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Local control: a hub-based model for the c-di-GMP network
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ABSTRACT The genome of Pseudomonas fluorescens encodes >50 proteins predicted to 
play a role in bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP)-mediated 
biofilm formation. We built a network representation of protein–protein interactions 
and extracted key information via multidimensional scaling (i.e., principal component 
analysis) of node centrality measures, which measure features of proteins in a network. 
Proteins of different domain types (diguanylate cyclase, dual domain, phosphodiester
ase, PilZ) exhibit unique network behavior and can be accurately classified by their 
network centrality values (i.e., roles in the network). The predictive power of protein–pro
tein interactions in biofilm formation indicates the possibility of localized pools of 
c-di-GMP. A regression model showed a statistically significant impact of protein–protein 
interactions on the extent of biofilm formation in various environments. These results 
highlight the importance of a localized c-di-GMP signaling, extend our understanding 
of signaling by this second messenger beyond the current “Bow-tie Model,” support a 
newly proposed “Hub Model,” and suggest future avenues of investigation.
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M any bacteria utilize bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) 
signaling to regulate biofilm formation (1–3). One potentially powerful way to 

analyze a bacterium’s decision-making process to initiate biofilm formation is via a binary 
classification model (i.e., the organism is in one of two states), where input stimuli are 
processed to determine whether the organism stays in place (state 1 = biofilm) or leaves 
in search of more beneficial environments (state 2 = planktonic). Yan et al. (4), studying 
biofilm formation from this perspective, used the term “bow-tie signaling” to describe 
the shape of the c-di-GMP protein signaling architecture (4). The “Bow-tie Model” 
captures interesting aspects of the c-di-GMP network, grouping proteins into “makers” 
or “breakers” of this molecule and into receptors that respond to changing global pools 
of this second messenger. However, the model does not take into account additional 
information about, for example, the physical interactions between GGDEF domain 
containing c-di-GMP-synthesizing diguanylate cyclases (DGCs), HD-GYP/EAL domain 
containing c-di-GMP-degrading phosphodiesterases (PDEs), dual-domain proteins (with 
domains associated with both c-di-GMP synthesis and degradation) and/or c-di-GMP 
receptors, or the possibility of local pools of c-di-GMP participating in signaling.

Inspired by the Bow-tie Model, we investigated the ~50 proteins encoded in 
the Pseudomonas fluorescens Pf0-1 genome predicted to participate in the c-di-GMP 
signaling network and their several modes of second messenger regulation via the level 
of transcription, protein–protein interactions (PPI), and the extent of biofilm formation in 
response to environmental cues (5). Here, we used these published data in a multidi
mensional scaling analysis [principal component analysis (PCA) and statistical testing 
of features in logistic regression and random forest models] to better characterize 
the c-di-GMP signaling network of P. fluorescens. We found that measured growth of 
the wild-type strain in different environments, along with topological protein–protein 
interaction network features of the protein associated with a mutant strain, together 
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demonstrated moderately successful prediction of strain phenotype (e.g., amount of 
biofilm formation) in a linear regression model. In contrast, our analysis suggests that 
expression of the genes coding for the c-di-GMP-metabolizing/-binding proteins in this 
system does not appear to make a significant contribution to the extent of biofilm 
formation across the many environments assayed. Thus, our data suggest a process 
driven by a network of protein–protein interactions is likely playing a key role in localized 
c-di-GMP signaling.

RESULTS AND DISCUSSION

Overview

An open question in the field of c-di-GMP signaling in bacteria is how organisms, with 
so many proteins dedicated to synthesizing, degrading, and binding this molecule, 
coordinate a coherent output for this signaling network, especially given that a second 
messenger like c-di-GMP is soluble and potentially freely diffusing. To begin to address 
this question, we first constructed mutations in all the known c-di-GMP-synthesizing, 
-degrading, and -binding proteins known at the time (6). Using these mutants, we 
determined the amount of biofilm formed by wild-type (WT) P. fluorescens Pf0-1 and 
each of these mutants in ~190 different growth conditions using Biolog assay plates as 
the source of the substrates (5). We also performed ~2,000 bacterial two-hybrid (B2H) 
assays in Escherichia coli, allowing us to determine the PPI network including almost 90% 
of the protein pairs in the c-di-GMP signaling network of this organism (5). Next, we 
assessed the expression of the genes coding for these proteins under 45 different growth 
conditions (5). Our original analysis, which was relatively simple (5), indicated a role of 
PPI and environmental signals as likely important inputs into the network, but provided 
no insight into the specific structure of the network nor did this analysis provide much 
insight into how to validate the signaling network.

To better understand how c-di-GMP regulatory proteins impact biofilm formation, 
we focused on the network representation of the B2H interaction network developed 
by testing ~90% of all possible PPI among the DGCs, PDEs, dual-domain proteins, and 
c-di-GMP receptors of P. fluorescens. For this analysis, the nodes of the PPI network are 
the proteins, and the edges between the proteins represent their ability to interact with 
each other according to the results of the B2H experiment. There are three important 
questions we wanted to address. First, what do various node centrality measures (that 
is, metrics of the importance of each node within a network) tell us about the specific 
role of each protein and the structure of this molecular network as a whole? Second, 
how does the PPI network relate to the extent of biofilm formation in response to 
environmental input cues and to the level of transcription of genes coding for the 
c-d-GMP-metabolizing/-binding proteins? Finally, what information is most valuable in 
predicting biofilm phenotypes? We address each of these points below.

Probing the topology of the PPI network

First, to gain insight into the topology of this PPI network, we computed nine node 
centrality measures that characterize each protein’s interaction network (Table 1) and 
then performed PCA (Fig. 1A) on these nine features.

We found that most of the dual-domain proteins, which contain both GGDEF and 
EAL domains, tend to have high scores along the first principal component, which is 
mostly explained by degree and PageRank centralities (Fig. 1A and B). The degree and 
PageRank scores (8) imply that dual-domain proteins serve as regulatory hubs, as they 
receive inputs from many other proteins (for a more in-depth description of network 
centralities measures, see Table 1 and the supplemental material). Consistent with this 
conclusion, the membrane-bound, c-di-GMP receptor LapD has the highest score along 
the first principal component (Fig. 1A, far right, red circle). These proteins are also defined 
by their extensive number of PPI with other members of the network, spanning from a 
minimum of 17 for two of the dual-domain proteins to a high of 29 interactions for LapD 
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(Fig. 2). This finding is consistent with signals converging on LapD, a key regulator of the 
level of a critical cell-surface, biofilm adhesin LapA. Cell-surface LapA ultimately governs 
biofilm formation by P. fluorescens (1, 7).

Notice two clusters of dual-domain proteins that do not map near LapD (Fig. 1A). 
The first such cluster, comprised of three proteins (Pfl_0460, Pfl_5150, and Pfl_5643) 
lies in the upper left quadrant of the PCA plot. These proteins display one or two 
interactions with other proteins in the network (compared to 29 for LapD). We posit 
that Pfl_0460, Pfl_5643, and Pfl_5150 may be proteins participating in the “Bow-tie” 
aspect of c-di-GMP signaling, which does not require any protein–protein interactions 
to access the pool of cellular c-di-GMP (4). The second cluster of dual-domain proteins 
mapping away from LapD is comprised of the proteins Pfl_4551, Pfl_4552, Pfl_4876, and 
Pfl_5518, which display an intermediate level of interaction with proteins in the network 
(between four and six interactions, Fig. 2), and interestingly lie among DGCs in the lower 
left quadrant in the PCA plot (Fig. 1A). Based on their clustering, we would predict 
that the dual-domain proteins Pfl_4551, Pfl_4552, Pfl_4876, and Pfl_5518 may very well 
be dominated by their DGC activity and/or participate in DGC-centered signaling. The 
sequences of Pfl_4551 and Pfl_4876 indicate that they are indeed active DGCs, while 
Pfl_4552 and Pfl_5518 likely have PDE activity. Interestingly, the DGC Pfl_4551 and 
PDE Pfl_4552 are adjacent genes on the genome, which is often associated with their 
participation in similar functions.

In contrast to the dual-domain proteins, DGCs exhibited high measures on the 
second principal component, which is best described by local clustering and average 
nearest neighbor degree (8) (Fig. 1A and B). Most DGCs interact with between 8 and 
16 other proteins in the network, below the degree of interaction of most dual-domain 
proteins (Fig. 2). That is, DGCs are more dominated by local interactions versus dual-
domain proteins, the latter of which display a more extensive series of interactions 
across the network. Since the neighbors of DGCs include c-di-GMP-binding proteins 
(i.e., the PilZ-domain protein Pfl_3860 clusters with the DGCs on the PCA plot, Fig. 
1A), this result confirms a local dynamic wherein c-di-GMP produced by these DGCs is 
delivered to a spatially proximal c-di-GMP-binding protein. For P. fluorescens, there is at 
least one well-documented example of the requirement of local signaling driving the 
c-di-GMP network response (9). Interestingly, multiple PilZ proteins show a low degree of 
interaction, (i.e., Pfl_4008 and Pfl_4884 are found in the upper left of the PCA plot, Fig. 

TABLE 1 The description of the nine network centralities used to measure the interaction behavior of each protein in the c-di-GMP signaling network

Network centrality Description What we learn

Degree The number of interactors a protein has with other members of the 
network

How connected you are

Betweenness How often the protein acts as a bridge between signaling clusters How you connect groups
Local clustering coefficient Measures how often proteins that share an interactor interact 

among themselves
Are your friends, friends with each other

Eigenvector centrality Computes node importance accounting for all indirect connections
(via an adjacency matrix)

The extent of your network

PageRank centrality Measures node importance by recursively trickling information 
from one node to another

Where the signal is likely to end up

Harmonic centrality How many steps from a given protein to all the rest of the proteins 
in the network, on average

Connectivity across the network
(Kevin Bacon effect)

Local efficiency Computes how well connected the neighborhood of interactors is 
without the protein of interest

Connectivity across the network, leaving out 
the hub protein

Subgraph centrality Measures the number of network motifs a protein participates in, 
weighting them according to their size

Number of potential pathways a protein has, 
weighted according to their length

Average nearest neighbor degree Computes the average interaction degree of proteins with which 
the node interacts

How connected are your neighbors
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1 and 2)—we would predict that these proteins are also likely participating in Bow-tie, 
rather than localized, signaling.

Therefore, Fig. 1 shows that proteins of different types have a predictable PPI network 
behavior that allows us to distinguish them based on their node centrality measures. 
To further probe these relationships, we tried to classify DGCs, PDEs, and dual-domain 
proteins based solely on their network features. The combination of features that 
produced the highest area under the receiver-operating characteristic (ROC) test scores 
for each protein type (DGC, PDE, and dual domain) in logistic regression models included 
eigenvector centrality, betweenness, and PageRank (see Table 1). Here, the ROC curve 
is formed by plotting the true-positive rate (sensitivity) against the false-positive rate 
(specificity) at various decision thresholds. Thus, the area under the curve (AUC) derived 
from the ROC plots represents the probability that the model correctly distinguishes 
between positive and negative classification instances, where a score of 0.5 indicates 
that the model’s predictive ability is that of random guessing, while a score closer to 1 
indicates a better discrimination ability. The three eigenvector centrality, betweenness, 
and PageRank features together give an AUC score of 0.925 (with bootstrapped median 
AUC over 100 runs of 0.923, with empirical 95% CI of 0.840–0.988) for binary classification 
of whether the protein is dual domain (or not), 0.898 (median 0.919, CI 0.826–0.993) for 
DGCs, and 0.743 (median 0.760, CI 0.636–0.953) for PDEs (Tables S1 and S2). Thus, these 
network features accurately predicted whether a protein was a DGC or dual-domain 
protein >90% of the time and a PDE ~75% of the time.

We also classified protein types using twofold cross-validated random forest models. 
The degree network feature alone, which measures the number of interactors a protein 
has with other members of the network, predicts DGCs, PDEs, and dual-domain proteins 

FIG 1 Interrogating the PPI network. (A) PCA on node centralities in the largest connected component of the PPI network. Colors indicate domains: yellow 

indicates proteins with dual domain architecture, green indicates DGCs, red indicates PDEs, and blue indicates c-di-GMP-binding PilZ domains. The numbers 

indicate gene number assignments from the P. fluorescens Pf0-1 genome, while names are used for previously reported proteins (6). LapD is a previously reported 

c-di-GMP receptor critical for the cell surface localization of the key biofilm adhesin LapA (1, 7). Note the clusters of dual domain proteins that map away from 

the cluster of proteins near LapD (far right) in the lower left quadrant (Pfl_4552, Pfl_4554, Pfl_4876, and Pfl_5518) and the upper right quadrant (Pfl_0460, 

Pfl_5643, and Pfl_5150). These two clusters are separated in the second principal dimension, which has lower explanatory power. These proteins also represent 

low-degree interactors of degrees 1 through 6 (see Fig. 2) and may represent dual-domain proteins that largely function outside the connected network (see 

text for additional details). (B) Feature loadings of each centrality (left labels) on each PC dimension (top labels). Larger and darker circles indicate that a larger 

percentage of the centrality feature aligns with that PC.
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with a 0.80 average test accuracy (Fig. S1). That is, even if we give only half of the true 
labels to a random forest model, it can classify the other half quite accurately. This is not 
surprising once we consider the PPI network degree distribution in Fig. 2, where we see 
that the domain types mostly fall neatly into specific ranges of the degree distribution, 
making them easy to classify. Together, these data indicate that network behavior (i.e., 
protein–protein interaction features) allows us to accurately predict whether a c-di-GMP 
signaling component is a DGC, PDE, or dual-domain protein.

With these classification results, we confirmed that not only do different c-di-GMP-
related protein types (DGC, PDE, and dual domain) exhibit different behaviors in the PPI 
network of this organism (as observed in the PCA, Fig. 1 and 2), but these proteins are 
also readily distinguishable in prediction models by those behaviors (described by the 
network features). While these results might not hold for proteins of a different c-di-GMP 
signaling network, we believe that exploration of the PPI networks in other bacteria can 
also prove insightful for investigation of c-di-GMP-mediated regulatory mechanisms of 
biofilm formation.

Analysis of a combination of signaling mechanisms

With the above promising results from the PPI network analysis, we sought to delve 
deeper into the combinations of additional data sets we reported previously (5). We 
attempted to build a model for predicting the extent of biofilm formation (i.e., biofilm 
biomass) that incorporates information from all three of our available data sets. That is, 
in addition to the PPI network described above, we had previously examined the amount 

FIG 2 Degree values of proteins in the PPI network, colored by domain. All nodes in the PPI network of degree 17 and higher are dual-domain proteins. Nodes of 

degree values between 8 and 16 are primarily DGCs, while most proteins with PilZ domain have either degree 0 or 1. PDEs mostly take on degree values between 

0 and 4. LapD has a degree of 29. The degree values are discussed in more detail in the text.
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of biofilm formed by mutant strains lacking individual components of the c-di-GMP 
network in different environments, as well as the level of transcription of genes coding 
for these c-di-GMP-metabolizing/-binding proteins under 45 different growth conditions 
(5).

First, we leveraged the one-to-one correspondence between interacting proteins 
and strains that lack the cognate gene. Dahlstrom et al. grew 49 mutant strains, plus 
the WT as a control, in 188 environments using Biolog PM1 and PM2A nutrient plates 
(which include a large range of possible carbon sources), then recorded the amount of 
biofilm formed by every strain in each of the environments using the crystal violet-based 
biofilm assay in 96-well dishes (5). We visualized these data using hierarchical clustering 
(Fig. S2). The amount of biofilm formed varies widely depending on the strain and the 
environment. First, we note that eight mutant strains (with the following genes deleted: 
Pfl_0460, Pfl_4086, Pfl_264, Pfl_4876, Pfl_0192, rapA, Pfl_4552, and Pfl_3800), which 
are candidate or demonstrated PDEs, showed robust biofilm formation in all growth 
conditions, suggesting that they were producing high levels of c-di-GMP independent of 
the environmental inputs. This finding of robust biofilm formation across environments 
in strains lacking a PDE has been reported previously (10, 11). Furthermore, we observed 
that for some of the environmental conditions, the biofilm production was always low; 
these wells of the Biolog plates contained detergents, which inhibited growth of the 
bacteria (5). After removing the eight constitutively hyper-biofilm-forming strains and 
the detergent-containing medium conditions from the analysis, the visualization of the 
hierarchical clustering heatmap in Fig. 3 continues to show strong differences between 
strains (the different columns in the figure). After considering negative controls and 
average WT growth in each environment, we found that the variation across strains 
makes a comparable impact on biofilm formation to the impact of the environment in 

FIG 3 Hierarchical clustering of strains (columns) and carbon-source environments (rows) according to measured biofilm production. Biofilm production values 

have been batch normalized according to wild-type measurements in the corresponding batch. Harmful medium components, such as detergents, and the eight 

mutants, all lacking c-di-GMP degrading PDEs and forming the most robust biofilms across all conditions (see Fig. S2), have been removed prior to clustering. If 

environments had been the only defining factor in the amount of biofilm formed, then the clustering would show perfect row ordering of environments by the 

amount of biofilm formed from lowest to highest, on average, across all strains. Conversely, if only strains regulated biofilm formation, only the columns would 

have been permuted to create such ordering. In the present case, the algorithm permutes both strains and environments, indicating that both play a significant 

role in regulating biofilm formation.
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which the mutant is grown, as the median standard deviation of strains across environ
ments is 0.0932 [interquartile range (IQR) 0.0845–0.1017], while the median standard 
deviation of environments across strains is 0.0769 (IQR 0.0657–0.0880). That is, the gene 
in the c-di-GMP network and the environment (i.e., carbon/energy source provided in the 
biofilm assays) contribute to a similar extent to the resulting biofilm phenotype.

The last feature we attempted to incorporate into our c-di-GMP signaling predic
tion framework is gene expression. In a previous study, we examined the expression 
of the genes in the c-di-GMP network in 45 different carbon/energy sources (5). We 
excluded rapA as an outlier, as it was shown previously to have a large change in 
transcription in response to a low-phosphate environment (12). As was done in Fig. 3 
for biofilm production, we hierarchically clustered expression measurements for each 
gene across environments, obtaining a very narrow standard deviation distribution of 
gene expression levels (as measured via z-scores), indicating lack of gene expression 
changes for most genes in most growth conditions (Fig. S3). Additional investigation into 
up- or downregulation of transcriptional levels in different environments for interacting 
proteins showed no statistical significance in linear regression models (Fig. S4 and S5; 
Table S3). That is, there was no evidence that the genes coding for interacting proteins 
displayed coordinated gene expression patterns.

Building phenotype prediction models

Finally, we attempted to build a phenotype prediction model. We excluded transcription 
data due to the low variance in gene expression (i.e., low information content) across 
the multiple environments and genes tested and the lack of statistical significance in 
our preliminary models. That is, when we add gene expression levels as a feature to our 
regression models, the adjusted R-squared stays the same or drops due to penalization 
(i.e., adjusting for additional variables with no increase in information).

To build models, we took advantage of key aspects of our previously reported data 
set (5). Since every mutated strain results in a single protein being removed from 
the network and we have a corresponding set of data from the PPI analysis, we can 
use the PPI network measurements of these proteins as features in phenotype linear 
regression models. We predicted that the PPI data might help differentiate strains in 
some environments where the nutrients added to the medium do not dictate the biofilm 
formed by a majority of strains. Thus, we included in the model the amount of biofilm 
biomass formed in each environment by the wild-type strain, along with PageRank, 
betweenness, and eigenvector centrality values of the PPI network, since this combina
tion of network features predicted the domain architecture of a protein most accurately 
in a logistic regression model (see Tables S1 and S2 and text above). Additionally, we 
were curious how a simple binary indicator of whether a protein is a dual-domain type 
contributes to phenotype prediction, and thus, this variable was also included in our 
regression model. While network features above serve as a proxy for protein domain 
type, they also incorporate additional information about protein interactions.

The adjusted R-squared of the model described in Table 2 is 0.4391. We found 
it promising that all independent variables included in this model were statistically 

TABLE 2 Linear model coefficients and P values of independent variables across 49 strains and 192 
environments used to test for the biofilm biomass formed

Coefficient P valuea

(Intercept) 0.0091231 0.0825 (*)
Wild type 1.0312640 <2e−16 (****)
Eigenvector centrality −0.1353696 2.65e−09 (****)
Betweenness −0.0008525 <2e−16 (****)
PageRank 3.0825489 7.05e−07 (****)
Dual-type indicator 0.0720563 <2e−16 (****)
aAll variables apart from the intercept show very high statistical significance (****P < 0.0001 and *P < 0.1). 
We suspect that the wild-type variable (amount of biofilm), which provides the only information about the 
environment in this model, primarily serves as an intercept given that its coefficient is ~1.
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significant. Nevertheless, given the relatively large number of inputs in the model (49 
strains tested across 188 environments contribute to ~9,500 biofilm biomass inputs the 
model could fit), we rigorously tested for overfitting using permutation tests. Overfitting 
often occurs when the number of observations and, hence, degrees of freedom, is so 
large (as in our case) that the model in essence learns noise from the training data 
rather than a true underlying pattern, leading to poor generalizations on subsequently 
analyzed test data. Thus, we employed a series of random shuffles on the whole input 
data set, as well as exclusively on PPI data, to generate a randomized null distribution 
to assess whether the model’s performance is significantly better than expected by 
chance. Figure S6 shows that the model did not overfit to the independent variables, 
further supporting the statistical significance. Moreover, we note that the simplest linear 
model, with biofilm production specified by the amount of biomass produced by the 
wild type, has an R-squared of 0.376. This baseline R-squared value indicates that the four 
PPI network centrality variables (PageRank, betweenness, eigenvector centralities, and 
dual-domain binary indicator variable), taken together, provide additional explanatory 
power increasing R-squared by 0.06. Nevertheless, permutation testing of only the PPI 
network centralities effectively eliminated this additional contribution in all permuted 
models, confirming that the protein information about the strains, i.e., the explanatory 
power that the protein variables bring to the regression model is strongly statistically 
significant.

Thus, the adjusted R-squared contributions from all variables are statistically 
significant, and our model is robust. From this analysis, we conclude that the physical 
interactions between DGCs, dual-domain proteins, and PDEs, contribute to a statistically 
significant mode of regulation of biofilm formation. Signaling via these PPI is further 
modulated by the nutritional cues present in the environment, which play a large and 
statistically significant role in our regression model as well. However, none of the models 
we considered identified any statistically significant transcriptional control impacting the 
biofilm formation.

Conclusions

Overall, our analysis here provides a framework for exploring an alternative to the 
Bow-tie Model (Fig. 4, left), which we refer to as the “Hub Model” (Fig. 4, right), which 
accounts, at least in part, for the increasing examples of localized signaling (4). Our 

FIG 4 Models of c-di-GMP signaling. On the left is shown the previously reported “Bow-tie Model,” which posits the production of a pool of c-di-GMP from a 

series of DGCs, which in turn is detected by multiple singleton receptors. This model invokes a global pool of this second messenger. On the right is shown our 

“Hub Model,” which posits a role for localized signaling driven by a series of PPI interactions. The extent of these interactions can be used to accurately infer 

the class of enzyme (i.e., DGC versus dual-domain protein). An induced subgraph of the actual PPI network with eight highest-degree dual-domain proteins and 

DGCs that interact with them is shown in Fig. S8 to support the “Hub Model” visualization.

Opinion/Hypothesis mSphere

May 2024  Volume 9  Issue 5 10.1128/msphere.00178-24 8

https://doi.org/10.1128/msphere.00178-24


analysis leads us to the conclusion that node centrality measures of each protein, that is, 
aspects of interactions in the PPI network, can serve as meaningful features in regression 
models that attempt to predict biofilm phenotypes. Moreover, the PPI network behavior 
of each protein type (DGC, dual-domain, PDE, and PilZ) is unique, and we can accurately 
classify the domain type of any protein by assessing their network centrality values. Thus, 
from this analysis we conclude that the different proteins in the c-di-GMP network (i.e., 
DGC, dual-domain, PDE, and PilZ) likely have distinct and characteristic roles to play in 
the network.

The statistical robustness of our regression biofilm phenotype model and classifica-
tion models asserts the notable, and rigorously statistically tested, contribution of the 
PPI network to the regulation of biofilm formation. Although the specific findings here 
might not be directly transferable to proteins of another c-di-GMP signaling system, 
we suggest that investigating the PPI networks in other bacterial species might yield 
valuable additional insights into the regulatory mechanisms governing c-di-GMP-medi
ated biofilm formation. While we encourage the analysis of PPI network of c-di-GMP 
regulatory proteins and the exploration of network significance in understanding the 
biofilm formation phenotype in other microbes, we note that larger-scale predictions 
across multiple environments for multiple genotypes are vulnerable to some random 
effects of protein-independent variables, as evidenced by controlled permutation testing 
(Fig. S7). More sophisticated regression models could be employed in future analyses but 
must be carefully examined for any random effects.

It is important to note some of the caveats of this analysis. First, we emphasize 
that the Hub Model and previously reported Bow-tie Model (4) are unlikely to explain 
all aspects of c-di-GMP signaling. Rather, we propose the Hub Model both to expand 
on the currently reported signaling mechanisms and to provide a framework going 
forward for experiments to validate this model. For example, how do the interactions 
between multiple DGCs with LapD (see Fig. 4, right) control biofilm formation? Is there 
a preferential hierarchy of interactions, or do PPI interactions respond to environmental 
inputs? The latter is a real possibility given that LapD-interacting DGCs have ligand-bind
ing CACHE domains (5, 6) that are likely to respond to environmental inputs. Indeed, our 
regression models indicate that combining information from the PPI data and nutritional 
cues provides the greatest predictive power of biofilm biomass formed, while keeping 
the model statistically robust, suggesting a mechanistic connection between these two 
nodes of regulation. For P. fluorescens, there is an example of local c-di-GMP-mediated 
out modulated by an environmental cue (9), perhaps indicating a general mechanism of 
signaling. Finally, while our data set is rich, it lacks some key information known to drive 
c-di-GMP signaling, including post-transcriptional regulatory features [i.e., regulation 
by the CsrA/RsmA signaling pathway (13–16)], a role for other catalytically inactive 
GGDEF/EAL domain proteins that may act as receptors, yet-to-be-identified c-di-GMP-
binding proteins, as well as interactions of c-di-GMP-binding/-metabolizing proteins 
outside the core second messenger signaling system (17–20).

Finally, while this c-di-GMP signaling network is relatively large for such systems, 
compared to the data sets usually probed with the network analyses used here, the 
relatively small size of the data set and lack of large variation in PPI network behavior 
mean that the node centralities employed here (Table 1) provide only an initial view 
into the actual protein regulatory mechanisms. Moreover, the PPI network determined 
using the heterologous B2H system in E. coli captures only potential interactions, but it 
does not provide any information about whether those interactions occur in the native 
organism. Given these caveats, we find the statistical significance of PPI determined in 
E. coli and their explanatory power for the biofilm phenotype in P. fluorescens remarka
ble. Furthermore, the data presented here expands beyond previous models of “local 
control,” which were not defined sufficiently at a system level to generate testable 
hypotheses. In contrast, our analysis is novel in that it paints a more precise picture 
of how PPI plus nutrient inputs could modulate c-di-GMP signaling distinct from a 
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global second messenger pool (Fig. 4, right), thereby providing a framework that can be 
validated experimentally going forward.
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