
Introduction 

Sepsis-associated acute kidney injury (SA-AKI) is a severe 

and frequent complication among critically ill septic pa-

tients, with reported incidences between 35% and 61% 

[1–6]. Furthermore, SA-AKI significantly increases the 

mortality risk, with some studies demonstrating mortality 

rates of up to 70% in patients with SA-AKI [7–9]. The clini-

cal course of SA-AKI patients tends to deteriorate, with ex-
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tended intensive care unit (ICU) stays and increased risks 

of chronic kidney disease, cardiovascular events, and death 

[9]. Among acute kidney injury (AKI) patients, sepsis has 

been identified as the primary cause of death [4,6,10,11]. 

The complex pathophysiology of SA-AKI and systemic 

complications make its management challenging [12,13]. 

Keys to therapeutic measures are the meticulous regulation 

of renal perfusion, targeted inflammation mitigation, and 

prompt intervention such as fluid management or medica-
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tion adjustments [14,15]. Given SA-AKI’s profound impact, 

a holistic approach, including preventive protocols, expe-

dited diagnostics, and collaborative treatment, is critical to 

optimize outcomes [16,17].  

Artificial intelligence (AI) and machine learning (ML) 

are rapidly emerging as transformative tools for diagnosing 

and managing AKI patients [12–21]. Compared to tradi-

tional methods, ML algorithms can reveal patterns beyond 

human discernment and enhance SA-AKI prediction ac-

curacy by analyzing vast datasets [22–27]. Furthermore, 

ML enables earlier SA-AKI detection than traditional ap-

proaches, allowing timely, appropriate intervention and 

improved outcomes [12–20,24,28–32]. ML algorithms are 

designed to accommodate changing patient conditions 

and integrate new data, continually refining prediction ac-

curacy in a real-time setting [12–20]. 

Contemporary research increasingly explores AI/ML’s 

capabilities to advance precision medicine and tailored 

SA-AKI care. The integration of these technologies prom-

ises to usher in a new era of early detection and optimized 

therapeutic interventions for SA-AKI [22–27]. Several state-

of-the-art studies and initiatives are currently underway, 

highlighting the adoption of these technologies in various 

clinical settings, each aiming to address the profound chal-

lenges posed by SA-AKI with a degree of sophistication 

previously unattainable [12–20]. However, as with all novel 

technologies, the advent of AI and ML in SA-AKI diagnosis 

and management is not without its set of challenges and 

ethical considerations [33]. While AI can analyze vast data-

sets and identify patterns beyond human capability, ensur-

ing the accuracy, reliability, scalability, and interpretability 

of these models is vital. Moreover, the black-box nature 

of certain ML algorithms poses obscurity, making it chal-

lenging for clinicians to justify decisions derived from such 

systems. Ethical concerns warrant thorough scrutiny, in-

cluding data privacy, potential biases in AI algorithms, and 

the subsequent impacts on patient care. The collection and 

utilization of patient data, especially on sensitive subjects 

such as SA-AKI, necessitates stringent data protection pro-

tocols and informed patient consent mechanisms [22–27]. 

In this article, we first overview the traditional SA-AKI 

approach, then discuss AI/ML’s potential applications, 

connecting foundational and emerging methodologies to 

showcase AI/ML’s transformative potential for SA-AKI care. 

Traditional approach for sepsis-associated acute 
kidney injury 

Predictors and mortality of sepsis-associated acute kidney 
injury 

Traditional statistical analysis has been instrumental in 

identifying risk factors for SA-AKI across a range of comor-

bidities, infections, medications, and other determinants 

[4,34–42]. Key comorbid conditions found to significantly 

predict SA-AKI include hypertension, diabetes mellitus, 

chronic kidney disease, cardiovascular disease, liver dis-

ease, and coronary artery disease [4]. A pooled analysis 

of 47 observational studies with 55,911 sepsis patients re-

vealed that hypertension, diabetes, and chronic kidney dis-

ease increased the odds of AKI, with odds ratios (ORs) of 

1.43, 1.59, and 3.49, respectively (Fig. 1) [4]. Furthermore, 

cardiovascular, liver, and coronary artery diseases emerged 

as risk factors, with ORs of 1.31, 1.68, and 1.27. Regarding 

infection sources, pulmonary, abdominal, and undeter-

mined infections were significant SA-AKI predictors, with 

ORs of 0.77, 1.44, and 2.01, respectively. Medications like 

vasopressors, angiotensin-converting enzyme inhibitors/ 

angiotensin receptor blockers, and diuretics also correlat-

ed with heightened SA-AKI risk, having ORs of 3.15, 1.61, 

and 1.40. Other notable risk factors included male sex (OR, 

1.22), positive blood culture (OR, 1.60), smoking history 

(OR, 1.60), septic shock (OR, 1.40), Gram-negative bacteria 

(OR, 2.19), organ transplantation (OR, 1.96), and mechani-

cal ventilation need (OR, 1.64) [4]. 

While these findings provide valuable insights, tradition-

al statistical approaches have limitations. Despite identi-

fying these predictors, substantial heterogeneity existed 

across studies, suggesting potential inconsistencies in out-

comes depending on the context of SA-AKI [4].  

Prediction model for sepsis-associated acute kidney inju-
ry by traditional statistical analysis 

Traditional statistical approaches to predicting SA-AKI 

through various studies have been used [34–42]. These 

studies (Table 1) utilized well-established methods such 

as logistic regression analysis, least absolute shrinkage and 

selection operator (LASSO) regression for variable selec-

tion, and calibration plots [34–42]. These models identified 
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key predictors like diabetes, chronic kidney disease, car-

diovascular disease, and specific lab values such as creati-

nine and procalcitonin. Performance was evaluated using 

metrics like area under the receiver operating characteris-

tic curve (AUC), sensitivity, and specificity [42]. 

For instance, Fan et al. [34] developed an SA-AKI predic-

tion model using logistic regression and LASSO, achieving 

c-statistics of 0.711 and 0.705 in training and validation 

cohorts. Xin et al. [42] conducted a retrospective cohort 

study among elderly sepsis patients and achieved an AUC 

of 0.852 in the training and 0.858 in the validation cohort 

using logistic regression. Xie et al.’s prospective study [35] 

of sepsis patients in the ICU resulted in an impressive AUC 

of 0.9862. In addition, Zhou et al. [36] utilized a random-

ized clinical trial approach with 16 predictors and achieved 

an AUC of 0.857 in the validation cohort. While these ex-

amples demonstrate traditional statistical methods can 

effectively predict SA-AKI, recognizing high-risk patients 

early to guide treatment, these traditional prediction mod-

els for SA-AKI come with several limitations (Fig. 2). These 

limitations include 1) sensitivity to outliers, which may 

skew results/predictions. Outliers in medical data could be 

errors or critical rare events that should not be ignored. 2) 

Multicollinearity among predictor variables complicates 

the interpretation of individual predictors’ effects on the 

outcome. 3) Temporal dynamics, as medical time-series 

data may not meet assumptions of independent and iden-

tically distributed points, impacting predictive accuracy. 4) 

High-dimensional medical data that traditional models can 

struggle to handle effectively, limiting the identification of 

complex relationships and predictive capabilities. 5) Cal-

ibration, requiring robust procedures to ensure predicted 

probabilities align closely with observed outcomes, avoid-

ing suboptimal clinical decisions. 6) Potential human bias 

in feature selection, as choices rely on existing knowledge 

and practitioner input, possibly introducing limitations. 

In essence, while significant, traditional SA-AKI pre-

diction models have inherent challenges around outliers, 

multicollinearity, temporal dynamics, high-dimensional 

data, calibration, and bias in feature selection. Continued 

model updates and refinements alongside technological 

and research advancements remain important. 

Figure 1. The chart presents the risk factors on the x-axis and their corresponding ORs on the y-axis. The bars represent the ORs, 
while the red line graph overlaid on the bars indicates the number of studies identifying each risk factor. The risk factors are sorted in 
descending order based on their OR.
ACEI, angiotensin‐converting enzyme inhibitor; ARB, angiotensin receptor blocker; OR, odd ratio; SA-AKI, sepsis-associated acute kidney 
injury.
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Figure 2. Challenges and considerations for SA-AKI prediction model by traditional statistical analysis.
SA-AKI, sepsis-associated acute kidney injury.

Utilization of novel biomarkers for sepsis-
associated acute kidney injury 

The timely identification of SA-AKI is crucial for preventing 

further renal complications. Traditional markers like serum 

creatinine and urea nitrogen have been primary diagnostic 

tools but present challenges due to delayed responses and 

susceptibility to external factors, including age, metabolic 

rate, and the effects of medications [5,43–49]. As a result, 

recent investigations have uncovered novel biomarkers 

with heightened sensitivity and specificity for early SA-

AKI detection (Fig. 3) [5,9,43–48,50,51]. The identified 

biomarkers for SA-AKI have shown varying specificity, sen-

sitivity, and AUC degrees [5,43–48]. For example, neutro-

phil gelatinase-associated lipocalin in urine/serum has a 

specificity of 0.84/0.79, sensitivity of 0.87/0.83, and an AUC 

of 0.92/0.87, kidney injury molecule-1 in urine has a spec-

ificity of 0.74, sensitivity of 0.84, and AUC of 0.62, cystatin 

C in serum has a specificity of 0.84, sensitivity of 0.82, and 

AUC 0.96, interleukin-18 in urine has an AUC of 0.719, liver 

fatty acid binding protein in urine has a specificity of 0.74, 

sensitivity 0.78, and AUC of 0.82, and finally tissue inhibitor 

metalloproteinase-2/insulin-like growth factor binding 

protein-7 in urine has a specificity of 0.909, sensitivity of 

0.67, and AUC of 0.89.  

This diverse range of values for specificity, sensitivity, 

and AUC underlines the complexities inherent in AKI diag-

nosis. Both traditional statistical approaches and biomark-

er use for SA-AKI diagnosis have numerous challenges. 

The classic statistical methods, while foundational in many 

medical research studies, often operate under specific as-

sumptions about data distributions and might not handle 

outliers or nonlinear patterns effectively. They also might 

not be adept at deciphering interactions among multiple 

variables, especially when dealing with high-dimensional 

datasets, as is common in modern medicine. Biomarkers, 

while being indispensable tools in the diagnosis and mon-

itoring of many diseases, have their limitations. For sep-

sis-associated AKI, the main concerns revolve around their 

sensitivity, specificity, and their overall predictive value. 

Not all biomarkers perform uniformly across diverse pa-

tient populations [9,50,51]. They might also be influenced 

by a myriad of other factors, such as comorbid conditions, 

other medications, or even minor variations in sample 

handling and storage [9,50,51].  

These limitations necessitate more advanced methods 

like the use of AI/ML. Such technologies can overcome tra-

ditional challenges by leveraging larger datasets and more 

intricate analytical tools. Their proficiency in detecting 

complex nonlinear relationships and discerning patterns 

in expansive datasets provides insights beyond the reach 

of conventional methods. AI/ML represents a promising 
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Figure 3. Heatmap of biomarkers for SA-AKI.
AUC, area under the curve; CysC, cystatin C; IGFBP7, insulin-like growth factor binding protein 7; IL-18, interleukin-18; KIM-1, kidney in-
jury molecule 1; L-FABP, liver-type fatty acid binding protein; NGAL, neutrophil-associated lipid transporter protein; NR, not reported; SA-
AKI, sepsis-associated acute kidney injury; TIMP-2, tissue inhibitor of metalloproteinase-2.

approach to address the diagnostic complexities of SA-AKI. 

Artificial intelligence and machine learning 
applications in sepsis-associated acute kidney 
injury 

Recent developments in ML have significantly surpassed 

traditional AKI prediction methods [17,52,53]. Key devel-

opments include a deep learning model by Rank et al. [17], 

which effectively uses electronic health records data to 

predict AKI with high accuracy (AUC, up to 0.893), all while 

keeping the physician’s workload unchanged. Another 

study introduced a range of ML models that apply different 

approaches to estimate baseline serum creatinine, show-

casing the importance of error analysis and explainable AI 

to aid in clinical decisions and prompt AKI treatment [52]. 

Furthermore, a systematic review underlined the value of 

externally validated ML models that are effective across 

various patient groups, focusing on the necessity of inter-

pretable models and strong predictors. These advances 

highlight how ML can be seamlessly integrated into clinical 

practices, significantly improving the early detection and 

treatment of AKI, marking a substantial shift from theoreti-

cal models to actual clinical use [53]. 

For SA-AKI, ML has emerged as a promising tool in 

healthcare, presenting innovative solutions to the complex-

ities of medical challenges [22–27]. Three key ML branches 

play pivotal roles: supervised learning, unsupervised learn-

ing, and reinforcement learning (Fig. 4). Each approach 

leverages abundant patient data to address unique aspects 

of SA-AKI management, including 1) supervised learning, 

which facilitates risk prediction; 2) unsupervised learning, 

which enables patient subgroup identification; and 3) rein-

forcement learning, which optimizes treatment strategy. 

These methodologies equip healthcare professionals to 

enhance precision and efficiency in prediction, identifi-

Heatmap of biomarkers for SA-AKI

Value
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Figure 4. A structured overview of the three primary ML methodologies and their applications in the realm of SA-AKI.
AKI, associated acute kidney injury; ICU, intensive care unit; ML, machine learning; SA-AKI, sepsis-associated AKI.

cation, and optimization for SA-AKI patients. We explore 

how integrating ML empowers SA-AKI management, from 

discerning risks early to guiding tailored interventions 

through continuously optimized protocols. AI/ML rep-

resents a transformative approach to tackling the multifac-

eted difficulties of SA-AKI. 

Supervised learning 

Supervised learning is a type of ML where the algorithm is 

trained on labeled data, meaning the input data is paired 

with corresponding output labels [54]. The primary goal 

is to learn a mapping function that can accurately predict 

the output labels for new, unseen data. In the context of 

SA-AKI, supervised learning can be utilized to predict the 

risk of AKI in sepsis patients [16,23–31,55]. Researchers can 

gather historical patient data, including clinical parameters 

such as vital signs, laboratory results, and patient demo-

graphics, as well as information about whether AKI devel-

oped during their hospital stay. This data is then used to 

train a supervised learning model, such as random forest, 

XGBoost, or artificial neural networks, to predict the likeli-

hood of AKI in sepsis patients [16,23–31]. An example ap-

plication of supervised learning in SA-AKI is the develop-

ment of a predictive model that uses patient data from the 

ICU to identify individuals at high risk of developing AKI 

as a result of sepsis. The model can provide real-time risk 

scores, allowing clinicians to intervene early with appropri-

ate interventions, such as fluid management or medication 

adjustments, to mitigate the risk of AKI [16,23–31].  

Supervised learning has emerged as a pivotal tool in 

predicting outcomes and characteristics related to SA-

AKI, according to published studies (Table 2) [16,23–31]. 

Researchers have successfully employed ML models to 

predict the onset of S-AKI, differentiate between persistent 

and transient AKI, and anticipate in-hospital mortality and 

acute kidney disease (AKD) occurrence. Notably, models 

like XGBoost and recurrent neural network (RNN)-long 

short-term memory (LSTM) were recurrently highlighted 

for their exceptional performance [16,23–31]. These al-

gorithms often surpassed traditional risk scores such as 

SOFA (Sequential Organ Failure Assessment) and SAPS 

II (Simplified Acute Physiology Score II), achieving com-

mendable discrimination metrics [16,23–31]. For instance, 

in predicting AKI risk in septic patients, an XGBoost model 

was found to outperform conventional scoring systems, 

emphasizing the model’s utility in pinpointing high-risk 

patients for proactive interventions [30]. Furthermore, in 

another instance, an RNN-LSTM model showcased ex-

emplary predictive ability, with a remarkable AUC of 1.0 

(Fig. 5), emphasizing its potential in guiding early AKD 

interventions [31]. Moreover, the application of ML was not 

limited to SA-AKI. Zhou et al. [30] explored sepsis-associ-

ated acute respiratory distress syndrome patients, aiming 

Supervised learning

Unsupervised learning

Reinforcement learning
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Table 2. Examples of Published Supervised Learning for SA-AKI prediction

Author Population Sample size Outcomes Machine learning 
techniques C-statistics/AUC

Zhang et al. 
[29]

Patient with sepsis in 
ICU

Training: MIMIC-IV
Validation: eICU-CRD, 

ZG

Training: 21,308
Validation
eICU-CRD: 24,352
ZG: 505

SA-AKI
within 12–48 

hr

Ensemble model, 
combining support 
vector machine, ran-
dom forest, neural 
network, XGBoost via 
stacking algorithm

eICU-CRD: 0.774–0.788
ZG: 0.756-0.813

Zhou et al. 
[30]

Patient with SA-AR-
DS from MIMIC-III 
database

1,085 SA-AKI Logistic regression, 
support vector 
machine, random 
forest, XGBoost

Highest C-statistics: XGBoost (0.86)

Yue et al. 
[26]

Patient with sepsis in 
ICU from MIMIC-III 
database

3,176 SA-AKI Logistic regression, 
KNN, support vector 
machine, decision 
tree, random forest, 
XGBoost, artifical 
neural network

Logistic regression: 0.737
KNN: 0.664
Support vector machine: 0.735
Decision tree: 0.749
Random forest: 0.779
XGBoost: 0.817
Artifical neural network: 0.755

Yu et al. [16] Various hospitalized 
patients popula-
tions from multiple 
studies.

87 to over 1 million 
(varying across 
studies)

Acute kidney 
injury

Regression, ensemble 
tree methods, SVM, 
neural networks, etc.

AUC ranged from 0.69 to 0.98 across 
studies.

Luo et al. 
[23]

Patients with SA-AKI 
in ICU from MIMIC-III 
database

5,984 (70% training, 
30% validation set)

Persistent 
SA-AKI > 48 

hours

Logistic regression, 
random forest, sup-
port vector machine, 
artificial neural 
network, XGBoost

Logistic regression: 0.76
Random forest: 0.75
Support vector machine: 0.74
Artificial neural network: 0.76
XGBoost: 0.75

He et al. [31] Patients with SA-AKI 
in ICU

Training: one hospital 
in China

Validation: MIMIC-III

Training: 209
Validation: 509

Acute kidney 
disease

RNN-LSTM, decision 
trees, logistic regres-
sion

RNN-LSTM
Training: 1.0
Validation: 1.0
Decision trees
Training: 0.954
Validation: 0.872
Logistic regression
Training: 0.728
Validation - 0.717

Li et al. [24] Patients with SA-AKI 
in ICU from MIMIC 
IV database

Training: 6,503
Validation: 1,626

In-hospital 
mortality

Logistic regression, 
support vector ma-
chine, KNN, decision 
tree, random forest, 
XGBoost

Logistic regression: 0.730
Support vector machine: 0.680
KNN: 0.601
Decision tree: 0.585
Random forest: 0.778
XGBoost: 0.794

Zhou et al. 
[25]

Patients with SA-AKI 
in ICU

Training/validation: 
MIMIC-IV

External Validation: 2 
hospitals in China

16,154 (80% training, 
20% validation set) 
external validation 
set: 132

In-hospital 
mortality

Categorical boosting, 
gradient boosting 
decision tree, light 
gradient boosting, 
adaptive boosting, 
XGBoost, KNN, mul-
tilayer perception, 
logistic regression, 
naive Bayes, support 
vector machine

Categorical boosting: 0.83, ext - 0.75
Gradient boosting decision tree: 0.82, 

ext - 0.62
Light gradient boosting: 0.8, ext - 0.61
Adaptive boosting: 0.82, ext - 0.60)
XGBoost: 0.81, ext - 0.57
KNN: 0.80, ext - 0.63
Multilayer perception: 0.79, ext - 0.63
Logistic regression: 0.79, ext - 0.71
Naive Bayes: 0.76, ext - 0.60
Support vector machine: 0.76, ext - 0.68

(Continued to the next page)
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to predict AKI development within a short timeframe post-

ICU admission. Here, the XGBoost model once again stood 

out, indicating its versatility across related medical condi-

tions. A review study by Yu et al. [16] further underlined the 

importance of ML by summarizing various models tailored 

for predicting AKI across diverse patient groups and envi-

ronments. The compiled results suggested that while ML 

models displayed a range from moderate to superb dis-

crimination for AKI events, there remains room for further 

refinement and evaluation in real-world clinical settings 

[16,23–31]. 

In reflecting upon the strengths of these ML-centered 

studies, it becomes evident that such methodologies offer 

several advantages over traditional statistical analysis ap-

Author Population Sample size Outcomes Machine learning 
techniques C-statistics/AUC

Fan et al. 
[28]

Patients with SA-AKI 
in ICU

Training: MIMIC IV
Validation: one hospi-

tal in China

Training: 2,499
External validation: 

100

7- day 
mortaltiy

Logistic regression, 
random forest, 
XGBoost, multilayer 
perception, support 
vector machine

Logistic regression: 0.75, ext - 0.70
Random forest: 0.84, ext - 0.78
XGBoost: 0.91, ext - 0.81
Multilayer perception: 0.75, ext - 0.72
Support vector machine: 0.80, ext - 0.64

Yang et al. 
[27]

Patients with SA-AKI 
in ICU from MIMIC 
IV database

9,158 (70% training, 
30% validation set)

28-day 
mortality

Logistic regression, 
random forest, 
gradient boosting 
machine, XGBoost

Logistic regression: 0.850
Random forest: 0.849
Gradient boosting machine: 0.865
XGBoost: 0.873

AUC, area under the receiver operating characteristic curve; eICU-CRD, eICU Collaborative Research Database; Ext, external validation; ICUs, intensive 
care units; KNN, k-nearest neighbors; MIMIC, Medical Information Mart for Intensive Care; RNN-LSTM, recurrent neural network-long short-term memory; 
SA-AKI, sepsis-associated acute kidney injury; SA-ARDS, sepsis-associated acute respiratory distress syndrome; SVM, support vector machine; XGBoost, 
eXtreme Gradient Boosting; ZG, Zhejiang University’s Affiliated Hospitals’ database.

Table 2. Continued

Figure 5. Performance of various machine learning techniques for SA-AKI prediction. ANN, artificial neural network; AUC, area un-
der the curve; CatBoost, Categorical Boosting; Logistic Regression, a statistical method for analyzing datasets in which there are one or 
more independent variables that determine an outcome; RNN-LSTM, recurrent neural network–long short-term memory; SA-AKI, sep-
sis-associated acute kidney injury; XGBoost, Extreme Gradient Boosting.
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proaches. ML models, given their ability to handle large 

data sets and complex interactions, tend to produce more 

accurate, robust, and generalizable findings [54]. These 

models are especially skilled at uncovering nonlinear 

relationships, thereby providing a more sophisticated un-

derstanding of the data’s underlying patterns. Moreover, 

the ability of ML models to surpass traditional risk scores 

highlights their transformative potential in patient care. 

This is particularly relevant for early detection and inter-

vention strategies, which can significantly improve patient 

outcomes. 

Unsupervised learning 

Unsupervised learning involves training ML algorithms 

on unlabeled data to discover patterns, structures, or re-

lationships within the data [56,57]. Clustering is a notable 

technique in unsupervised learning, where algorithms 

categorize similar data points into groups. In the special-

ized context of SA-AKI, unsupervised learning provides 

invaluable insights by delineating distinct subgroups of 

sepsis patients, each characterized by unique clinical pro-

files and outcomes. For instance, an unsupervised learning 

algorithm like k-means clustering can be employed to ana-

lyze clinical data from sepsis patients, including vital signs, 

laboratory results, and comorbidity information. This can 

reveal different clusters of patients with similar clinical 

characteristics. Clinicians can then evaluate whether these 

specific patient clusters have different risks of developing 

AKI, thereby facilitating the formulation of more personal-

ized treatment plans. 

Recently, Lai et al. [32] conducted a prospective obser-

vational cohort study of 999 critically ill patients with dial-

ysis-requiring SA-AKI admitted to surgical ICUs in Taiwan 

between 2009 and 2018. The mean age was 63.9 years, and 

71.5% were male. The authors performed unsupervised 

consensus clustering based on 23 clinical variables upon 

initializing renal replacement therapy to identify distinct 

sub-phenotypes (Fig. 6). Three sub-phenotypes that were 

identified included 1) cluster 1 (n = 352) with favorable 

baseline conditions but greatest acute illness severity, 2) 

cluster 2 (n = 396) with intermediate features, and 3) clus-

Figure 6. Flow diagram illustrating the study on SA-AKI sub-phenotypes.
SA-AKI, sepsis-associated acute kidney injury.
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ter 3 (n = 251) with worst baseline conditions but lowest 

acute illness severity. Cluster 1 had the highest mortality 

rate (73.9%) and lowest probability of being dialysis-free at 

90 days. Cluster membership and predialysis serum lactate 

≥3.3 mmol/L were independent predictors of mortality 

and dialysis dependence. A clinical prediction model using 

11 variables accurately identified cluster 1 as a high-risk 

sub-phenotype (AUC, 0.99). When applied to an external 

validation cohort of 898 SA-AKI patients, the model iden-

tified a high-risk subgroup with increased mortality. This 

study demonstrates that ML approaches can identify clini-

cally relevant sub-phenotypes and predictors in heteroge-

neous syndromes like SA-AKI. 

Reinforcement learning 

Reinforcement learning is a type of ML where an agent 

learns to make decisions by interacting with an environ-

ment. The agent receives feedback in the form of rewards 

or penalties based on its actions, and its objective is to 

maximize cumulative rewards over time. In the context of 

SA-AKI, reinforcement learning can be used to optimize 

treatment strategies for sepsis patients to minimize the risk 

of AKI. An example application of reinforcement learning 

in SA-AKI is developing a treatment recommendation sys-

tem for sepsis patients in the ICU (Fig. 7). The reinforce-

ment learning agent can learn from historical patient data 

and clinical guidelines to recommend actions such as fluid 

administration, antibiotic choices, and vasopressor usage. 

The agent continually adapts its recommendations based 

on patient responses and outcomes, aiming to optimize 

patient care and reduce the incidence of AKI. 

Reinforcement learning has been studied with promising 

findings for potential utilization among critically ill pa-

tients with sepsis [58–64]. From optimizing fluid resuscita-

tion strategies to determining when and which antibiotics 

should be administered, RL agents have showcased their 

capability to refine treatment strategies based on patient 

feedback and outcomes continuously. Moreover, the tech-

nology presents the appealing possibility of integrating 

extensive datasets, facilitating a more comprehensive pa-

tient management approach that considers a multitude of 

variables [58–64]. Notwithstanding these advancements, 

there remains a notable deficiency in data concerning the 

specific employment of reinforcement learning for SA-AKI, 

underscoring the need for dedicated future investigations. 

Figure 7. Reinforcement learning for sepsis treatment optimization to prevent acute kidney injury.
ACLS, advanced cardiac life support; AI, artificial intelligence; CPR, cardiopulmonary resuscitation; ICU, intensive care unit; SA-AKI, sep-
sis-associated acute kidney injury.
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The "Agent" in the diagram represents 
the reinforcement learning agent. In this 
context, the agent is a software or Al 
system that is responsible for making 
decisions and taking actions to optimize 
the treatment of sepsis patients in the 
ICU.

Actions: Specific treatment choices, including 
"fluid administration," "antibiotic choices," and 
"vasopressor usage," determined by learned 
policies and patient context.

Environment: Patient's condition, ICU 
environment, treatment resources, clinical 
guidelines, patient responses, external 
factors, uncertainty and noise.

Rewards: Feedback for agent, guiding its 
learning and adaptation. Positive rewards 
for better outcomes, negative rewards for 
adverse outcomes like SA-AKI.
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Constraints and ethical considerations 

AI and ML have shown tremendous potential in the med-

ical field, including in identifying and managing SA-AKI. 

However, utilizing these tools is not without challenges and 

ethical considerations [54,65–67]. 

Data privacy and security concerns 

In medical research using ML models, protecting patient 

data is critical. This encompasses the challenges of ensur-

ing that AI tools neither inadvertently expose nor misuse 

this confidential information. Additionally, the secure 

transfer of such data, which frequently traverses between 

various databases, servers, and institutions, demands 

the implementation of robust and encrypted protocols to 

thwart potential breaches. Concurrently, the ethical im-

perative of obtaining informed consent cannot be under-

stated, emphasizing the necessity for patients to be com-

prehensively apprised of the utilization and repercussions 

associated with their data in AI-driven systems. ML models 

need to be broadly applicable and independently validat-

ed. The challenge is making them effective across various 

healthcare settings. Federated learning is a new approach 

that improves these models by learning from spread-out 

data without compromising privacy. This strategy tackles 

data silos and fosters the development of robust models 

delivering consistent results across diverse settings. Pro-

moting federated learning and the standardization of ML 

models is crucial for achieving trustworthy, universal AI 

healthcare solutions. 

Bias and fairness in artificial intelligence algorithms 

Bias can emerge in AI models if the training data lacks rep-

resentation from the broader population. For example, an 

algorithm predominately informed by data from a single 

ethnic group may not be as productive for another, possi-

bly resulting in erroneous predictions or misdiagnoses of 

SA-AKI risk. Moreover, the opaque nature of “black-box” 

algorithms, which obscure their decision-making process-

es, raises ethical quandaries. Healthcare practitioners must 

discern mechanisms by which these AI models derive 

their outcomes, especially when these outcomes influence 

critical medical decisions. Nevertheless, techniques such 

as SHAP (Shapley Additive exPlanations), Gradient-based 

Class Activation Mapping (Grad-CAM), and LIME (Local 

Interpretable Model-agnostic Explanations) can enhance 

the model’s explainability [20]. These methods highlight 

the features significantly influencing model predictions, 

offering more profound insights into its decision-making 

process. Incorporating these techniques not only improves 

the interpretability of deep learning models but also bol-

sters trust and reliability in their application to SA-AKI re-

search and clinical practices. 

Regulatory and legal aspects 

Integrating AI and ML tools in SA-AKI research and ther-

apeutic interventions necessitates the establishment of 

standardized protocols and guidelines. Alongside stan-

dardization, a complex challenge emerges of ascertaining 

accountability in AI-induced misdiagnoses or mistreat-

ments, raising questions about whether the onus lies with 

the software developers, the healthcare establishment, or 

the treating physician. Furthermore, akin to pharmacologi-

cal agents or medical apparatuses, AI instruments might be 

subject to rigorous clinical evaluations and requisite regu-

latory endorsements before widespread adoption. 

Future directions 

The advancement of AI technologies holds promise in 

transforming the landscape of SA-AKI research. Notably, 

the integration of AI facilitates real-time monitoring of 

susceptible patients, potentially paving the way for in-

stantaneous therapeutic interventions. Reinforcement 

learning, a specialized subset of ML, can elucidate optimal 

therapeutic strategies through simulation and iterative 

learning from diverse clinical scenarios. Furthermore, gen-

erative AI models emerge as instrumental tools in gener-

ating simulated patient data [68,69], thereby enriching our 

comprehension of SA-AKI’s pathophysiology and enabling 

accurate prognostications of its progression. Foundation 

models and large language models (LLMs) have demon-

strated significant progress in healthcare [68,70], notably 

in analyzing complex data to enhance patient care. They 

learn from extensive datasets, adapting to specific tasks 

with minimal manual input, which can lower the costs of 

AI development and maintenance in hospitals. A recent 
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study highlighted the effectiveness of LLMs in interpreting 

continuous renal replacement therapy machine alarms 

in intensive care [71], suggesting they could be integrated 

into critical care. Yet, this area is still developing and needs 

more research to reach its full potential. 

As AI continues its innovation trajectory, personalized 

medicine stands at the forefront of its transformative 

potential. Through AI’s analytical prowess, treatment 

regimens can be meticulously tailored, considering an 

individual’s genetic composition, historical medical data, 

and myriad other determinants. Additionally, AI-powered 

predictive modalities are poised to give healthcare practi-

tioners invaluable foresight, facilitating the early identifica-

tion of patients at high risk of SA-AKI, thus ensuring timely 

medical interventions. Further amplifying its potential, in-

tegrating AI systems across medical establishments might 

catalyze collaborative learning, refining and enhancing 

predictive algorithms. 

Conclusion 

In SA-AKI research and therapeutic interventions, AI 

emerges as a transformative catalyst, poised to redefine di-

agnostics, risk stratification, and treatment modalities. The 

potential of AI to revolutionize early detection through ad-

vanced algorithms and real-time monitoring is juxtaposed 

with multifaceted challenges encompassing data security, 

biases in algorithmic outcomes, and intricate regulatory 

frameworks. As we venture further into the AI-driven era of 

medicine, the confluence of these technologies promises a 

paradigm shift towards more personalized, predictive, and 

collaborative healthcare. Therefore, it mandates rigorous 

ethical, technical, and legal safeguards to utilize its benefi-

cial potential without causing harm. 
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