smaller than the largest published analyses46, we identify 14
novel loci and refine 53 previously described signals for obesity traits
among the 374 unique fine-mapped lead single-nucleotide poly-
morphisms (SNPs) (P < 5 × 10−8) across all strata (Fig. 2A, Supple-
mentary Fig. 13, and Supplementary Data 2), see Methods
for conditional analysis to classify novel, refined, and reported
SNPs47). The 53 refined SNPs are conditionally independent of and
represent stronger associations (P < 0.05) than published SNPs in this
population. Together, the refined and novel SNPs explain 0.33% of
variance in baseline BMI (in addition to the 2.7% explained by pre-
viously published SNPs), and 0.83% of variance in baseline weight (in
addition to the 4.7% explained by previously reported SNPs) (Fig. 2B).
We further quantified the power gained fromestimating baseline BMI
over repeat longitudinal measurements per individual by comparing
genome-wide significant (GWS) SNPs fromour baseline BMI GWAS to
the largest published BMI meta-analysis to date46. We observe an
increase in median chi-squared statistics of GWS SNPs from either
study of between 13.4% (females) to 14.8% (males) in our GWAS over
what would be expected from a cross-sectional GWAS of equivalent
sample size.

Nine of the 14 novel SNPs replicate at P < 3.6 × 10−3 (family-wise
error rate (FWER) controlled at 5% across 14 tests using the Bonferroni
method) in at least one of (1) baseline obesity estimated with LME
model intercepts in up to 437,703 individuals the MVP cohort, (2)
baseline obesity estimated with LMEmodel intercepts in up to 125,209
individuals the EstBB cohort, or (3) UKBB assessment centre mea-
surements of cross-sectional obesity in up to 230,861 individuals not
included in the discovery GWAS (Supplementary Data 3). These
include rs6769383, whose nearest gene EDEM1 is involved in carbo-
hydrate metabolism48, rs2861761, whose nearest gene TENM2 is enri-
ched in white adipocytes49, rs11156978 whose nearest gene CHD8 is
associatedwith impaired glucose tolerance inmouse knockouts50, and
rs7962636, whose nearest gene MED13L is a transcriptional regulator
of white adipocyte differentiation51. We also replicate inMVP themale-
specific BMI association of rs79586444, whose nearest gene, DUSP26,
is associated with decreased high-density lipoprotein (HDL) choles-
terol in mouse knockouts52.

Intra-individual variance is another longitudinalmetric of interest,
however we (Supplementary Fig. 15) and others28 find no genetic var-
iants associated with intra-individual variance in weight over time.
While the intra-individual mean and baseline trait modelled from LME
are phenotypically (R2 > 0.95) and genetically highly correlated
(R2 > 0.99) (Supplementary Fig. 17), the LME intercept appears better
powered for genetic association testing than the average trait, as we

Table 1 | Characterisation of obesity trait data in longitudinal records curated from UK Biobank assessment centre visits and
linked general practitioner (GP) records

Trait Sex Number of
individuals

Number ofobs. Mean number of repeat
obs. (SD)

Mean length of follow-
up, years (SD)

Mean age at first
obs., years (SD)

Median trait value atfirst
obs. (IQR)

BMI, kg/m2 F 88,243 (54.4%) 696,984 7.90 (7.34) 13.7 (6.63) 48.6 (9.68) 24.6 (22.2, 27.9)

BMI, kg/m2 M 73,965 (45.6%) 581,161 7.86 (7.12) 12.8 (6.55) 50.1 (9.59) 26.1 (24.0, 28.7)

Weight, kg F 96,625 (54.6%) 816,885 8.45 (8.33) 13.9 (6.62) 48.3 (9.63) 65.0 (59.0, 74.0)

Weight, kg M 80,473 (45.4%) 666,258 8.28 (7.82) 12.9 (6.57) 50.0 (9.57) 81.6 (73.8, 90.0)

BMI body mass index, obs. observation, S.D. standard deviation, I.Q.R. inter-quartile range.
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discover up to 1.2× more GWS variants associated with the former
(Supplementary Data 20).

Ascertainment bias in our discovery cohort could arise from the
over-representation of heavier participants in EHR data (Supplemen-
tary Data 4)53. On average, women with ten or more weight measure-
ments are 8.3 kg (3.7 units of BMI) heavier than their counterparts with
1–3 measurements; for men, this is an 8.2 kg (3.1 units of BMI) differ-
ence. However, the BMI-intercept metric from our longitudinal data is
genetically perfectly correlatedwith theun-ascertained cross-sectional
BMI in Genetic Investigation of ANthropometric Traits (GIANT) 201946

(rG = 1 and P < 1 × 10−16 in all strata), and 96% of the GWS associations
(P < 5 × 10−8) identified in our GWAS have either been reported, or are
correlated with reported obesity-associated SNPs in the GWAS
Catalog54 (Supplementary Data 1).

APOE variant associated with weight loss over time, indepen-
dent of baseline obesity
To identify genetic variants that affect change in adiposity over time,
we performed GWASs for patterns of BMI and weight change adjusted
for baseline measurements, defined in two ways. First, we created a
linear phenotype from subject-specific random gradients, estimated
within the LME model framework. Second, to capture non-linear pat-
terns of temporal change, we modelled longitudinal variation in obe-
sity traits using a regularised high-dimensional B-spline basis31 (Fig. 1).
Within each of the six strata, we identified four clusters of individuals
using k-medoids clustering55,56, representing high gain (k1), moderate
gain (k2), stable (k3), and loss (k4) trajectories, and estimated each
individual’s probability of belonging to a cluster based on their pos-
terior non-linear obesity trait trajectory (Fig. 1 and Supplementary
Fig. 5). We performed GWASs on the linear slope-change phenotype
and on individuals’ logit-transformed posterior probabilities of

membership in the high gain cluster (k1), high and moderate gain
clusters (k1 and k2), or all but the loss cluster (k1, k2, and k3). All
analyses were adjusted for baseline obesity trait and confounders,
including length of follow-up and number of follow-up measures, to
mitigate survivor bias.

A common missense variant in APOE (rs429358) is associated
with decrease in both BMI and weight over time, and lower posterior
probabilities of gain-cluster membership in all analysis strata
(Table 2). Each copy of the minor C allele of rs429358 (minor allele
frequency (MAF) = 0.16) is associated with 0.060 standard deviation
(SD) decrease (95% confidence interval (CI) = 0.050–0.069,
P = 8.6 × 10−35) in expected BMI slope over time and 0.063 SD
decrease (0.054–0.072, P = 6.0 × 10−42) in expected weight slope over
time (Fig. 3A). Independent of baseline obesity, carriers of the minor
C allele of rs429358 are at lower odds ofmembership in the high-gain
BMI andweight clusters (odds ratio (OR) = 0.976, 95%CI = 0.97–0.98,
P < 4.9 × 10−19), lowering the membership posterior probability from
40% to 39% on average (Fig. 3B). Although the minor allele of
rs429358 is also associated with lower baseline BMI (β = 0.015 SD
lower BMI-intercept, 95% CI = 0.0054–0.024) and weight (β = 0.011
SD lower weight intercept, 95% CI = 0.0029–0.020), these associa-
tions do not reach GWS (P > 0.002).

The association of rs429358 with adiposity-change phenotypes
was replicated at P < 1.39 × 10−3 (FWER controlled at 5% across six
variants and six traits tested) in: (1) up to 437,703 individuals in the
MVP cohort, (2) up to 125,209 individuals in the EstBB, and (3) up to
17,035 individuals in UKBB with multiple measurements of weight
and BMI at repeat assessment centre visits who were excluded from
the discovery analyses (Fig. 4 and Supplementary Data 5). Further,
based on 301,943 UKBB participants who were not included in the
discovery GWASs, andwho reportedweight change in the last year as

Fig. 1 | Modelling of longitudinal obesity trait trajectories. AWeight trajectories
over time,measured as years from the firstmeasurement, in a random sample of 12
individuals in the sex-combined strata. Black points display observed weight
records, with blue and pink lines representing predicted fits from linear mixed-
effects models and regularised high-dimensional spline models respectively.
B Trajectories of cluster centroids, plotted as standardised (std.) and covariate-
adjusted (adj.) weight over time (years from first measurement), for the four

clusters determined via partitioning-around-medoids (PAM) clustering with a cus-
tomised distance matrix (see Methods) constructed from the high-dimensional B-
spline coefficients estimated in A. C Weight trajectories over time for a random
sample of individuals in the 99th percentile probability of belonging to each
cluster, as determined by parametric bootstrap. The lines display predicted fits and
ribbons represent 95% confidence intervals around the mean fit.
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“gain”, “about the same”, or “loss”, we found that carriers of each
additional copy of the minor C allele of rs429358 are at 0.956 (95%
CI = 0.94–0.97) lower odds of being in a higher ordinal weight-
gain category, independent of their BMI (Fig. 3C and Supplementary
Data 6). We observe consistent effect direction of the rs429358
association with both estimated and self-reported weight loss
over time in individuals who self-identify as Asian (maximum
N = 8324 individuals), Black (6796), mixed (2681), white not in the
white–British ancestry subset (47,174), and other (3994) ethnicities
(see Methods for ancestral group definitions, Supplementary Fig. 1
and Supplementary Data 7).

Finally, we tested for the effect of rs429358 on change in
abdominal adiposity in up to 44,154 individuals of white–British
ancestry in UKBB who were not in the discovery set, with repeated
assessment centre measurements of waist circumference (WC) and
waist-to-hip ratio (WHR). Each copy of the C allele is associated
with 0.040 SD decrease (95% CI = 0.021-0.049, P = 2.3 × 10−5) in

expected WC slope over time and 0.031 SD decrease (0.012–0.050,
P = 1.1 × 10−3) in expected WHR slope over time, independent of
baseline values (Fig. 3D and Supplementary Data 6). While the effect
direction remains consistent, these associations are no longer sig-
nificant upon adjustment for BMI (all P > 0.1), suggesting that the
observed loss in abdominal adiposity over time may represent a
reduction in overall adiposity.

We additionally performed a longitudinal phenome-wide scan to
test for the association of rs429358 with changes in 45 quantitative bio-
markers obtained from theUKBB-linkedprimary care records. Each copy
of the C allele is associated with an increase in expected slope change
over time of total cholesterol (β=0.030 SD increase, P=6.4 × 10−12),
C-reactive protein (CRP) (β=0.026, P=9.6 × 10−7), and HDL cholesterol
(β=0.022, P= 1.0 × 10−5), but a decrease in expected slope change over
time of triglycerides (β=−0.027, P=2.7 × 10−7), potassium (β=−0.023,
P=3.9 × 10−6), lymphocytes (β=−0.020, P=4.0× 10−5), and haemoglo-
bin concentration (β=−0.016, P= 1.0 × 10−3) (FWER controlled at 5%
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annotated to their nearest gene. B Proportion of variance in baseline BMI and
weight that can be explained by the fine-mapped independent lead SNPs in each
strata. In green is the proportion of variance explained by previously published
obesity-associated variants (and those in LD with these variants), while that
explained by novel and refined variants is in pink. The numbers represent the
number of lead SNPs in each of these categories (published/refined and novel).

Article https://doi.org/10.1038/s41467-024-49998-0

Nature Communications |         (2024) 15:5801 4



across 45 tests via the Bonferroni method) (Fig. 3E and Supplemen-
tary Data 8).

The APOE locus is a highly pleiotropic region that is associated
with lipid levels57,58, Alzheimer’s disease59,60, and lifespan61,62, among
other traits63, both in the UKBB (Supplementary Fig. 14) and elsewhere.
Excluding the 242 individuals with diagnoses of dementia or Alzhei-
mer’s disease in our replication datasets did not alter associations of
rs429358 with any of the longitudinal obesity traits (Supplementary
Fig. 2), indicating that they are unlikely to be driven solely by weight
loss that accompanies dementia. Despite the association of rs429358
with lifespan, we found no association between this variant and follow-
up metrics in our study (Supplementary Data 22); we also found no
significant difference in the effect of this variant on adiposity change
from two sets of models: (1) without including age and related cov-
ariates, i.e., follow-up metrics and year of birth, and (2) with these
covariates (heterogeneity P value Phet > 0.05) (Supplementary Fig. 16).
Finally, we observe no associations between 135 of 138 published
lifespan-associated genetic variants and our adiposity-change pheno-
types at P < 3.6 × 10−4 (FWER controlled at 5% across 138 tests via the
Bonferroni method). Of the three SNPs associated with both weight
change and lifespan, two (rs429358 and rs7412) are variants in the
APOE gene, and rs1085251 is a known obesity association in the FTO
locus (Supplementary Data 16).

Genome-wide architecture of change in adiposity over time is
distinct from baseline adiposity
We identify six independent genetic loci associated with distinct long-
itudinal trajectories of obesity traits (Table 2). This included the APOE
locus above andfive signals in intergenic regions. rs9467663 (OR= 1.011
for membership in the high-gain weight cluster, P = 1.6 × 10−9) and
chr6:26076446 (OR= 1.012 for membership in the high-gain BMI clus-
ter, P= 2.1 × 10−9), are reported associationswith haematological traits64.
We identify two SNPs, rs11778922 and rs61955499, with female-specific
effects on BMI change. rs11778922 (OR=0.984 for membership in the
high-gain BMI cluster, P= 1.3 × 10−8, sex-heterogeneity Psexhet= 5.8 × 10−4,
see Methods) has previously been nominally associated with BMI in
females46, and rs61955499 (OR= 1.070 for membership in the BMI loss
cluster, P = 3.4 × 10−8, Psexhet =4.7 × 10−5), has previously been nominally
associated with low-density lipoprotein (LDL) cholesterol levels65.
Finally, rs12953815 is associated with male-specific weight change
(OR= 1.012 for membership in the weight loss cluster, P= 1.7 × 10−8,
Psexhet = 2.0 × 10−5) and has been previously nominally associated with
lung function66.

Other than rs429358, none of the lead variants for adiposity
change replicated in either MVP or EstBB at P > 1.39 × 10−3 (FWER
controlled at 5% across 6 variants via the Bonferroni method) (Sup-
plementary Data 5). However, we were only sufficiently powered to
replicate the effects of three of these in MVP (rs9467663,
chr6:26076446, and themale-specific variant rs12953815), and none in
EstBB, as replication at 80% power required sample sizes of between
116,000 to 234,000 individuals with repeat measurements of BMI
(Supplementary Data 25).

While all lead variants in the discovery GWASs remain significant
at P < 5 × 10−7 in GWASs that are not adjusted for follow-up metrics,
we discover three variants in the FTO locus that are associated with
BMI or weight gain only in analyses that are unadjusted for follow-up
metrics (Supplementary Data 21). These associations may reflect
genetic contributions to baseline weight rather than weight change,
as FTO is among the strongest known loci for obesity, and follow-up
metrics are strongly positively correlated with baseline obesity
(Supplementary Data 4).

The smaller number of independent GWS associations with
adiposity change: six, compared to 374 unique lead SNPs associated
with baseline obesity traits, is expected given the 7- to 9-fold
lower heritability of adiposity change. The heritability explained byTa
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genotyped SNPs (h2
G)

67 of the posterior probability of belonging to an
adiposity-gain cluster is between 1.38% (standard error (SE) = 0.53) in
men to 2.82% (0.59) in women, while the h2

G of baseline obesity traits
varies between 21.6% (1.09) to 29.0% (1.72) across strata (Fig. 5). Fur-
thermore, we observe that the heritability of BMI and weight trajec-
tories are higher in women than in men (2.89% (0.56) vs 1.05% (0.59)
for BMI slopes, Psexhet =0.012; and 3.42% (0.53) vs 1.69% (0.52) for

weight slopes, Psexhet = 9.9 × 10−3). Similarly, we estimate the heritability
of BMI slopes in the EstBB to be higher in women (2.15% (0.56) in
women vs 1.80% (0.98) in men); however, these values are low and
must be interpreted with caution. We do not observe a corresponding
difference in the h2

G of baseline BMI or weight between the sexes
(Psexhet > 0.1). Finally, baseline and change in obesity traits are geneti-
cally correlated, with rG ranging from 0.35 (95% CI = 0.24–0.45) for
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weight in women to 0.91 (0.59–1.23) for BMI in men (Fig. 5). As
expected given their positive correlation, we observe inflation of the χ2

statistics for adiposity-change slope associations amongst lead var-
iants for baseline adiposity (Supplementary Fig. 19). While the genetic
correlation between baseline adiposity and adiposity change appears
to be higher inmen as compared towomen, these estimates have wide
CIs (overlapping 1) and Psexhet >0.05 for both BMI and weight.

Throughout this study, we evaluate both BMI and weight as obe-
sity traits, and expect these to track closely in adults as height does not
change significantly over time. In the 161,891 individuals in our dis-
covery strata with multiple measurements of both BMI and weight,
there is a strong correlation between the slopes for weight and
BMI change (r2 = 0.88) and between the posterior probabilities of
membership in the BMI-gain and weight-gain clusters (r2 = 0.73)

Fig. 3 | AssociationofminorCalleleof rs429358,missense variant inAPOE, with
various longitudinal phenotypes. A Mean effect size (beta) and 95% CI for asso-
ciations of rs429358 with BMI and weight intercepts or linear slope change over
time estimated fromGWAS in all analysis strata (BMIN = 87,908 females and 73,656
males; weight N = 96,264 females and 80,144 males). B Left: mean OR and 95% CI
estimated from GWAS for association of rs429358 with posterior probability of
membership in the BMI and weight high-gain clusters (k1). BMI N = 87,908 females
and 73,656 males; weight N = 96,264 females and 80,144 males. Right: modelled
trajectories of standardised (std.) covariate-adjusted (adj.) BMI in carriers of the
different rs429358 genotypes. C Proportion of individuals who self-report weight
gain, weight loss, or no change in weight over the past year for carriers of each
rs429358 genotype.DMeaneffect size and95%CI for associations of rs429358with

slopes over time of waist circumference (WC) (N = 22,680 females and 21,474
males), WC adjusted for BMI (WCadjBMI) (N = 22,591 females and 21,379 males),
waist-to-hip ratio (WHR) (N = 22,677 females and 21,474 males), and WHRadjBMI
(N = 22,589 females and 21,379 males), estimated from linear mixed-effects models
in individuals held-out of discovery analyses (see Supplementary Data 6 for effect
estimates and P values). EMean effect size and 95% CI for associations of rs429358
with linear slope change in quantitative biomarkers over time, estimated from
linear mixed-effects models (N between 52,462–146,098 for different biomarkers,
see Supplementary Data 8 for details). Across all panels, estimates of trait change
are adjusted for baseline trait values, and P values for significance are controlled at
5% across number of tests performed via the Bonferroni method. n.s. non-
significant.

Fig. 4 | Effect sizes of rs429358 on BMI-change phenotypes in discovery (UK
Biobank (UKBB)) and replication (Million Veterans Program (MVP) and Esto-
nian Biobank (EstBB)) datasets. A Mean effect size (beta) and 95% CI for asso-
ciations of rs429358 with BMI linear slope change over time estimated from linear
mixed-effectsmodels (u1) GWAS in all analysis strata (see Supplementary Data 5 for
effect estimates and P values). BMean OR and 95% CI for association of all obesity-
change lead variantswith posterior probability ofmembership in the BMI high-gain

cluster (k1), highormoderate gain clusters (k1 + k2), or all but loss clusters (k1 + k2+
k3). Across all panels, UKBB N = 162,208, MVP N = 437,703, EstBB N = 127,760; see
Supplementary Data 23 for sex-stratified sample sizes. All estimates of trait change
are adjusted for baseline trait values, and P values for significance are controlled at
5% across number of tests performed via the Bonferroni method. n.s. non-
significant.
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(Supplementary Data 9, all P < 1 × 10−16). Moreover, the genetic corre-
lation between change in BMI andweight is nearly perfect (rG for slope
terms =0.98, rG for posterior probability of membership in gain
cluster = 0.95, all P < 1 × 10−16), indicating that the genetic architecture
highlighted here is robust to the metric of adiposity used to define
trajectories.

Discussion
In this large-scale EHR- and genetics-based study of longitudinal tra-
jectories of obesity traits, we demonstrate that modelling multiple
observations across time increases power to identify genome-wide
signals for baseline BMI and weight and enables the discovery of
genetic variants associated with changes in adiposity, which are less
heritable than and only partially shared with baseline adiposity. Mod-
elling ~1.5 million observations of BMI and weight from >170,000
individuals in the UKBB, enabled us to identify 14 novel, biologically
plausible, genetic signals associated with obesity traits. The discovery
of thesenovel loci highlights that repeatmeasurements can contribute
to narrowing the “missing heritability” gap. Leveraging the bespoke
longitudinal adiposity phenotypes developed here, we find six genetic
loci associated with changes in BMI and weight over time, including a
missense variant in APOE that replicates in two external cohorts in the
United States andEstonia.Whileprevious studies have investigated the
associations of cross-sectional BMI SNPs or obesity polygenic scores
with adiposity trajectories15,68, to the best of our knowledge, this study

reports the first genome-wide scan of variants associated with obesity
trait trajectories over adulthood.

Accounting for the influence of genetic variation on adiposity
change may provide opportunities to personalise obesity prevention
and treatment69,70. While several studies have investigated the asso-
ciation between BMI-related genetic variants and weight loss guided
by medical70, surgical71,72, dietary73, or behavioural70,74–76 interventions,
results are inconsistent across studies, intervention types, and genes
assessed. Given our evidence that the genetic basis of adiposity change
is distinct from baseline levels, we hypothesise that genetic variants
associated with longitudinal weight trajectories may be better pre-
dictors of long-term weight change following treatment or lifestyle
interventions than variants associated with baseline BMI. Moreover,
incorporating information on the genetic signals associated
with adiposity trajectories will complement current genetics-based
strategies to identify genes for pharmaceutical targets77 for obesity
treatment.

Previous studies have estimated continuity in the genetic corre-
lation of BMI measured at different ages78, which is theorised to
emerge by two possible mechanisms79: (1) common genetic (or envir-
onmental) factors are associated with the rates of change in BMI over
time, which we test in this study, and (2) that these correlations are
induced by time-specific genetic (or environmental) factors in an
autoregressive manner, i.e., BMI genetics at time-point t−1 causally
affect BMI at time t. Studies testing the latter hypothesis have arrived at
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Fig. 5 | Genotyped SNP-based heritability of, and genetic correlation between,
baseline obesity trait and obesity-change phenotypes. Left column: heritability
(h2

G) estimatemeans and95%CI, calculatedusing the LDSCsoftware67 ona subset of
1 million HapMap3 SNPs133 for the following traits: baseline BMI and weight, esti-
mated from intercepts of linear mixed-effects models of obesity traits over time
(u0), linear slope change in obesity traits over time (u1 adj. u0), adjusted for
intercepts, and posterior probability of membership in a high-gain BMI or weight
cluster, adjusted for baseline trait value (prob(k1) adj. u0). Right column: Genetic

correlation, rGmeans and 95% CI between the obesity-change and baseline obesity.
In all panels, summary statistics for correlations and heritability are derived from
discovery studies with sample sizes for: BMI = 87,908 females and 73,656 males;
weight = 96,264 females and 80,144 males. Circles represent BMI, triangles repre-
sent weight; points are coloured by analysis strata (pink: female-sepcific, green:
male-specific, grey: sex-combined). P values display the level of significance of
heterogeneity between the female- and male-specific estimates in each panel.
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opposing conclusions: Gillespie et al.80 find that on a genome-wide
scale, age-specific genetic effects in an autoregressive framework do
not explain differences in BMI heritability across ages 40–73 years,
whileWinkler et al.79 did identify 15 genetic lociwith differential effects
on BMI in younger adults (age <50 years) and older adults (age >50
years). Both studies were pseudo-longitudinal, i.e., the same indivi-
duals were not monitored over a period of time, but rather cross-
sectional individual data was grouped into age bins. Our work tests a
distinct hypothesis and is also, to our knowledge, the first to perform
a truly longitudinal genetic study with repeated measures in this
age group.

Leveraging EHR to derive longitudinal metrics for genetic dis-
covery may be affected by various biases described earlier81. We
attempted to mitigate these biases in three ways: (1) While EHR data
over-represent sick patients and individuals with higher BMI, UKBB
participants are, on average, healthier and have lower BMIs than the
population of the UK82. Therefore, our UKBB-linked EHR discovery
cohort is more overweight than a random sampling of UKBB, but in
contrast, UKBB as awhole is ascertained towards lower BMI individuals
than a random sampling of the UK. (2) Appending the more accurate
UKBB assessment center measurements to the EHR data improves
overall data quality. (3) Stringent quality control at both the popula-
tion and individual increases the signal-to-noise ratio by filtering out a
subset of inaccurate data entries. Although we were powered to
replicate four of the six UKBB-identified variants for adiposity-change
in the MVP cohort, only one replicated; the lack of signal for other
variants may imply these are false positive results. However, it is also
important to consider the differences in the demographic and obesity-
related characteristics between these cohorts, as participants in the
MVP are much more likely to have cardiovascular disease and be
overweight44 compared to those in UKBB; and assigning individuals in
the former cohort to adiposity trajectory clusters from the latter may
distort the phenotypes. Nevertheless, a majority of the baseline adip-
osity variants in our discovery GWASs as well as the rs429358 variant
for adiposity-change replicate across the UKBB, MVP, and EstBB, sug-
gesting that linking EHRs with biobank data may provide a robust
framework for genetic discovery.

The two-stage nature of our approach to associate genetic var-
iants with longitudinal trajectories of obesity traits is highly advanta-
geous because of its computational efficiency and convenience. In
particular, our method is composable, as the longitudinal analysis of
raw data can first be performed separately using a choice of popular,
efficient implementations of models; the first-stage outputs can then
be taken forward to a GWAS performed in its own bespoke, highly
optimised software. The two-stagemethod approximates the fitting of
a full joint model incorporating raw measurement data and genome-
wide SNP data. While a full joint model would propagate posterior
uncertainty from the longitudinal sub-model through to theGWAS, the
approximation here takes forward a single point estimate, i.e. a best
linear unbiased predictor (BLUP) or posterior probability of cluster
membership, to GWAS. However, in EHR datasets, the number of
measurements, and hence estimation precision, can vary across indi-
viduals. The propagation of uncertainty between model components,
in a similar vein to Markov melding83, has the potential to further
improve the quality of genetic discovery. An interesting area for future
research will be to allow for the principled propagation of posterior
uncertainty in traits through the highly optimised, multi-locus, mixed-
model GWAS methods to perform genetic association in the presence
of relatedness and population stratification84.

It is also important that the choice of trajectory metric utilised in
genetic analysis is phenotype-aware. While the variance within an
individual’s trait value over time may capture meaningful biology for
biomarkers such as blood pressure or triglycerides,whose fluctuations
are associated with disease development and progress85,86, weight is a
more stable trait that shows a steady pattern of change over many

years87,88. Our adiposity-change metrics, derived from regression
models incorporating linear and non-linear temporal trends, are better
suited to identify the genetic component of BMI and weight trajec-
tories, and are robust to the manner in which this is defined. For
example, despite self-report being an imprecise metric89, lead SNPs
from our obesity-change GWASs are also associated with self-reported
weight change. However, our results indicate the relative difficulty of
identifying genetic associations with longitudinal changes in obesity
traits, compared with identifying loci associated with cross-sectional
BMI. Variants associated with cross-sectional BMI must have had a
causal impact on expected longitudinal BMI at some periods in indi-
viduals’ lifespans; i.e. a cross-sectional BMI phenotype captures the
cumulative longitudinal effects of each BMI-associated genotype up to
the age at which the individual is measured. In contrast, our derived
measures of longitudinal change target the rate of change of BMI over
a shorter average time period, and themagnitude of the genetic signal
thus tends to be smaller in the longitudinal analysis compared to the
cross-sectional one. This means that the weaker longitudinal genetic
signal can be obscured by the non-genetic contribution from indivi-
duals’ short-and long-term environment, whilst the stronger cross-
sectional genetic signal may be detected with higher power as the
signal-to-noise ratio is larger. More broadly, there are several factors
that might affect the relative power to detect longitudinal effects such
as sample size, typically being smaller in longitudinal studies; the
longer and more frequent the typical follow-up is in a longitudinal
study, the greater the power, and the particular statistical methods
used to estimate cross-sectional versus longitudinal traits can affect
the accuracy and precision of estimates, and hence the strength of
genetic signal detected.

The SNP rs429358 (missense variant in APOE) is robustly asso-
ciated with loss in BMI and weight, independent of baseline obesity,
across men and women, across three global cohorts of European
ancestry. APOE codes for apolipoprotein E, which is a core component
of plasma lipoproteins that is essential for cholesterol transport and
homoeostasis in several tissues across the body, including the central
nervous system, muscle, heart, liver, and adipose tissue90,91. The pre-
cise pathway by which this variant affects weight change is difficult to
pinpoint, as APOE is a highly pleiotropic locus associated with hun-
dreds of biomarkers and diseases63. Here as well, we find associations
between rs429358 and 11 biomarker trajectories. Obesity is cross-
sectionally associated with several of these, including levels of trigly-
cerides and cholesterol92,93, markers of chronic inflammation94, and
haematological traits95. Some of the effects of rs429358 are discordant
with previously reported phenotypic correlations between obesity and
these biomarkers, however, the causal longitudinal and pleiotropic
nature of these associations remain to be established. As rs429358 is
also the strongest genetic risk factor for Alzheimer’s disease59,60, which
is preceded by weight loss96, we ensured that our findings were robust
to the exclusion of individuals with dementia. As longevity may con-
found the APOE-weight loss association61,62, we adjusted analyses for
the length of follow-up in EHR to mitigate against survivor bias; how-
ever, we also present age-unadjusted analyses and demonstrate that
other lifespan-associated variants are not associated with adiposity
change in our GWASs. We thus hypothesise that the APOE effect on
weight loss may act through cholesterol- and lipid-metabolism path-
ways that partly determine response to dietary and environmental
factors, as seen in mouse models97,98. Indeed, it has recently been
suggested that APOE-mediated cholesterol dysregulation in the brain
may influence the onset and severity of Alzheimer’s disease99, sug-
gesting that ageing-associated systemic aberrations in cholesterol
homoeostasis could have far-ranging consequences, from weight loss
to cognitive decline.

Patterns of weight change in mid-to-late adulthood have been
observed to be sex-specific, particularly as women undergo significant
changes in weight and body fat distribution around menopause100.
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Here, we find that the heritability of changes in obesity traits is higher
in women than in men, supporting a previous finding that obesity
polygenic scores are more strongly associated with weight change
trajectories in women than in men68. This is in contrast to baseline
obesity, which is equally heritable in men and women, both in our
study and as previously reported46. The lower genetic correlation
between baseline obesity and obesity-change in women as compared
to men, while not statistically significant, may nevertheless indicate
sex-differential genome-wide contributions to these phenotypes. We
hypothesise that sex hormones could explain some of this sex-speci-
ficity, particularly through their role in altering overall obesity and fat
distribution aroundmenopause101,102. We were underpowered to study
the genome-wide architecture of change in adultWCandWHR (10-fold
fewer observations than BMI and weight), whose cross-sectional levels
are genetically sex-specific with higher heritability in women46, so
more work is needed to disentangle the genetic contribution to
changes in adult body fat distribution over time.

While the EHR-linked UKBB cohort has driven genetic discovery
for a vast array of human traits in populations of European
ancestry103, sample sizes remain under-powered to detect genome-
wide associations in other ancestral groups. We were thus limited to
replicating European-ancestry associations in other populations,
without the ability to discover ancestry-specific variants associated
with adult adiposity trajectories. Furthermore, despite the inclusion
of >200,000 individuals in the UKBB EHR data, sample sizes remain
low to analyse the genetics of longitudinal trajectory metrics, which
have lower heritability than the averaged trait value15,104 (~7–9x lower
in our study) and are thus more challenging to characterise geneti-
cally without corresponding increases in sample size. Another lim-
itation of our study was the exclusion of time-varying covariates,
such as medication use, smoking status, and other dietary and
environmental covariates from models of adiposity change. It is
challenging to extract time-dependent values of these variables from
EHRs and difficult to ascertain the direction of causality by which
these covariatesmay be associatedwithweight change. For example,
the use of statins to lower blood pressure may be connected to
weight gain, mediated indirectly by change in appetite105, but high
blood pressure may itself be a consequence of weight gain106. Inap-
propriate adjustments along this causal pathway may lead to unex-
pected collider biases107. In general, despite their longitudinal nature,
it is challenging to assign causality to the associations between
weight change and covariates or disease diagnoses from EHR
observations alone, as there is no prospective study design to
follow108. Advances in emulating randomised control trials from
longitudinal EHR are beginning to overcome these challenges109,110,
and in the future, it will be critical to incorporate information on
genetic risk into these simulated studies.

To the best of our knowledge, this is the largest study to date that
characterises the genome-wide architecture of adult adiposity trajec-
tories, and the first to identify specific variants that alter BMI and
weight in mid- to late-adulthood. We add evidence to support the
growing utility of EHRs in genetics research, and particularly highlight
opportunities for incorporating longitudinal information to boost
power and identify novel associations. In particular, the APOE-asso-
ciated weight loss identified here contributes to a growing body of
evidenceon the ageing-associated effects of cholesterol dysregulation.
Heterogeneity between men and women in the genome-wide archi-
tecture of obesity-change andgenetic correlationwithbaseline obesity
highlights the importance of distinguishing between the genetic con-
tributions to mean and lifetime trajectories of phenotypes in sex-
specific analyses. In the future, the growing integration of EHR with
genetic data in large biobanks will allow us to assess the time-varying
associations of rare variants with outsize effects on quantitative traits,
as well as to establish genetic and phenotypic relationships among the
trajectories of multiple correlated biomarkers across adulthood.

Methods
Identification and quality control of longitudinal obesity
records
UK Biobank. This study was conducted using the UKBB resource,
which is a prospective UK-based cohort study with approximately
500,000 participants aged 40–69 years at recruitment, on whom a
range of medical, environmental, and genetic information has been
collected42. Here, we included 409,595 individuals in the white–British
ancestry subset identified by Bycroft et al.111 who passed genotype
quality control (QC) (see below).

Repeat obesity trait measurements. Obesity-associated traits
including BMI and weight were recorded at initial baseline assessment
(between 2006 and 2010), as well as at repeat assessments of 20,345
participants (between 2012 and 2013), and at imaging assessments of
52,596 participants (in 2014 and later). We curated a longitudinal
research resourceby integrating these repeatUKBB assessment centre
measurements with the interim release of primary care records pro-
vided by GPs for approximately 45% of the UKBB cohort (~230,000
participants, randomly selected)112 (Supplementary Fig. 3). Each indi-
vidual with at least oneBMI record (coded as Clinical Practice Research
Datalink (CPRD) code 22K.) or weight record (coded as CPRD code
22A) in the GP data had their respective UKBB assessment centre
measurements appended. Following phenotype and genotypeQC, this
resulted in 162,666participants ofwhite–British ancestrywithmultiple
BMI measurements and 177,472 participants with multiple weight
measurements (Supplementary Fig. 3).

Quality control. We performed both population-level and individual-
level longitudinal QC. Participants with codes for history of bariatric
surgery (Supplementary Data 10, as identified by Kuan et al.113) were
excluded entirely, while BMI and weight observations up to the date of
surgery were retained for individuals where this could be determined.
Only those measures recorded in adulthood (ages 20–80 years) were
retained. We excluded implausible observations, defined as more
extreme than ±10% of the UKBB asessment centre minimum and
maximum values, respectively (BMI <10.9 kg/m2 or >82.1 kg/m2 and
weight <27 kg or >217 kg). We further removed any extreme values >5
SDs away from the population mean to exclude possible technical
errors. At the individual-level we excluded multiple observations on
the same day, which are likely to be recording errors, by only retaining
the observation closest to the individual’s median value of the trait
across all time points. Finally, we excluded any extrememeasurements
on the individual-level. For individual i with Ji data points represented
as (measurement, age) pairs (yi,j, ti,j) for j = 1, …, Ji ordered chron-
ologically, i.e., ti,1< . . .<ti,Ji , a “jump” Pi,j for j = 1,…, Ji − 1 was defined as:

Pi,j = log2

jyi,j + 1 � yi,jj=yi,j
ti,j + 1 � ti,j

ð1Þ

We removed data points associated with extreme jumps (>3 SDs away
from the population mean jump, to exclude possible technical errors)
by excluding the observation farther from the individual’s median
value of the trait across all time points.

BMI and weight validation data. Participants with BMI and weight
observations in UKBB assessment centre measurements who were not
included in the interim release of the GP data were held out of dis-
covery analyses (Supplementary Fig. 3). This resulted in 245,447 indi-
viduals with at least one BMI observation and 230,861 individuals with
at least one weight observation for replication of cross-sectional
results. For the replication of longitudinal results, a subset of indivi-
duals was used comprising 17,006 individuals with multiple observa-
tions of BMI, and 17,035 individuals with multiple observations of
weight, from repeat assessment centre visits.
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Self-reported weight change data. At each UKBB assessment centre
visit, participants were asked the question: “Compared with one year
ago, has your weight changed?”, reported as “No—weigh about the
same”, “Yes—gained weight”, “Yes—lost weight”, “Do not know”, or
“Prefer not to answer”. We coded the 1-yr self-reported weight change
response at the first assessment centre visit as an ordinal categorical
variable with three levels: “loss”, “no change”, and “gain”, excluding
individuals who did not respond or responded with “Do not know” or
“Prefer not to answer”. We retained 301,943 individuals of
white–British ancestry who were not included in any of the discovery
analyses.

Abdominal adiposity data. Similar to the BMI and weight validation
datasets, we retained the 44,154 participants withmultipleWC and hip
circumference (HC) records across repeat assessment centre visits
whowere not included in the interim release of the GP data, and hence
held out of discovery analyses. WHR was calculated at each visit by
taking the ratio of WC to HC. We further calculated WC adjusted for
BMI (WCadjBMI) and WHR adjusted for BMI (WHRadjBMI) values at
each visit for whichWC, HC, and BMIwere recorded simultaneously by
taking the residual of WC and WHR in linear regression models with
BMI as the sole predictor.

Models to define baseline adiposity and adiposity change traits
Individual i has Ji data points represented as (measurement, age) pairs
(yi,j, ti,j) for j = 1, …, Ji ordered chronologically, i.e. ti,1< . . .<ti,Ji . The
following models are all fitted separately in three strata: female-spe-
cific, male-specific, and sex-combined.

Intercept and slope traits for GWAS. We implement a two-stage
algorithm to estimate and preprocess local intercept and slopes of
obesity traits to be taken forward to GWAS in both discovery and
validation datasets.
1. Fit random-slope, random-intercept mixed model with the

maximum likelihood estimation procedure in the lme4114 package
in R115. We target two quantities: the baseline value of each
individual’s clinical trait (the β0 + ui,0 below); and the the linearly
approximated rate of change in the trait during each individual’s
measurement window (the β1 + ui,1 below):

yi,j = x
T
i γ + ðβ0 +ui,0Þ+ ðβ1 + ui,1Þ � ðti,j � ti,1Þ+ εi,j

ui,k ∼Nð0,σ2
u,kÞ, k =0,1

εi,j ∼Nð0,σ2
ε Þ,

ð2Þ

where individual-specific covariates xi comprise: baseline age, (base-
line age)2, data provider, year of birth, and sex. Variance parameters
σ2
u,k and σ2

ε are estimated. Fitting model (2) outputs fixed effectmodel
estimates γ̂, β̂0, β̂1 and BLUPs of the random effects ûi,0 and ûi,1.
2. Linearly adjust and transform the outputted BLUPs. We fit and

subtract the linear predictor in each of the linear models:

ûi,0 = x
T
i,0γ0 + εi,0 ð3Þ

ûi,1 = x
T
i,1γ1 + εi,1 ð4Þ

where the vector of intercept-adjusting covariates xi,0 in (3) comprise:
baseline age, (baseline age)2, sex, year of birth, assessment centre,
number of follow-ups, and total length of follow-up (in years). The
vector of slope-adjusting covariates xi,1 in (4) comprise the same as xi,0
but additionally include the intercept BLUP ûi,0. The coefficient
vectors γ0 and γ1 in (3) and (4) are estimated by least squares and are
distinct from the previously estimated γ in (2). We finally apply
a deterministic rank-based inverse-normal transformation116 to the

residuals from fitting models (3) and (4). For example, the intercept
trait for individual i taken forward to GWAS is

~ui,0 =Φ
�1 rðûi,0 � xTi,0γ̂0Þ � c

N � 2c+ 1

 !
ð5Þ

where rðûi,0 � xTi,0γ̂0Þ is the rank of the ith residual among all N resi-
duals, the offset c is 0.5, and Φ( ⋅ ) is the cumulative distribution
function (CDF) of the standard Gaussian distribution.

The distribution of residuals and BLUPs from the LMEmodels are
heavy-tailed relative to a Gaussian (Supplementary Figs. 10–12). Such
model misspecification could potentially lead to miscalibration of CIs
and hypothesis tests based on the standard linear mixed model,
although this is likely to bemitigated by the large sample size owing to
the central limit theorem. We therefore take forward covariate-
adjusted and inverse-normal transformed BLUPs, as described in (5),
for genome-wide association testing.

Modelling non-linear trajectories with regularised splines. We
model non-linear changes in obesity traits using a regularised B-spline
basis of degree 3 (i.e., a cubic spline model) with ndf = 100 degrees of
freedom, incorporating ndf − 4 (i.e., ndf − 3[degree] − 1 [intercept])
knots that are spaced evenly across each individual’s first T = 7500
post-baseline days ≈ 20.5 years. It is common practice in semi-
parametric regression to use regularised splines with a relatively
large number of knots, thereby allowing functional expressiveness
without overfitting31,117. Conditional on the spline coefficients, bi, the
likelihood for measurements yi (individual i’s Ji-vector of measure-
ments taken at days ti,1, . . . ,ti,Ji ) is

pðyijbi,σ
2Þ=MVNðyijZ iXBbi, Iσ

2Þ ð6Þ

where: the ndf-vector bi contains the ith individual’s spline basis coef-
ficients;XB is the (T + 1) × ndf matrix of spline basis functions evaluated
at days 0,…, T post-baseline; and Zi is a Ji × (T + 1)matrix whose jth row
extracts day ti,j − ti,1 post-baseline, i.e.,

½Z i�j,k =
1 if k = ti,j � ti,1 + 1

0 otherwise :

�

We specify an order-1 autoregressive (AR(1)) model as a smoothing
prior on spline coefficients, bi, which vary smoothly around an
individual-specific mean value, μi. On μi we specify a non-informative
prior: N ðμij0,σ2

μÞ with large SD σμ. The resulting μi-marginalised prior
for bi is

pðbiÞ= MVN ðbij0, ΣBÞ
ΣB := ΣARð1Þ + σ

2
μ 1
!

ΣARð1Þ
h i

k,k0 := σ
2
ARð1Þϕ

jk�k0 j,

ð7Þ

where: ΣAR(1) is the ndf × ndf autocovariance matrix implied by an AR(1)
model with lag-1 autocorrelation ϕ 2 0,1½ Þ and scale parameter
σ2
ARð1Þ>0; and 1

!
is an ndf × ndf matrix of ones.

Theprior at (7) and likelihood at (6) are a specific caseof the Bayes
linear model118, for which the posterior is available in closed form:

pðbijyi,ΣB,σ
2Þ= MVN ðbijmi, σ

2V iÞ

V i := XT
BZ

T
i Z iXB +Σ

�1
B

� ��1

mi :=V iX
T
BZ

T
i yi:

ð8Þ

The posterior at (8) can be evaluated separately and in parallel
across individuals because the (yi, bi) are conditionally independent
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across individuals i given the hyperparameters σ2
ARð1Þ, ϕ, σμ and σ2.

Values of hyperparameters in the smoothing prior are chosen sub-
jectively, via visualisation of randomly selected samples of individual
data trajectories, to reflect empirical levels of smoothness:
σ2
ARð1Þ : =2:5, ϕ≔0.99, σμ≔ 100 (Supplementary Fig. 4). We addition-

ally compared cluster allocations for 5000 randomly selected indivi-
duals across the following settings of hyperparameters: (σ2

ARð1Þ : =0:5,
ϕ≔0.9, σμ≔ 10), (σ2

ARð1Þ : =2:5, ϕ≔0.99, σμ≔ 100), and (σ2
ARð1Þ : = 10,

ϕ≔0.999, σμ≔ 500) (Supplementary Fig. 8).
For each trait separately, we set σ2 to the median of its

individual-specific maximum likelihood estimates (MLEs), i.e., σ2 : =
median f1Ji jjyi � Z iXBmijj22 : i= 1, . . . ,ng where each MLE is calculated
from (6) after substituting for bi its maximum a posteriori estimate,mi

from (8) (Supplementary Data 12).
The measurements yi inputted into the likelihood for the reg-

ularised spline model at (6) are pre-processed by taking the standar-
dised residual from the linear model with the following covariates:
baseline age, (baseline age)2, data provider, year of birth, and sex, i.e.
from themodel yi,j = x

T
i γ + εi,j fitted across all i = 1,…,N individuals and

j = 1, …, Ji time points. Standardisation of residuals then proceeds by
subtracting the mean and dividing by the SD of residuals across all
individuals and time points.

We focus on individual i’s posterior change from baseline, i.e. on

~bi := ð0,ui,2 � ui,1,ui,3 � ui,1, . . .ÞT ð9Þ

� Db ð10Þ

where the jth row of D is ðej � e1ÞT and ek is the kth basis vector, i.e. a
column ndf-vector with zeroes everywhere except the kth entry, which
is one. To calculate the posterior for ~bi we linearly transform the
posterior at (8) so that

pð~bijyi,ΣB,σ
2Þ= MVN ð~bijDmi,σ

2DV iD
T Þ ð11Þ

with mi and Vi defined at at (8).

Soft clustering of individuals by non-linear adiposity trajectory
patterns. See Supplementary Fig. 5 for an overview of the clustering
protocol.

Any two individuals typically have quite distinct measurement
profiles, with different numbers of measurements taken at ages which
may be quite disparate. Therefore the precision with which we can
estimate any particular spline coefficient varies across individuals. To
incorporate this heteroscedasticity into our clustering framework, we
define the following scaled Euclidean distance between each pair of
individuals ði,i0Þ in the space of baselined spline basis coefficients:

dði,i0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXndf

k = 1

ð½Dmi�k � ½Dmi0 �kÞ2
ð½DV iD

T �k,k + ½DV i0D
T �k,kÞσ2

vuut ð12Þ

wheremi and σ2Vi are the posterior mean and covariance of individual
i’s spine coefficients bi taken from (8). For each spline coefficient k in
(12), the squared difference between individuals’ i and i0 mean coeffi-
cients is standardised by the sum of the corresponding variances.

We perform k-medoids clustering using the partitioning around
medoids (PAM) algorithm55,56 as implemented in the pam function in
the cluster package119 in R115. We train cluster centroids on a ran-
domly selected subset of 80% of individuals in each analysis strata. We
filter individuals in the training set to retain only those with at least
L = 2 observations. For a fixed number of clusters, K = 4, we initialise
cluster membership according to bins B1:K demarcated by the
0, 1K ,

2
K , . . . ,1 empirical quantiles of the estimated fold change in obesity

trait between baseline and year M = 2:

Bk := F̂
�1 k � 1

K

� �
,F̂

�1 k
K

� �� �
k = 1, . . . ,K

F̂ð�Þ := empirical CDF of
½XBDmi�M + 1

½XBDmi�1
: i= 1, . . . ,N

� 	

individual i in bin k () ½XBDmi�M + 1

½XBDmi�1
2 Bk :

ð13Þ

To ensure robustness, we run the clustering algorithm S = 10 times,
each on a random sub-sample of size 5000 (without replacement). For
each clustering output s = 1,…, S, we calculate the point-wise mean of
each cluster’s constituent individuals:

ck,s :=
1

jCðsÞk j
X
i2CðsÞ

k

Dmi ð14Þ

For each clustering s, we observe all trajectories cs,1:K to be monotonic
and non-overlapping (Supplementary Fig. 6). We can therefore define
ordered cluster means c(k),s,

k < k0 () ½cðkÞ,s�j>½cðk0 Þ,s�j 8j = 1, . . . ,ndf , ð15Þ

and average the kth ordered mean across S clusterings, where the
highest-weight cluster mean is given by c(1) and the lowest by c(K):

cðkÞ :=
1
S

XS
s = 1

cðkÞ,s, ð16Þ

with correspondingpoint-wise SEs.We investigate the sensitivity of the
resulting clusters to number of clusters K, filter parameter L (minimum
number of measurements), and the cluster initialisation parameter M
appearing in (13) via silhouette values120, which evaluate the similarity
between cluster members (cohesion) vs others (separation) (Supple-
mentary Fig. 6). We test values of K from 2, …, 8, filtering parameter
L∈ (2, 5, 10), and initialisation parameter M∈ (1, 2, 5, 10) or random
initialisation to choose a combination of parameters that produces
dense and separable clusters, i.e. K = 4, L = 2, M = 2. We also
qualitatively evaluate cluster centroids across all parameter settings
(Supplementary Fig. 7). Finally, we compared cluster allocations over
each of the 10 random trains for a set of 5000 randomly sampled
individuals held out of the training splits (Supplementary Fig. 9).

Once cluster centroids have been calculated, we define individual
i’s soft cluster membership probability of belonging to cluster k as the
posterior probability of being closest in Euclidean distance to cluster
k’s centroid:

πi,ðkÞ :=
Z

I k = argmin
k0

jj~bi � cðk0 Þjj2
 !

MVN ð~bijDmi, σ
2DV iD

T Þd~bi

ð17Þ
where the second term in the integrand is the posterior from (8), and
we approximate the integral in (17) using 100 Monte Carlo samples
from the posterior.

Finally, we validate the clustering by comparing cluster properties
of the randomly selected 80% training set used to define cluster cen-
troids, with the held-out 20% validation set. We assign each individual
to the cluster for which they have highestmembership probability and
compare the proportion of individuals assigned to each cluster, aswell
as distributions of sex, baseline age, number of follow-up measures,
and total length of follow-up of individuals assigned to each cluster.
Thesemetrics are similar across training and validation sets in all strata
(Supplementary Data 13).
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Finally, we take forward bounded logit-transformed cumulative
cluster probabilities to GWAS. These outputs are defined as
bounded logit(πi,(1)), bounded logit(πi,(1) +πi,(2)), and bounded
logit(πi,(1) +πi,(2) +πi,(3)), i.e., the bounded log odds of being in the
highest (k1), highest two (k1 or k2), and highest three (k1, k2, or k3)
weight clusters respectively. To prevent infinite log odds at π∈ {0, 1}
we defined the following bounded logit transform121:

bounded logitðπÞ � logit
ðS� 1Þπ +0:5

S

� �
π 2 ½0,1�, ð18Þ

where S = 100, the number of Monte Carlo samples from the posterior
in approximating (17).

Genome-wide association studies
QC of UK Biobank genotyped and imputed data. Genotyping, initial
genotype QC, and imputation on genome build hg19 were performed
by UKBB111. We performed post-imputation QC to retain only bi-allelic
SNPs with MAF >0.01, info score >0.8, missing call rate < 5%, and
Hardy-Weinberg equilibrium (HWE) exact test P > 1 × 10−6. We addi-
tionally performed sample QC to exclude individuals with sex chro-
mosome aneuploidies, whose self-reported sex did notmatch inferred
genetic sex, with an excess of third-degree relatives inUKBB, identified
as heterozygosity or missingness outliers, excluded from autosome
phasing or kinship inference, and any other UKBB recommended
exclusions111.

Linear mixed model association analyses for quantitative traits. An
overview of the traits carried forward for GWAS is provided in Sup-
plementary Fig. 18. The following association analyses are all per-
formed separately in three strata: female-specific, male-specific, and
sex-combined. The intercept and slope traits forGWAS, i.e., ~ui,0 and ~ui,1

were tested for association with genetic variants, adjusted for the first
21 genetic principal components (PCs) and genotyping array, using the
BOLT-LMM software84. We also performed GWAS for the inverse-
normal transformed within-individual mean adiposity trait, adjusting
for the same covariates described for ~ui,0. A similar protocol was fol-
lowed for the logit-transformed soft clustering probability traits, i.e.
π00
i,1, π

00
i,2, and π00

i,3 with additional adjustments for baseline trait, base-
line age, (baseline age)2, sex, year of birth, assessment centre, number
of follow-ups, and total length of follow-up (in years).

Fine-mapping SNP associations. We identified putative causal var-
iants at all GWS loci (defined by merging windows of 1.5 Mb around
SNPs with P < 5 × 10−8), using FINEMAP122 to select variants (lead SNPs)
with a posterior inclusion probability >95%. Lead SNPs were annotated
to the nearest gene transcription start site.

Classifying baseline BMI and weight SNPs as reported, refined, or
novel obesity associations. We curated a list of SNPs associated with
any of 44 obesity-related traits in the GWAS Catalog54 accessed on 02
Nov 2021, henceforth referred to as published obesity-associated
variants (Supplementary Data 1). We then conducted conditional
analysis using GCTA-COJO123 for each lead SNP in our GWAS and pub-
lished obesity-associated variants within 500 kb, classifying variants as
reported, refined, or novel based on previously recommended
criteria47. Reported SNPs in our study are those whose effects are fully
accounted for by published obesity-associated variants within 500 kb.
Refined SNPs fulfil all of the following criteria: (1) the refined SNP is
correlated (linkage disequilibrium (LD) r2 ≥0.1) with at least one pub-
lished obesity-associated variant within 500 kb, (2) the refined SNP has
a significantly stronger effect (P < 0.05 in a two-sample t test for dif-
ference inmean effect sizes) on the BMI- or weight-intercept trait than
published obesity-associated SNPs and also accounts for the effect of
published obesity-associated SNPs in conditional analysis (conditional

P >0.05), and (3) published obesity-associated SNPs cannot fully
account for the effect of the refined SNP in conditional analysis (con-
ditionalP <0.05). Finally, a SNP inour studywasdeclarednovel if itwas
not in LD with (r2 < 0.1), and conditionally independent of (conditional
P <0.05), all published obesity-associated variants within 500 kb.

Replication of GWS associations in UK Biobank hold-out sets
BMI and weight intercept-trait genetic associations. We created
cross-sectional obesity phenotypes for the 245,447 individuals in the
hold-out set for BMI and 230,861 individuals in the hold-out set for
weight (Supplementary Fig. 3) by retaining the observed trait value
closest to the individual’s median trait value (if multiple observations
present). Deterministic rank-based inverse-normal transformation116

was applied to the residual of the obesity trait adjusted for age, age2,
year of birth, data provider, and sex. We then tested this trait for
association with genetic variants, adjusted for the first 21 genetic PCs
and genotyping array, using the BOLT-LMM software84.

BMI and weight slope-trait genetic associations. We created adip-
osity slope phenotypes for the 17,006 individuals with multiple
observations of BMI and 17,035 individuals with multiple observations
of weight from repeat assessment centre visits (Supplementary Fig. 3
and Supplementary Data 19) with BLUPs from LMEs models as
described in the slope-trait modelling section above. We tested for
association of this slope-trait with GWS variants associated with adip-
osity change in our discovery analyses, adjusted for the first 21 genetic
PCs and genotyping array, via the linear regression framework imple-
mented in PLINK124. As PLINK does not account for family structure,
we compared each pair of second-degree or closer related individuals
(kinship coefficient >0.0884)111 and excluded the individual in the pair
having higher genotyping missingness. We repeated the same proto-
col within each self-identified ethnic group of individuals not of
white–British ancestry (Supplementary Data 11).

Genetic associations with BMI and weight cluster probabilities.
We fit regularised splines as detailed above to the 17,006 individuals
with multiple observations of BMI and 17,035 individuals with mul-
tiple observations of weight from repeat assessment centre visits
(Supplementary Fig. 3). Soft cluster membership probabilities
for these individualswere calculated, and the three logit-transformed
πi traits were carried forward for association testing with GWS var-
iants associated with adiposity change in our discovery analyses.
As above, we pruned out second-degree or closer related individuals
and performed association analysis, adjusted for baseline trait,
baseline age, (baseline age)2, assessment centre, first 21 genetic
PCs and genotyping array, via the linear regression framework
implemented inPLINK124.We repeated the sameprotocol within each
self-identified ethnic group of individuals not of white–British
ancestry.

Genetic associations with self-reported weight change. We fit pro-
portional odds logistic regression models implemented in the MASS
package125 in R115 to estimate the additive effect of lead SNPs on self-
reported one-year weight change coded as an ordinal categorical
variable with three levels: “loss”, “no change”, and “gain” in 301,943
individuals (described in the data section above). All models were
adjusted for BMI, age, sex, year of birth, data provider, assessment
centre, first 21 genetic PCs and genotyping array. We repeated the
same protocol within each self-identified ethnic group of individuals
not of white–British ancestry.

Replication of GWS associations in external cohorts
Quality control, modelling of adiposity change, and GWAS in external
cohorts were all performed exactly as in the UKBB discovery analyses,
with any exceptions noted below.
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Million Veteran Program. The MVP mega-biobank, with ~950,000
participants enroled to date, is actively recruiting participants from
the 6.9 million eligible individuals who make use of the services
provided by the Veterans Health Administration (VHA) from around
50 Veterans Affairs (VA) facilities across the United States of America
(USA)43. Eligible candidates are registered VHA users who are at least
18 years of age, possess a valid mailing address, and have the ability
to provide informed consent. The VA Central Institutional Review
Board (IRB) 10-02 protocol gained approval from the VA Central IRB
in 2010, and the enrolment of study participants commenced in early
2011. Genetic data for this study was obtained from the custom-
genotyped dataset with imputation to the 1000 Genomes project
on genome build hg19, and filtered to markers with imputation
information score >0.30 with minor allele count >30126. Full char-
acteristics of the MVP cohort43 and associated genetic data126 have
been described previously.

Weight, height, and other covariate records were compiled from
the MVP Baseline Survey, which collected information on demo-
graphics, health status, lifestyle habits, military experience, and phy-
sical traits, and supplemented with EHRs. A survey cleaning algorithm
was used to process self-reported data, ensuring quality through
expert-defined rules, full details of which have been described
previously44. Following population-level and individual-level QC of
repeat BMI measurements as described above, we retained 404,503
male European-ancestry participants with 20.6 million observations of
BMI and 33,200 female European-ancestry participants with 1.94 mil-
lion observation of BMI.

For each participant, we calculated linear rates of change in BMI
over time with the LME models described in (2); we also calculated
each individual’s soft cluster membership probability of belonging to
clusters whose centroids were defined in the UKBB discovery data
(Supplementary Data 24). All analyses were performed in sex-specific
and sex-combined strata. Genetic association analysis was performed
using REGENIE v2.2.4, software for whole genome regression mod-
elling of large GWASs that accounts for relatedness and population
stratification127. All GWASs were adjusted for baseline age, (baseline
age)2, the first 10 genetic PCs, and sex (in sex-combined analyses).

Estonian biobank. EstBB is a volunteer-based sample of Estonian
residents comprising ~20% of the Estonian adult population
(N > 210,000), recruited by medical personnel and through media
campaigns. Various health and demographic data have been collected
from the participants, both by medical workers and via self-reports,
since 2002. The cohort has been described in detail by Leitsalu et al.45.
Genetic data for this study was obtained from genotyping with the
Illumina global screening array (GSA) microchip, with imputation
using a customised reference panel aligned to the hg19 genome, as
described previously128.

BMI was available for 193,490 participants. BMI measurements
were collected by doctors (through measurements of height and
weight) from 2001 to 2023. Population-level and individual-level QC of
repeat BMI measurements were performed as described for the UKBB
discovery cohort; we additionally excluded individuals with records of
use of GLP-1 inhibitors such as semaglutide (blood glucose-lowering
drugs that typically also result in weight loss, drug codes A10BJ*). In
total, 82,034 female participants with 281,438 measurements of BMI
and 45,735 male participants with 164,166 measurements of BMI were
retained. Of these, 125,209 passed genotyping QC.

For each participant, we calculated linear rates of change in BMI
over timewith the LMEmodel described in (2); we also calculated each
individual’s soft cluster membership probability of belonging to clus-
ters whose centroids were defined in the UKBB discovery data (Sup-
plementary Data 24). All analyses were performed in sex-specific and
sex-combined strata. Genetic association analysiswasperformedusing
REGENIE v3.2 software for whole genome regression modelling127.

All GWASs were adjusted for baseline age, (baseline age)2, the first 20
genetic PCs, and sex (in sex-combined analyses).

Power calculations for replication sample sizes
We corrected the observed effect sizes from discovery GWASs for
winner’s curse through an implementation first described by Palmer
et al.129. Briefly, we solve for the bias using the following maximum
likelihood model,

βobs =βtrue + s
ϕ βtrue

s � c
� �

� ϕ �βtrue
s � c

� �
ψ βtrue

s � c
� �

+ψ �βtrue
s � c

� � ð19Þ

whereβobs is the effect size in thediscoveryGWAS,βtrue is the (assumed
true) effect size in the source population, and c = 5.33 is the test sta-
tistic corresponding to a discovery α = 5 × 10−8. The sample size
required to replicate the (assumed true) unbiased effect size is then
calculated for nominally significant α =0.05 and Bonferroni-adjusted
for the number of independent variants tested, Mvar (α = 0:05

Mvar
) as

follows:

powerðα,ncpÞ= 1� χ21 ððχ21 Þ
�1ð1� αÞ,ncpÞ ð20Þ

under the alternative distribution which is non-central χ21 with non-
centrality parameter per variant (ncp) estimated for a normalised trait
with variance 1 as:

ncp ≈N
2β2

obsAFð1� AFÞ
1� 2β2

obsAFð1� AFÞ
ð21Þ

where AF is the variant allele frequency.

Power comparison to GIANT 2019 meta-analysis of BMI
We accessed publicly available summary statistics from the GIANT
consortium’s meta-analysis of BMI across UKBB and previous GIANT
releases in female-specific (max N = 434,793), male-specific (max
N = 374,755), and sex-combined strata (max N = 806,834)46. SNPs
included in both the GIANT 2019 meta-analysis and our in-house BMI-
intercept GWAS that reachedGWS in either studywere carried forward
for power comparisons, resulting in 26,812 (female-specific strata),
22,123 (male-specific strata), and 82,559 (sex-combined strata) SNPs.

Per variant, we calculated the χ2 statistic (as β2

SE2) and obtained the ratio

of χ2in�house to χ2GIANT . Median
χ2
in�house
χ2GIANT

across all GWS SNPs was then

compared to themedian ratio of sample sizes, i.e. Nin�house
NGIANT

, to determine

the boost in power over that expected from the sample size difference
between the two studies.

Single-variant analyses
The following analyses were all conducted in female-specific, male-
specific, and sex-combined strata.

Abdominal adiposity change traits. Slope changes in WC, WHR,
WCadjBMI, and WHRadjBMI for up to 44,154 individuals with
repeat observations were calculated using LMEs models, adjusted
and rank-based inverse-normal transformed116 for genetic association
testing as described in the slope modelling section above. We esti-
mated the additive association of number of copies of each lead
variantminor allele (0, 1, or 2) with slope traits adjusted for thefirst 21
genetic PCs and genotyping array via linear regression (Supplemen-
tary Data 17).

Longitudinal phenome-wide association. We curated a longitudinal
research resource for 45 additional quantitative phenotypes in up to
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146,099 individuals of white–British ancestry (Supplementary Data 14,
as identified by Kuan et al.130) by integrating UKBB assessment centre
measurements with the interim release of primary care records pro-
vided by GPs, with QCperformed as described above for obesity traits.
Slope changes in each of these phenotypeswere calculated using LMEs
models described in (2). A deterministic rank-based inverse-normal
transformation116, as described in (5), was applied to the slope BLUP
ûi,1. The transformed slope-trait was tested for additive association
with number of copies of each lead variant minor allele (0, 1, or 2),
adjusted for the intercept BLUP ûi,0, baseline age, (baseline age)2, sex,
year of birth, number of follow-ups, total length of follow-up (in years),
assessment centre, first 21 genetic PCs and genotyping array (Supple-
mentary Data 18).

Identification of individuals with Alzheimer’s or dementia diag-
noses. We identified participants with codes for history or diagnosis
of dementia in either primary care or hospital in-patient records
(Supplementary Data 15, as identified by Kuan et al.113).We performed
sensitivity analyses for the replication of rs429358 associations
with all obesity-change phenotypes after excluding up to 242 indi-
viduals of white–British ancestry with recorded history or diagnosis
of dementia.

Identification of lifespan-associated variants
We curated a list of 138 independent variants associatedwith longevity
in the GWAS Catalog54, accessed on 27 March 2023 (Supplementary
Data 16). We identified independent SNPs that passed genotyping and
imputation QC filters in UKBB by pair-wise pruning variants in LD
(r2 > 0.1) within a 1Mb window. One of the lead variants identified in
this study, i.e., rs429358 in the APOE locus, was pruned out in favour of
rs4420638, which is 11 kb away from the lead variant and in LD with
rs429358 with r2 = 0.69. We looked up the effects of these variants in
the various adiposity-change GWAS summary statistics and estab-
lished significance at P = 3.60 × 10−4 (Bonferroni-corrected at 5% across
138 tests).

SNP heritability and genetic correlations
We estimated the heritability explained by genotyped SNPs (h2

G) and
genetic correlations (rG) between obesity-intercept and obesity-
change traits, from summary statistics, using LD score regression
implemented in the LDSC software67,131, with pre-computed LD-scores
based on European-ancestry samples of the 1000 Genomes Project132

restricted to HapMap3 SNPs133. The same protocol was followed to
determine rG between BMI-intercept in our in-house study and BMI in
the GIANT 2019 meta-analysis.

Joint modelling of intra-individual mean and variance
Analyses were performed using the TrajGWAS package28 in Julia134,
for 177,472 unrelated individuals of white–British ancestry with mul-
tiple measurements of weight included in the discovery analyses.
Briefly, TrajGWAS analysis is conducted in two stages to test for
genetic effects on longitudinal trajectory mean, intra-individual var-
iance, and a joint effect on either mean or variance in an LME model
framework28. In the first stage, we fit a null model for weight with fixed
effects for the intercept, age, age2, sex, and 21 genetic PCs;we included
random effects for the intercept and linear slope of age. In the second
stage, we performed score testing with the saddle-point approxima-
tion under the full model, i.e. including genome-wide effects for all
variants with MAF >1% in the genotyped and imputed UKBB data that
passed QC.

Sex-heterogeneity testing
We tested for sex-heterogeneity in the effects of adiposity-change lead
SNPs by calculating Z-statistics and corresponding P-values for the

difference in female-specific and male-specific effects as:

Zsexhet =
ðβ̂ðFÞ � β̂ðMÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSE2

ðFÞ + SE
2
ðMÞÞ

q ð22Þ

A similar statistic and test was used to determine heterogeneity
between (h2

G) of all traits inmales and females, and rG between obesity-
intercepts and obesity-change traits in males and females.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics generated in this study have been
deposited in the GWAS Catalog54. They can be downloaded from the
parent directory: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90429001-GCST90430000/ using the accession num-
bers provided in Supplementary Data 26 (ranging fromGCST90429765
to GCST90429794).

Code availability
All code required to reproduce analyses is publicly available at: https://
github.com/lindgrengroup/longitudinal_primarycare/tree/main/
adiposity/scripts/manuscript135.
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