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Background: Acute kidney injury (AKI) is a significant challenge in healthcare. While there are considerable researches dedicated to 
AKI patients, a crucial factor in their renal function recovery, is often overlooked. Thus, our study aims to address this issue through 
the development of a machine learning model to predict restoration of kidney function in patients with AKI.
Methods: Our study encompassed data from 350,345 cases, derived from three hospitals. AKI was classified in accordance with the 
Kidney Disease: Improving Global Outcomes. Criteria for recovery were established as either a 33% decrease in serum creatinine lev-
els at AKI onset, which was initially employed for the diagnosis of AKI. We employed various machine learning models, selecting 43 
pertinent features for analysis.
Results: Our analysis contained 7,041 and 2,929 patients’ data from internal cohort and external cohort respectively. The Categorical 
Boosting Model demonstrated significant predictive accuracy, as evidenced by an internal area under the receiver operating charac-
teristic (AUROC) of 0.7860, and an external AUROC score of 0.7316, thereby confirming its robustness in predictive performance. 
SHapley Additive exPlanations (SHAP) values were employed to explain key factors impacting recovery of renal function in AKI pa-
tients.
Conclusion: This study presented a machine learning approach for predicting renal function recovery in patients with AKI. The model 
performance was assessed across distinct hospital settings, which revealed its efficacy. Although the model exhibited favorable out-
comes, the necessity for further enhancements and the incorporation of more diverse datasets is imperative for its application in re-
al-world.
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Introduction 

Despite treatment advancements in recent years, acute 

kidney injury (AKI) remains a significant concern in the 

medical field. AKI independently contributes to the escala-

tion of healthcare costs and prolongation of hospitalization 

http://crossmark.crossref.org/dialog/?doi=10.23876/j.krcp.23.330&domain=pdf&date_stamp=2024-07-03


periods, while also elevating the incidence of in-hospital 

complications and mortality rates [1–3]. This condition 

is recognized as one of the most prevalent diseases, ex-

hibiting incidence rates of 10% to 15% in general hospital 

admissions and escalating to 50% to 60% within intensive 

care unit (ICU) settings. The duration of renal function 

recovery is increasingly recognized as a pivotal factor in 

predicting patient outcomes [4]. Studies have shown a cor-

relation between prolonged AKI and heightened risks of 

complications and mortality [5,6]. 

Nevertheless, the crucial role of renal function recovery 

in the prognosis of patients with AKI has been largely over-

looked [7]. Consequently, this research area experiences 

a significant dearth of research, necessitating the need for 

new investigations. Prior efforts to predict renal function 

recovery have been hindered by limitations, such as small 

sample sizes [8–10], exclusive focus on ICU patients, and 

the absence of an all-encompassing definition for renal 

function recovery, which impedes the application of these 

research outcomes in clinical settings [11–15]. Therefore, 

this study aimed to fill this gap by developing a machine 

learning-based approach that includes validation in ex-

ternal settings, aimed to predict renal function recovery 

in patients with AKI, with a particular focus on patients in 

general wards. 

Methods 

The study was conducted in accordance with the ethical 

principles of the Declaration of Helsinki. The Institution-

al Review Boards (IRBs) of Soonchunhyang University 

Cheonan Hospital and Korea University Anam Hospital 

and Guro Hospital approved the study protocol (No. 2019-

10-023, 2023AN0145, and 2023GR0425). The need for in-

formed consent was waived by the IRB as the current study 

was a retrospective review of anonymized clinical data. 

Study population 

For model development, patient datasets were extract-

ed from the Korea University Anam Hospital (Hospital 

A) and Guro Hospital (Hospital B) from January 1, 2015, 

to December 31, 2021. These datasets were used as an 

internal cohort. Additional datasets were extracted from 

Soonchunhyang University Cheonan Hospital (Hospital C), 

specifically from patients who were admitted to the general 

wards from March 1, 2016, to March 31, 2021 for an exter-

nal cohort. We only considered admissions for individuals 

aged 19 years and older. Using these data, we constructed 

a retrospective cohort and applied the following exclusion 

criteria. 

1) Patients with a hospital stay of less than 24 hours. 

2) �Patients with no blood pressure measurement record-

ed within 24 hours of admission or with fewer than 

two measurements during their hospital stay. 

3) �Patients without serum creatinine (Cr) measurement 

or estimated glomerular filtration rate (eGFR) of less 

than 60 mL/min/1.73 m2 on the first day. 

Patients with an eGFR of less than 60 mL/min/1.73 m2 

were excluded from this research due to the unavailability 

of comprehensive blood test results prior to hospitaliza-

tion, which precluded accurate assessment of baseline 

renal function in these individuals. In other words, the 

eGFR at the time of hospital admission could represent the 

patient’s baseline renal function or the eGFR following the 

onset of AKI. To exclude such ambiguity and focus exclu-

sively on in-hospital AKI, only patients with an eGFR of 60 

mL/min/1.73 m2 or above upon admission were included 

in this study, indicating relatively preserved renal function.  

Acute kidney injury definition 
AKI was defined according to the KDIGO (Kidney Disease: 

Improving Global Outcomes) guidelines. AKI was diag-

nosed based on the following criteria. 

1) �An increase in Cr by 0.3 mg/dL (or 26.5 μmol/L) or more 

within 48 hours. The baseline value is defined as the 

lowest Cr value measured in the preceding 2 days. 

2) �A Cr level that is 1.5 times or more and the baseline. The 

baseline value is defined as the lowest Cr value mea-

sured in the preceding 7 days. 

Baseline Cr was determined as the lowest Cr value mea-

sured in the preceding 2 or 7 days. If no Cr value was mea-

sured for definition 2, the most recent measurement within 

the last 180 days was used as the baseline. Urinary output 

criteria were not utilized for AKI diagnosis because of the 

predominance of missing data in the patient records. 

Acute kidney injury recovery definition 
To define AKI recovery, we referred to previous studies 

[4,16] and used the following criteria; AKI recovery was de-
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termined based on the following two criteria for Cr: 

1) �A decrease of 33% or more compared to the Cr at the 

time of AKI onset. 

2) �A decrease below the baseline used for AKI diagnosis. 

We established a recovery period of 7 days to evaluate 

AKI recovery. If recovery does not occur within this period, 

the patient was categorized as suffering from acute kidney 

disease rather instead of AKI [17]. 

Cohort organization and outcome labeling 
After applying these exclusion criteria, we established a 

research cohort consisting of 140,636 cases from Hospital A 

and 114,893 cases from Hospital B. Among these data, 5,456 

and 8,532 cases of AKI cases during hospitalization were 

selected from Hospitals A and B, respectively. 94,816 cases 

of research cohort from hospital C were collected and 5,716 

AKI cases during hospitalization were selected. The pro-

cess of dataset construction is depicted in Fig. 1, and the 

distribution of AKI cases according to hospitalization peri-

od is presented in Supplementary Fig. 1 (available online). 

The data from Hospitals A and B were utilized for training 

and internal validation, and the data from Hospital C was 

utilized for external validation. 

For labeling purposes, patients who satisfied AKI recov-

ery criteria were labeled with 1, others were labeled with 

0. Patients were excluded from this study if, following the 

onset of AKI, Cr levels were not measured or, even if mea-

sured, recovery could not be definitively determined with-

in 7 days. Examples regarding this process are shown in 

Supplementary Fig. 2 (available online). 

Statistical analysis 
For continuous variables, the median and interquartile val-

ues were provided when a normal distribution could not 

be assumed; otherwise, the mean and standard deviation 

(SD) were presented. Categorical variables were represent-

ed by the number and percentage of patients. To assess 

the differences between recovery and non-recovery, t tests 

were performed for continuous variables showing a normal 

distribution, the Mann-Whitney U tests for non-normally 

distributed continuous variables, and the chi-square tests 

for categorical variables, all at a significance level of 0.05.  

Figure 1. The data composition process.
AKI, acute kidney injury.

Patients admitted to Korea University 
Anam Hospital from January 1, 2015, 

to December 31, 2021
(n = 263,802)

Korea University Anam Hospital cohort
(n = 140,636)

Patients with AKI
(n = 5,456)

Patients with AKI
(n = 8,532)

Patients with AKI 
(n = 5,716)

Patients without 
AKI

(n = 135,180)

Patients without 
AKI

(n = 106,361)

Patients without 
AKI

(n = 89,100)

Exclusion criteria
• Patients with an admission duration of less than 24 hours
• �Patients without blood pressure measurements on the first day or with less than 2 measurements 

during their hospital stay 
• �Patients without serum creatinine measurement or estimated glomerular filtration rate of less than 

60 on the first day

Patients admitted to Korea University 
Guro Hospital from January 1, 2015, 

to December 31, 2021 
(n = 247,436)

Korea University Guro Hospital cohort 
(n = 114,893)

Patients admitted to Soonchunhyang 
University Cheonan Hospital 

from March 1, 2016, to March 31, 2021
(n = 174,466)

Soonchunhyang University 
Cheonan Hospital cohort

(n = 94,816)

Hospital A Hospital B Hospital C

2,140 5,443 28,649

18,289 28,177 766

102,737 98,923 50,235
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Data preprocessing  

Data collected from the electronic health records included 

measurements, measurement times, and specific variables, 

resulting in numerous missing values. To address this issue, 

we adopted a method of summarizing the data at 24-hour 

intervals. This approach has been validated for its efficacy 

in prior studies, providing benefits in terms of simplicity 

of deployment and utilization of the developed model. By 

summarizing the data at 24-hour intervals, we maintained 

consistency and facilitated data analysis. 

Variables with multiple measurements within 24 hours, 

were summarized as maximum, mean, minimum, and the 

number of measurements, for vital signs data. The labora-

tory test results were based on recent measurements. Addi-

tionally, variables such as the prescription of nephrotoxic 

drugs (e.g., nephrotoxic antibiotics, nonsteroidal anti-in-

flammatory drugs [NSAIDs], and cytotoxic chemothera-

peutic agents), vascular imaging studies, surgery with gen-

eral anesthesia, contrast-enhanced computed tomography 

(CT), and transfer to the ICU, were considered influential 

within 7 days of the corresponding measurement times. 

Next, eGFR was calculated using the CKD-EPI (Chron-

ic Kidney Disease Epidemiology Collaboration) 2021 Cr 

equation [18]. We also added a variable named “Increased 

amount of Cr” by subtracting the baseline Cr from Cr at the 

time of AKI occurrence. Finally, the “BUN/Cr ratio” rep-

resents the value obtained by dividing blood urea nitrogen 

(BUN) by Cr. Subsequently, robust scaling was applied to 

all the continuous variables. For categorical variables, one-

hot encoding was applied. 

Feature selection 
Approximately 120 features were extracted from the elec-

tronic health records, covering basic patient information, 

vital signs, laboratory test results, and other relevant fac-

tors. Following a comprehensive literature review and con-

sultation with domain experts, a two-step feature selection 

process was undertaken. Initially, the LASSO (Least Abso-

lute Shrinkage and Selection Operator) was utilized to ex-

amine the regression coefficients and SHapley Additive ex-

Planations (SHAP) values for all features. Simultaneously, 

the outcomes were assessed using a stepwise method with 

logistic regression as the criterion. Subsequently, based on 

correlation coefficients and missing value ratios, the fea-

ture set was refined to 43 features. Details of the selected 43 

features are provided in Supplementary Table 1 (available 

online). 

Outlier and missing value handling 
To address outliers, the data distribution for each feature 

was thoroughly examined, and individual patient records 

were reviewed. Detection thresholds for certain numerical 

variables were established in collaboration with clinical ex-

perts, utilizing histograms and quantile-quantile plots. 

To address missing values in the data, two methods were 

employed: imputation with preceding values, and the use 

of missing value indicators. For variables with available 

preceding values, the missing values were replaced with 

the preceding values to maintain data continuity. Addi-

tionally, for variables with low missing value rates (<20%), 

the multiple imputation by chained equations (MICE) 

method was used to handle missing values from the three 

hospitals. MICE is widely used to generate imputations 

that closely resemble true distributions when the rate of 

missing values is low [19]. The choice between the missing 

indicator method and MICE was determined based on the 

extent of missing values for each variable. The missing in-

dicator method was used for variables with missing value 

rates exceeding 20%, where missing values were marked 

as ‘unknown.’ This approach allowed us to identify and 

distinguish the patterns of missing values within the vari-

ables. Supplementary Table 2 (available online) presents 

the missing value rates before and after handling missing 

values with preceding values in each hospital. Additionally, 

Supplementary Table 3 (available online) provides an ex-

planation of the application of the missing indicator meth-

od, where missing values are marked as ‘unknown.’  

Machine learning models  

Deep learning models generally exhibit superior perfor-

mance compared to traditional machine learning models, 

but due to the amount of data required for training and 

high time and space complexities [20–22], traditional ma-

chine learning models were selected in this study. Various 

machine learning models were used in this study, includ-

ing logistic regression (LR), random forest (RF), eXtreme 

Gradient Boosting (XGB), Light Gradient Boosting Model 

(LGBM), and Categorical Boosting (CAT). CAT was utilized 
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as an effective model for handling categorical variables, ne-

gating the need for separate one-hot encoding procedure 

for such variables [23]. 

For model training purposes, the dataset was randomly 

divided into 10 groups, ensuring an equal outcome ratio 

across them. The last group (group 10) was utilized for 

internal validation, while the remaining nine groups were 

used for cross-validation to conduct hyperparameter tun-

ing and model selection. During the nine cycles of itera-

tion, seven groups served for training purposes, one group 

was used to set early stopping criteria, and the remaining 

group was employed for performance evaluation. Grid 

search was applied for hyperparameter tuning, and the 

range of hyperparameters adjusted according to the model 

is detailed in Supplementary Table 4 (available online). 

The processes of early stopping, hyperparameter tuning, 

and model selection were all based on the area under the 

receiver operating characteristic curve (AUROC). A graph-

ical representation of the training process can be found in 

Supplementary Fig. 3 (available online). 

Model evaluation and interpretation 

For the evaluation metrics, accuracy, precision, recall, 

specificity, F1 score, AUROC, and area under the preci-

sion-recall curve (AUPRC) were utilized. Internal valida-

tion was conducted using group 10 from the internal co-

hort, which has not been employed in the training phase, 

while external validation utilized all data from the external 

cohort at Soonchunhyang University Cheonan Hospital. 

The evaluation of metrics such as accuracy, precision, re-

call, specificity, and F1 score, which vary according to the 

threshold, involved adjusting the threshold in increments 

of 0.01 from 0.01 to 0.99, and the results were presented in 

Supplementary Fig. 4 (available online). The performance 

metrics of this manuscript are reported based on a thresh-

old of 0.5. Evaluations were carried out on both internal 

and external validation datasets. 

An in-depth sub-cohort analysis was conducted to gain 

a deeper understanding of early renal function recovery 

using the developed model. The criteria for the sub-cohort 

included patients with an eGRF less than 60 mL/min/1.73 

m2 and those with an eGFR of 60 mL/min/1.73 m2 or above 

at the time of AKI onset, female and male patients, patients 

aged 65 years and over versus those under 65 years, and the 

use of cytotoxic chemotherapeutic agents. To enhance the 

interpretability of the models. SHAP values were provided 

for each analysis. 

Results 

Baseline characteristics 

The final analysis included 7,041 patients from the internal 

cohort and 2,929 patients from the external cohort. The 

labeling ratios for recovery in these hospitals were 46.9% 

and 51.8%, respectively. Among recovered patients, the 

mean time to recovery post-AKI was 5.05 days (SD, 2.26) in 

the internal cohort and 4.75 days (SD, 2.20) in the external 

cohort. The distribution of recovery in patients with AKI is 

illustrated in Supplementary Fig. 5 (available online). The 

baseline characteristics of the recovery and non-recovery 

groups from each hospital are presented in Supplementary 

Table 5 (available online). Although Cr was not utilized in 

the actual model training, it is included in the table. Sup-

plementary Table 6 (available online) shows the result after 

applying the missing indicator. 

Numerous variables exhibited statistically significant 

differences between the renal function recovery group and 

the non-recovery group. Among continuous variables, vital 

signs such as blood pressure, heart rate, respiratory rate, 

along with white blood cell count, BUN, increased amount 

of Cr, glucose, blood sugar test, uric acid, phosphorus, 

chloride, and urine specific gravity (SG) were higher in the 

recovery group compared to the non-recovery group in 

both hospitals. Conversely, platelet, eGFR, alkaline phos-

phatase, pH, and total CO2 levels were higher in the non-re-

covery group than in the recovery group across both hos-

pitals. For categorical variables, the proportion of patients 

using nephrotoxic antibiotics in the non-recovery group 

was higher, while the incidence of contrast-enhanced CT 

and general anesthesia showed the opposite trend. Even 

when applying a missing indicator, variables that showed 

statistically significant differences among continuous vari-

ables largely maintained their disparities. Additionally, 

C-reactive protein and pro-brain natriuretic peptide, which 

did not exhibit statistically significant differences before 

applying the missing indicator, showed differences after-

ward. Some variables demonstrated statistical differences 

in only one of either the internal or external cohort. Total 
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cholesterol showed statistical differences in both cohorts, 

but with the non-recovery group showing higher levels in 

the internal cohort, whereas in the external cohort, the re-

covery group had higher levels. These differences between 

hospitals could potentially impact the model’s generaliz-

ability and suggest that analyzing a larger patient popula-

tion is necessary to enhance generalization performance. 

Model performance 

Table 1 presents the performance outcomes of internal 

and external validation, evaluating five machine learning 

models: LR, RF, XGB, LGBM, and CAT. The CAT model 

demonstrated strong predictive capability with the highest 

AUROC of 0.7816. The RF model also performed well, with 

an AUROC of 0.7727, whereas the XGB model exhibited 

commendable performance with an AUROC of 0.7543. 

LR showed a moderate performance, with an AUROC of 

0.7402. The LGBM displayed relatively lower predictive 

power, with an AUROC of 0.7254. The external validation 

results indicated a general decrease in performance across 

all models. The performance degradation in external val-

idation, as measured by AUROC ranged from a minimum 

decrease of 0.0168 to a maximum decrease of 0.0456. The 

CAT model consistently outperformed the other models in 

terms of internal validation. The RF model demonstrated 

the highest performance in external validation. However, 

external validation data were not considered in the mod-

el selection process, and the CAT model was ultimately 

chosen. Supplementary Fig. 6 (available online) shows the 

AUROC and AUPRC curves for internal and external vali-

dation. 

Model evaluation and interpretation 

The SHAP values for the model are depicted in Fig. 2. In 

the figure, the red color indicates higher values of the re-

spective feature, while the blue color signifies lower values. 

The position of the dots placed towards the right signifies 

a greater contribution by the feature value to the model’s 

prediction of non-recovery for the patient. For categorical 

variables, red dots represent a value of 1, and blue dots sig-

nify a value of 0. The variables that the model considered 

important include increased amount of Cr, the use of anti, 

SG, activated partial thromboplastin time, sex, heart rate, 

BUN, alkaline phosphatase, respiratory rate, systolic blood 

pressure, total carbon dioxide, white blood cell count, body 

temperature, age, triglycerides, platelet count, and albumin 

(Alb). When AKI occurs, all patients tend to have increased 

Cr. In cases where there was a greater change in Cr, it ap-

peared to have an extreme impact, resulting in recovery. 

Patients with a high BUN/Cr ratio or high SG typically raise 

suspicions of dehydration. Patients who were dehydrated 

tended to have a more favorable prognosis for recovery. 

Variables such as high Alb, BUN, heart rate, and body tem-

perature are positively associated with better recovery. 

The use of NSAIDs contributes to improved renal function 

recovery, whereas nephrotoxic antibiotics or cytotoxic che-

motherapeutic agents hinder renal recovery.  

Table 1. Comparative analysis of internal and external validation outcomes
Validation Model Accuracy Precision Recall F1 AUROC AUPRC
Internal LR 0.6805 0.6881 0.7258 0.7065 0.7402 0.7633

RF 0.7165 0.7354 0.7258 0.7306 0.7727 0.7932
XGB 0.6473 0.6260 0.8303 0.7138 0.7543 0.7711
LGBM 0.6321 0.6119 0.8355 0.7064 0.7254 0.7511
CAT 0.7206 0.7453 0.7180 0.7314 0.7816 0.7962

External LR 0.6268 0.5766 0.8499 0.6871 0.7234 0.7027
RF 0.6726 0.6359 0.7507 0.6885 0.7394 0.7231
XGB 0.6238 0.5725 0.8669 0.6896 0.7327 0.7164
LGBM 0.6193 0.5747 0.8095 0.6722 0.7081 0.6683
CAT 0.6685 0.6275 0.7684 0.6909 0.7360 0.7152

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; CAT, Categorical Boosting; LGBM, Light Gradi-
ent Boosting Model; LR, logistic regression; RF, random forest; XGB, eXtreme Gradient Boosting.
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Figure 2. SHapley Additive exPlanations (SHAP) value.
BUN, blood urea nitrogen; Cr, creatinine; CT, computed tomography.

Increased amount of Cr

Number of vital signs measurements per day

Nephrotoxic antibiotics

Urine specific gravity

Activated partial thromboplastin time

Sex

Heart rate

BUN 

Alkaline phosphatase

Respiratory rate

Systolic blood pressure

Total carbon dioxide

White blood cell count

Body temperature

Age

Triglycerides

Platelet count

Albumin

Sodium

Hemoglobin

Calcium

Diastolic blood pressure

BUN/Cr ratio

Estimated glomerular filtration rate

Lactate dehydrogenase

Phosphorus

Total Bilirubin

Chloride

C-Reactive protein

Blood sugar test

Alanine aminotransferase

Glucose

Partial pressure of carbon dioxide

Potassium
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General anesthesia surgery

Total cholesterol

Uric acid

Non-steroidal anti-inflammatory drugs

Contrast-enhanced CT
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N-Terminal pro-B-type natriuretic peptide
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–1.5 –1.5
SHAP value (impact on model output) SHAP value (impact on model output)

–1.0 –1.0–0.5 –0.50.0 0.00.5 0.51.0 1.0

Table 2. Subgroup analysis of internal and external validation outcomes
Validation Group Accuracy Precision Recall F1 AUROC AUPRC
Internal eGFR ≥60a 0.7298 0.7507 0.7833 0.7667 0.7846 0.8183

eGFR <60a 0.6863 0.6875 0.3667 0.4783 0.7486 0.6284
Male 0.7192 0.7538 0.6901 0.7206 0.7783 0.8003
Female 0.7224 0.7356 0.7529 0.7442 0.7844 0.7966
Age ≥65 yr 0.7304 0.7366 0.7173 0.7268 0.7783 0.7698
Age <65 yr 0.7097 0.7541 0.7188 0.7360 0.7838 0.8247
Yesb 0.7036 0.7279 0.7133 0.7205 0.7547 0.7786
Nob 0.7791 0.8133 0.7349 0.7722 0.8714 0.8824

External eGFR ≥60a 0.6719 0.6410 0.8754 0.7401 0.7435 0.7503
eGFR <60a 0.6597 0.5137 0.3357 0.4060 0.6323 0.4794
Male 0.6647 0.6195 0.7484 0.6778 0.7265 0.7014
Female 0.6735 0.6373 0.7933 0.7068 0.7467 0.7319
Age ≥65 yr 0.6567 0.6107 0.7647 0.6791 0.7231 0.6972
Age <65 yr 0.6809 0.6455 0.7722 0.7032 0.7496 0.7332
Yesb 0.6700 0.6500 0.7696 0.7048 0.7285 0.7277
Nob 0.6629 0.5307 0.7621 0.6257 0.7607 0.6664

AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; eGFR, estimated glomerular filtration rate.
aThe unit is mL/min/1.73 m2. bIt means general anesthesia surgery.
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Subgroup analysis  

Table 2 presents the results of subgroup analyses based on 

four criteria at the onset of AKI: eGFR levels, sex, age, and 

whether the patient underwent general anesthesia. Only 

internal and external validations were conducted for the 

model previously trained. While the models’ performance 

did not significantly differ by sex and age, it exhibited high-

er efficiency in groups with an eGFR of 60 mL/min/1.73 m2 

or above at the onset of AKI and in those who did not un-

dergo surgery under general anesthesia compared to their 

counterparts. These findings suggest that the model devel-

oped in this study may perform better in patients with rela-

tively good renal function and those who have not received 

general anesthesia, indicating its potential superiority in 

milder cases. 

Discussion 

In this study, we introduced a method to predict recovery 

after AKI. The model achieved a moderate performance 

level with an AUROC of 0.7816 (internal) and 0.7360 (ex-

ternal). Despite its significant relevance to patient prog-

nosis, AKI recovery remains unclear, making predictions 

challenging for clinicians, the model that demonstrated 

the highest performance is CAT. CAT is known as a tree-

based ensemble model specialized in handling categorical 

variables through mechanisms such as categorical feature 

combination [23]. It is speculated that the increase in the 

number of categorical variables, due to the use of the miss-

ing indicator, contributed to CAT’s superior performance. 

We utilized SHAP values to identify the factors contributing 

to AKI recovery and quantify their significance. As expect-

ed, patients with low Alb or high blood pressure, showed 

a tendency toward poorer renal function recovery. Con-

versely, patients with elevated white blood cell counts and 

high body temperatures tended to have better renal func-

tion recovery. For patients where AKI might be associated 

with infection, resolution of the causative infection also led 

to AKI recovery. Although the use of NSAIDs is related to 

better renal recovery, the use of chemotherapeutic agents 

or nephrotoxic antibiotics tends to hinder recovery. The 

use of NSAIDs can be easily discontinued in AKI patients; 

however, agents such as chemotherapy may be challenging 

to cease depending on the patient’s condition and are also 

presumed to act as negative factors, potentially causing 

more severe damage. Furthermore, in dehydrated patients 

with a high BUN/Cr ratio or urine SG, a more favorable re-

covery trend was observed as the state of dehydration im-

proved, high BUN had a positive impact on recovery. This 

suggests that AKI caused by prerenal factors tends to lead 

to a relatively good recovery. 

It was observed that patients who underwent surgery un-

der general anesthesia exhibited more substantial recovery 

in statistical analysis. However, this trend was not evident 

in the SHAP analysis. While the tendency to predict recov-

ery or non-recovery was not distinct for patients who had 

undergone general anesthesia, the absolute value of SHAP 

values was larger compared to those who had not received 

general anesthesia. The outcomes following surgery under 

general anesthesia could vary greatly depending on the 

cause and type of surgery, and this complexity seems to be 

reflected in the model. For patients who did not undergo 

surgery, the model demonstrated a very high performance 

with a score of 0.8714. Future research may benefit from 

distinguishing characteristics based on the purpose and 

type of surgery rather than categorizing all patients uni-

formly based on the administration of general anesthesia. 

Interpreting the model through SHAP values offers var-

ious advantages over relying solely on statistics. By quan-

tifying the factors contributing to AKI recovery in each 

patient, this approach provides insights into the crucial 

elements influencing AKI recovery. Predicting whether 

and when patients with AKI recover in real-life situations is 

challenging. The model proposed in this study could serve 

as an effective tool to assist clinicians in situations where 

clinical judgment alone may be insufficient. 

Another objective of this study was to evaluate the clinical 

applicability of the machine learning model. To achieve this, 

we conducted various studies on renal function recovery 

using data from three hospitals. We observed a trend of de-

creased external validation performance compared to inter-

nal validation, which was attributed to differences in patient 

populations, disease severity, and hospitalization patterns 

among institutions. Additionally, the inability to precisely 

match the features used in the model and potential overfit-

ting of the training data may have contributed to this trend 

[24]. Therefore, limited data and patient numbers may inter-

fere with the model’s ability to learn generalized patterns. 

It is important to note that almost all medical artificial in-
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telligence studies have been retrospective. Therefore, several 

biases (e.g., biases stemming from data loss, label definitions 

based on operational definitions, and selection of Cr base-

line or reference values) occurred during patient selection 

and cohort formation owing to the exclusion of a substantial 

number of patients. These factors are critical and contribute 

to the uncertainty in the general performance of the devel-

oped model. Additionally, the process of organizing data 

on a daily basis was intended for the convenience of model 

development and application but might have introduced 

biases into the model. This underscores the need for model 

calibration when applied to clinical settings and the impor-

tance of including diverse patient populations with sufficient 

sample sizes in multi-institutional studies [25]. 

This study is subject to certain limitations. First, the lack 

of consensus on AKI recovery criteria necessitated reli-

ance on existing research findings to establish a definition. 

Moreover, recovery status was evaluated using the initial 

Cr level at the time of AKI onset as a fixed reference point, 

an approach that may not fully account for the clinical con-

text of peak Cr levels when evaluating Cr stages. Further, 

limitations in data utilization precluded the incorporation 

of additional clinical evidence related to AKI beyond Cr 

levels [16]. As a result, this criterion was omitted from the 

AKI definition, potentially leading to unidentified AKI cas-

es and introducing bias. Secondly, the absence of data on 

dialysis or kidney transplantation was noted, and this was 

addressed by excluding patients with an eGFR of less than 

60 mL/min/1.73 m2, an issue that warrants attention in fu-

ture research. Thirdly, the study did not account for the dif-

ferences in interventions post-AKI occurrence. The nature 

of interventions following AKI can significantly influence 

patient prognosis, and considering this through addition-

al data collection could be highly significant [26]. Lastly, 

while the model’s performance was commendable, its ade-

quacy for seamless real-world application is acknowledged 

to be limited. Future efforts should aim at enhancing per-

formance by securing more diverse and extensive datasets 

and refining the machine learning methodology for pre-

dicting renal function recovery in patients with AKI. 

In conclusion, our study introduced a machine learn-

ing-based approach for predicting recovery after AKI, 

revealing key factors influencing renal function recovery. 

This approach will be helpful in aiding clinical deci-

sion-making and further future research. 
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