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Abstract

Antibiotic resistance is recognized as an imminent and growing global health

threat. New antimicrobial drugs are urgently needed due to the decreasing

effectiveness of conventional small-molecule antibiotics. Antimicrobial pep-

tides (AMPs), a class of host defense peptides, are emerging as promising can-

didates to address this need. The potential sequence space of amino acids is

combinatorially vast, making it possible to extend the current arsenal of anti-

microbial agents with a practically infinite number of new peptide-based can-

didates. However, mining naturally occurring AMPs, whether directly by wet

lab screening methods or aided by bioinformatics prediction tools, has its theo-

retical limit regarding the number of samples or genomic/transcriptomic

resources researchers have access to. Further, manually designing novel syn-

thetic AMPs requires prior field knowledge, restricting its throughput. In silico

sequence generation methods are gaining interest as a high-throughput solu-

tion to the problem. Here, we introduce AMPd-Up, a recurrent neural network

based tool for de novo AMP design, and demonstrate its utility over existing

methods. Validation of candidates designed by AMPd-Up through antimicro-

bial susceptibility testing revealed that 40 of the 58 generated sequences pos-

sessed antimicrobial activity against Escherichia coli and/or Staphylococcus

aureus. These results illustrate that AMPd-Up can be used to design novel syn-

thetic AMPs with potent activities.
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1 | INTRODUCTION

The worldwide overuse of antibiotics has created an
alarming number of bacteria that possess antibiotic resis-
tance, resulting in conventional antibiotics being less
effective (Reardon, 2014). It is estimated that 1.27 million
people died due to antibiotic resistance in 2019
(Antimicrobial Resistance Collaborators, 2022), and the
speed of bacterial evolution, resulting in antibiotic resis-
tance, is expected to greatly increase this death toll in the
next few decades (Laxminarayan et al., 2013;
O'Neill, 2014). Moreover, the sluggish pace of discovery
and development of new therapeutics is exacerbating this
public health crisis (Koo and Seo, 2019). As a result,
novel effective substitutes for conventional antibiotics are
urgently needed as weapons to fight against multidrug-
resistant bacteria, also referred to as “superbugs”.

Antimicrobial peptides (AMPs), a diverse class of
short and often cationic peptides, are considered a viable
alternative to conventional antibiotics (van der Does
et al., 2019). Naturally occurring AMPs are observed
among all forms of life (Zhang and Gallo, 2016). In
higher eukaryotic organisms, AMPs have co-evolved with
environmental microbes as part of the host innate
immune system (Zhang and Gallo, 2016). Microbes can
also produce AMPs for inter-competition purposes
against the growth of other microbes (Zhang and
Gallo, 2016). Most of the known AMPs reported in public
databases are antibacterial, with some AMPs active or
additionally active against other types of microbes
(e.g., fungi, viruses) (Wang et al., 2016). Unlike most con-
ventional antibiotics, which have specific functional or
structural targets, most AMPs act directly on bacterial
membranes or cell walls leading to non-enzymatic dis-
ruption, with some eukaryotic AMPs performing addi-
tional modulation of the host immune system (Nguyen
et al., 2011; Zhang and Gallo, 2016). As a result, it may
be more difficult for bacteria to develop resistance to
AMPs compared with conventional antibiotics
(Boman, 2003). However, resistance to AMPs can still be
observed if bacteria are exposed to AMPs for sufficient
periods of time (Boman, 2003), indicating that antibiotic
resistance is an enduring phenomenon. Thus, high-
throughput methods for the rapid discovery and design of
novel AMPs would be instrumental in our fight against
superbugs (Lin et al., 2022).

Recently, a number of in silico AMP prediction tools
have been developed to reduce the labor and costs associ-
ated with large-scale wet lab screening for AMP discovery
(Jukič and Bren, 2022; Li et al., 2022; Meher et al., 2017;
Veltri et al., 2018; Xiao et al., 2013). State-of-the-art AMP
prediction tools include AMPlify (Li et al., 2022),
AMP Scanner Vr.2 (Veltri et al., 2018), iAMPpred (Meher

et al., 2017), and iAMP-2L (Xiao et al., 2013). Each of
these tools utilizes machine learning methods, with
AMPlify outperforming the latter three tools by adapting
a deep learning model with attention mechanisms (Li
et al., 2022; Vaswani et al., 2017; Yang et al., 2016). These
in silico tools have successfully been applied in identify-
ing novel, naturally occurring AMPs from genomic or
transcriptomic resources (Li et al., 2022; Lin et al., 2022;
Richter et al., 2022). Nevertheless, the discovery of these
AMPs is limited by the availability of organism sources,
such as tissue samples for direct wet lab screening or
sequencing data for in silico mining. Even though in silico
mining methods are high-throughput, they require mas-
sive amounts of upstream work for careful data prepara-
tion (Li et al., 2022; Lin et al., 2022; Richter et al., 2022),
which further limits the pace of development and the
number of novel AMPs that can be discovered.

The potential sequence space of amino acids is combi-
natorially large, allowing for the design of peptide
sequences that may not exist in nature but still possess
desirable antimicrobial properties. Traditional
approaches for AMP design include (1) modification of
known AMP sequences to generate their congeners, frag-
ments, or hybrids; (2) minimalist approaches by which
AMPs are designed de novo purely based on structural
requirements (e.g., amphipathic alpha-helical structures)
but with limited types (e.g., physicochemical properties)
of residues used; (3) sequence-template-guided
approaches that create sequence templates by comparing
structurally homologous fragments from known AMPs
for conserved patterns in terms of residue types; and
(4) utilizing combinatorial peptide libraries (Huan
et al., 2020; Tossi, 2011). However, these methods require
prior expertise in AMPs' research for more accurate
designs, which restricts the throughput.

Recently, a series of machine learning models based
on neural networks have been proposed for the auto-
matic de novo design of AMP sequences (Das et al., 2021;
Dean et al., 2021; Gupta and Zou, 2019; Nagarajan
et al., 2018; Szymczak et al., 2022; Tucs et al., 2020; Van
Oort et al., 2021). They make it possible for users to sam-
ple novel AMP sequences directly from the models with-
out any artificial design. Common sequence generation
models include recurrent neural network (RNN) lan-
guage models (Mikolov et al., 2010), variational autoen-
coders (VAEs) (Kingma and Welling, 2014), and
generative adversarial networks (GANs) (Goodfellow
et al., 2014). Nagarajan et al. developed a long short-term
memory (LSTM) RNN language model (Hochreiter and
Schmidhuber, 1997; Mikolov et al., 2010), and embedded
it into a framework with multiple filtering steps for the
generation of novel AMPs with strong antibacterial activ-
ity (Nagarajan et al., 2018). Dean et al. proposed a
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VAE-based AMP sequence generation framework, named
PepVAE, for generation of highly active AMPs (Dean
et al., 2021). Das et al. further adapted VAE and intro-
duced CLaSS for controlled AMP sequence generation
with attributes of interest (Das et al., 2021). HydrAMP,
another VAE-based model, incorporates two pre-trained
classifiers monitoring the quality of the generated pep-
tides during training (Szymczak et al., 2022), improving
upon a conditional VAE (cVAE) (Sohn et al., 2015).
Gupta et al. proposed Feedback GAN for generating
DNA sequences that encode proteins with optimized
properties, and applied it to AMP sequence generation as
an example (Gupta and Zou, 2019). Tucs et al. adapted
an activity-aware LeakGAN (Guo et al., 2018) to generate
highly active AMPs (Tucs et al., 2020), while Van Oort
et al. introduced AMPGAN v2 based on a bidirectional
conditional GAN (BiCGAN) (Donahue et al., 2017;
Dumoulin et al., 2017) to generate AMP sequences of dif-
ferent types and properties (Van Oort et al., 2021). The
flurry of activities represented by these methods illustrate
a strong interest in the field for de novo AMP design and
explore expertise-free approaches. Nonetheless, there is
still room for improvement in generating AMP designs
with desirable properties and high potency.

In the presented work, we introduce AMPd-Up, a
novel AMP sequence generation tool that implements
a standard RNN language model (Mikolov et al., 2010)
(Figure 1). The tool focuses on generating short AMP
sequences ≤50 amino acids (aa) in length, with potential
antibacterial activity. AMPd-Up samples candidate AMP
sequences from multiple model instances trained with

different random initializations. For de novo AMP
sequence generation, our RNN language model learns
the “grammar”—the arrangement of the amino acids—of
the training AMP sequences and estimates the probabili-
ties of amino acid occurrence at each position recurrently
starting from the N-terminus. Thus, the model generates
a putative AMP sequence, residue by residue, based on
the probability distribution estimated at each residue
position (or each time step of the process), until reaching
the end-of-sequence (EOS) signal. We expect different
model instances to capture the complicated underlying
features of AMP sequences from slightly different aspects,
thus exploring various localities in the state space repre-
sented by a rich repertoire of natural AMPs. With this
approach, we generated 40 novel AMPs that have not
been reported in public databases but were proven to be
active against laboratory strains of Escherichia coli and/or
Staphylococcus aureus. Our results illustrate the power of
AMPd-Up in contributing to our expanding arsenal
of synthetic antimicrobial agents.

2 | RESULTS

2.1 | Performance comparison with
state-of-the-art methods

We measured the performance of AMPd-Up by assessing
the generated sequences using three state-of-the-art AMP
prediction tools: AMPlify (Li et al., 2022), AMP Scanner
Vr.2 (Veltri et al., 2018), and iAMPpred (Meher
et al., 2017). The estimated sequence generation accuracy
values, expressed as the percentages of sequences pre-
dicted as AMPs by each AMP prediction tool, are
reported in Table 1. The results of three other AMP
sequence generation methods: the LSTM language model
(Nagarajan et al., 2018), AMPGAN v2 (Van Oort
et al., 2021), and HydrAMP (Szymczak et al., 2022), are
listed in Table 1 for comparison. Although none of the in
silico prediction tools are perfect in identifying AMPs,
their reported performance (Li et al., 2022; Meher
et al., 2017; Veltri et al., 2018) would be suitable for eval-
uating the AMP sequence generation methods. Details of
how we calculated the estimated accuracy values can be
found in Section 4.

As measured by AMPlify, AMPd-Up obtains the high-
est estimated accuracy with 95.50% of the generated
sequences predicted as AMPs on average, which outper-
forms the best comparator AMPGAN v2 by 4.60%, fol-
lowed by HydrAMP (by 8.00%) and then the LSTM
language model (by 10.65%). When evaluated using AMP
Scanner Vr.2 and iAMPpred, AMPd-Up generates
AMP sequences with estimated accuracies of 100.00%

FIGURE 1 Architecture of the recurrent neural network

(RNN) language model. Given a starting amino acid, the RNN

language model predicts the next amino acids residue by residue

until reaching the end-of-sequence (EOS) signal (represented as a

cross marker). Amino acids, including the EOS signal, are one-hot

encoded. The output of RNN at each time step is a probability

vector of amino acid and EOS occurrence at the next position, to

which sampling strategies can be applied.
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and 99.30%, surpassing the best comparator HydrAMP by
5.40% and 1.60%, respectively. Although the rankings of
the AMP sequence generation methods evaluated by the
three AMP prediction tools are slightly different from
each other, AMPd-Up always performs the best com-
pared with its comparators.

2.2 | De novo generated sequences

Besides using the outputs of in silico AMP prediction
tools as a proxy for performance, we also analyzed the
generated sequences based on their amino acid composi-
tions, length and net charge distributions, as well as their
sequence similarity levels to the training set and all
known AMP sequences. Details of how we analyzed the
sequences generated by AMPd-Up can be found in
Section 4.

Figure S1 in Data S1 summarizes the amino acid
compositions of the generated sequences. The
sequences generated by AMPd-Up were substantially
rich in lysine (K) and leucine (L) residues, with average
proportions of 29.87% and 24.51% per peptide sequence,
respectively. In comparison, the sequences in our train-
ing set were rich in leucine (L), glycine (G), and lysine
(K) residues, with average proportions of 11.50%,
10.94%, and 10.67%, respectively. Figure S1 in Data S1
additionally provides the amino acid composition infor-
mation of the putative AMP sequences generated by
three other methods. Two of the other methods
(i.e., the LSTM language model and AMPGAN v2)
highlighted lysine (K) and leucine (L) as predominant
amino acid residues in their generated sequences, simi-
lar to the pattern observed in AMPd-Up.

Short lengths and net positive charges are common
characteristics for most previously discovered AMPs
(Zhang and Gallo, 2016), therefore many AMP studies
investigate these key properties (Gagnon et al., 2017).
Shorter peptides are also cheaper to synthesize (Lin
et al., 2022), making translating shorter sequences for
clinical application potentially more cost-effective. Fur-
ther, the net positive charges of cationic AMPs are
responsible for the electrostatic interaction with the nega-
tively charged bacterial membranes or cell walls (Zhang
and Gallo, 2016), with studies illustrating that the antimi-
crobial activity of some AMPs can be improved by
increasing their net charges (Zelezetsky and Tossi, 2006).
The top section of Figure 2 compares the length distribu-
tions of the sequences generated by AMPd-Up with those
constituting the training set. We note that the model may
fail to reach the EOS signals when generating some
sequences (referred to as “incomplete sequences”; see
Section 4 for details); we thus additionally compared the
generated sequence set with those incomplete sequences
removed. The average generated sequence length was
28.90 aa, but was reduced to 21.56 aa after incomplete
sequences were removed. The incomplete sequences are
50 aa by default. The complete sequences were 4.65 aa
shorter than the training sequences on average. The bot-
tom section of Figure 2 shows a similar comparison for
net charge distributions. The average generated sequence
net charge was 9.08, but was reduced to 6.45 after incom-
plete sequence removal. However, the net charge of the
complete sequences was still 3.15 greater than the train-
ing sequences on average.

The sequence similarity of each AMPd-Up-generated
sequence to the training set, composed of antibacterial
peptides, was calculated for analysis (details in Section 4).

TABLE 1 Performance comparison of different AMP sequence generation methods.

AMP sequence generation method

Estimated accuracy evaluated by AMP prediction tools (%)

By AMPlify By AMP Scanner Vr.2 By iAMPpred

AMPd-Up 95.50 ± 0.35 100.00 ± 0.00 99.30 ± 0.37

LSTMa 84.85 ± 0.75 84.20 ± 1.04 82.80 ± 0.97

AMPGAN v2b 90.90 ± 2.10 87.55 ± 1.29 94.85 ± 1.29

HydrAMPc 87.50 ± 1.15 94.60 ± 0.46 97.70 ± 0.64

Note: Different methods were evaluated using three in silico AMP prediction tools: AMPlify (Li et al., 2022), AMP Scanner Vr.2 (Veltri et al., 2018), and
iAMPpred (Meher et al., 2017), based on sequences generated by each of the methods. The estimated AMP sequence generation accuracy measured by a
selected prediction tool was defined as the percentage of peptide sequences predicted as AMPs among a generated sequence set. For each sequence generation
method, five sets of sequences were generated, with 400 in each set. For each AMP sequence generation method, an average estimated accuracy value of the
five generated sets was reported when measured by a specific AMP prediction tool, along with the corresponding standard deviation value. One-sided Welch's

t-tests indicate that the superior performance of AMPd-Up over its comparators is statistically significant (p < 0.05).
Abbreviations: AMP, antimicrobial peptide; LSTM, long short-term memory.
aSequences sampled from the generated sequence set provided by the authors (Nagarajan et al., 2018).
bAntibacterial peptides were selected for a fairer comparison with other methods (Van Oort et al., 2021).
cSequences generated using online server on November 7, 2022 (Szymczak et al., 2022).
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Figure 3 shows the sequence similarity distribution of the
AMPd-Up-generated sequences to the training set, with a
peak between 50.00% and 55.00%. The generated
sequences possess a similarity level of 49.97% compared
with the training sequences on average, indicating that
AMPd-Up generates novel AMP sequences different from
the training sequences. This implies that AMPd-Up may
be capturing high-level features of AMPs, rather than
only memorizing sequence-level information during
training. An additional test on the sequence similarity of
each AMPd-Up-generated sequence to all available
known AMPs from Antimicrobial Peptide Database
(APD3, https://aps.unmc.edu) (Wang et al., 2016) and
Database of Anuran Defense Peptides (DADP, http://
split4.pmfst.hr/dadp) (Novkovi�c et al., 2012) was done
(details in Section 4), with an average sequence similarity
level of 51.03%, indicating the novelty of our generated
sequences as compared with known AMPs (Figure S2 in
Data S1). To supplement the sequence similarity analysis,
we also visualized the pairwise sequence similarities

between different sequence sets (Figure S3 in Data S1). A
lower generated sequence similarity level between differ-
ent model instances of AMPd-Up (33.56%) than within
the same model instance (39.14%) indicates that different
model instances tend to capture features of AMPs from
slightly different aspects. We expect the novelty of gener-
ated sequences by our tool to add diversity to the current
AMP sequence databases.

2.3 | In vitro validation results

We selected 58 peptide sequences, generated by 1000
AMPd-Up model instances, for in vitro validation and
bioactivity assessment. We organized our candidates into
three lists: List A (DeNo1001 to DeNo1038) and List B
(DeNo1039 to DeNo1042) were sampled through AMPd-
Up scores, and 16 more sequences that appeared with
high frequencies of ≥40 in the generated set were
selected to make List C (DeNo1043 to DeNo1058).
AMPd-Up score ranges from 0 to 1 and is a measure of
the confidence level of the model when generating the
sequence (see Section 4 for detailed definition). Table 2
summarizes the sequence specifications of our 58 selected
putative AMPs. All sequences in Lists A and C were

FIGURE 3 Sequence similarity distribution of the AMPd-

Up-generated sequences to the training set. The sequence similarity

distribution, with a mean of 49.97% and a standard deviation of

9.83%, was calculated based on the 2000 sequences generated by

AMPd-Up. The sequence similarity of each generated sequence to

the training set was considered as the similarity of that sequence to

its most similar sequence in the training set, based on which the

distribution was plotted.

FIGURE 2 Length and net charge distributions of the

sequences generated by AMPd-Up. Length and net charge

distributions were calculated based on 2000 sequences generated by

AMPd-Up, along with training sequences for comparison; 1484 of

the 2000 generated sequences in “complete” status were chosen for

an additional comparison. Mean (μ) and standard deviation (σ) of

each distribution are as follows: training sequences (length:

μ = 26.21 aa, σ = 10.34 aa; net charge: μ = 3.30, σ = 2.74), all

generated sequences (length: μ = 28.90 aa, σ = 15.07 aa; net

charge: μ = 9.08, σ = 7.33), and complete generated sequences

(length: μ = 21.56 aa, σ = 9.87 aa; net charge: μ = 6.45, σ = 4.73).
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predicted as AMPs by AMPlify, while all sequences in
List B were predicted as non-AMPs.

Our 58 candidate peptides were tested against two
bacterial isolates: the Gram-negative E. coli ATCC 25922
and the Gram-positive S. aureus ATCC 29213. Porcine
red blood cells (RBCs) were used to assess the hemolytic
activity of the peptides. Out of the 58 peptides selected
for in vitro validation, 40 peptides displayed antimicrobial
activity against at least one bacterial strain tested. All
15 peptides that were active against S. aureus ATCC
29213 also showed antimicrobial activity against E. coli
ATCC 25922. Figure 4a visualizes the antimicrobial and
hemolytic activities of the 40 peptides, in minimum
inhibitory concentration (MIC) and concentration that
lyses 50% of the RBCs (HC50), respectively. The entire
in vitro validation results of the 58 peptides are shown in
Table S1 in Data S1. For a better interpretation of the
results, we split the activity of the tested peptides into
four levels according to the MIC/HC50 ranges: high
(≤4 μg/mL), moderate (8–16 μg/mL), low (32–128 μg/
mL), and without observable activity (>128 μg/mL).

Among the 38 List A peptides tested, 28 peptides dis-
played antimicrobial activity, 12 of which were active
against both strains tested (Figure 4a). Nine of the List A
peptides were highly active against E. coli ATCC 25922,
with DeNo1018 being the most active with an MIC of 1–
2 μg/mL. These same nine peptides were also active
against S. aureus ATCC 29213. Four of the nine peptides
were highly active against S. aureus ATCC 29213
(MIC = 2–4 μg/mL for DeNo1016 and DeNo1017;
MIC = 4 μg/mL for DeNo1007 and DeNo1022), with one
(DeNo1018) moderately active (MIC = 8 μg/mL). Six
peptides from List A were moderately active against
E. coli ATCC 25922, and another two showed low to
moderate activity against the strain. Three of these eight
peptides displayed some antimicrobial activity against
S. aureus ATCC 29213, one of which (DeNo1031) was
moderately active (MIC = 16 μg/mL) with the other two
(DeNo1021 and DeNo1026) showed low (MIC = 32–
64 μg/mL) and minimal activity (MIC ≥ 128 μg/mL),
respectively. Among all 28 List A peptides with proven
antimicrobial activity, three were minimally hemolytic
(HC50 ≥ 128 μg/mL) and 17 did not show any
hemolytic activity (HC50 > 128 μg/mL) in our tests.
DeNo1007 was the only AMP with high antimicrobial
activity against both bacterial strains tested (MIC = 4 μg/
mL) and without observable hemolytic activity
(HC50 > 128 μg/mL).

Among the four peptides from List B tested, only
DeNo1040 displayed some low-level activity against the
two bacterial strains tested (Figure 4a). Specifically, this
peptide inhibited the growth of E. coli ATCC 25922 and
S. aureus ATCC 29213 providing MICs of 64–128 μg/mLT
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and 64 μg/mL, respectively. DeNo1040 also did not show
any hemolytic activity in our tests (HC50 > 128 μg/mL).
We note again that peptides in List B were predicted as
non-AMPs by AMPlify.

Among the 16 List C peptides tested, a total of 11 pep-
tides showed antimicrobial activity against E. coli ATCC
25922, with two of them additionally active against
S. aureus ATCC 29213 (Figure 4a). DeNo1049 displayed

moderate to high activity against E. coli ATCC 25922
(MIC = 4–8 μg/mL), which was the strongest in List
C. DeNo1057 was moderately antibacterial against E. coli
ATCC 25922 (MIC = 8–16 μg/mL), followed by
DeNo1051 (MIC = 16–32 μg/mL) and DeNo1046
(MIC = 16–64 μg/mL). DeNo1057 and DeNo1046 were
the only two List C peptides with antibacterial activity
against S. aureus ATCC 29213, though with low

FIGURE 4 In vitro validation results of the 58 selected putative AMPs. (a) Antimicrobial and hemolytic activities of the 40 peptides that

were active against at least one bacterial strain of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213. Antimicrobial and

hemolytic activities were measured by minimum inhibitory concentration (MIC) and concentration that lyses 50% (HC50) of the red blood

cells (RBCs), respectively. HC50 was determined using porcine RBCs. Data are presented as the lowest effective peptide concentration range

(μg/mL) observed in three independent experiments performed in duplicate, with one maximum data point and one minimum data point

dropped for each measurement. The three sections from left to right correspond to peptides with observable antimicrobial activity from List

A (n = 28), List B (n = 1), and List C (n = 11), respectively. Activity of the peptides was split into four levels: high (≤4 μg/mL), moderate (8–
16 μg/mL), low (32–128 μg/mL), and without observable activity (>128 μg/mL), as separated by different background colors in the plot.

(b) Stacked bar chart showing proportions of peptides that displayed antimicrobial activity with different sequence similarity levels to known

AMPs from Antimicrobial Peptide Database (APD3) (Wang et al., 2016) and Database of Anuran Defense Peptides (DADP) (Novkovi�c

et al., 2012). All similarity ranges are left-open and right-closed, and the sequence similarity of each candidate peptide to known AMPs was

considered as the sequence similarity of that sequence to its most similar known AMP sequence. (c) Visualization of antimicrobial activity of

the 58 tested peptides with respect to AMPlify (x-axis) and AMPd-Up (y-axis) scores. AMPd-Up scores of the same peptide sequences

generated by multiple model instances were averaged. Peptides without any observable antimicrobial activity are presented as gray crosses,

and the active peptides are presented as blue dots. Dots with darker colors indicate stronger antimicrobial activity against Escherichia coli

ATCC 25922, determined by the lowest MIC value of each peptide against the strain. AMP, antimicrobial peptide; RBC, red blood cell.
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activity (MIC = 32 μg/mL and 128 μg/mL, respectively).
None of the List C peptides displayed hemolytic activity
(HC50 > 128 μg/mL).

Among the peptides that did not show any antimicro-
bial activity against the bacterial strains tested, most of
them were also not hemolytic to the porcine RBCs except
DeNo1008 (HC50 = 16–32 μg/mL) and DeNo1039
(HC50 = 32–64 μg/mL) as shown in Table S1 in Data S1.

In summary, List A has the largest proportion
(73.68%) of putative AMPs observed with antimicrobial
activity in our tests, followed by List C (68.75%) and List
B (25.00%). Figure 4b presents the proportions of peptides
that were active against at least one of the bacterial
strains tested under different sequence similarity levels to
the known AMPs from APD3 (Wang et al., 2016) and
DADP (Novkovi�c et al., 2012). All six peptides between
sequence similarities of 70.00% and 90.00% to known
AMPs showed antimicrobial activity in our tests. The
largest proportion of the tested peptides fall between
sequence similarities of 60.00% and 70.00% to known
AMPs, with nine out of 20 sequences displaying antimi-
crobial activity. Interestingly, lower similarity intervals of
50.00%–60.00% and 40.00%–50.00% possess relatively high
proportions of antimicrobially active peptides with rates
of 75.00% (12/16) and 81.25% (13/16), respectively. More
than half (62.50%) of the peptides with antimicrobial
activity from our experiments fall into these intervals,
implying there is much to be explored in the sequence
space for novel AMPs. Figure 4c visualizes the distribu-
tion of the 58 tested putative AMPs with regard to
AMPlify scores and AMPd-Up scores. AMPlify score,
ranging from 0 to 80, is a prediction score reported by
AMPlify, which is a log transformation of the AMPlify
probability score pAMPlify as �10log10 1�pAMPlify

� �
. Con-

sidering the fact that multiple model instances may gen-
erate the same sequence but with different AMPd-Up
scores, the average was taken in the visualization for a
more comprehensive analysis. As evident in Figure 4c,
most of the peptides without any observable antimicro-
bial activity in our tests are located at the bottom left of
the figure, suggesting that it is a viable strategy to priori-
tize generative sequences with both high AMPlify and
AMPd-Up scores for in vitro validation assays.

3 | DISCUSSION

In the presented work, we introduce AMPd-Up, a tool for
de novo AMP sequence generation. AMPd-Up adopts an
RNN language model, sampling from multiple model
instances trained with different random initializations.
AMPd-Up is available online as an open-source tool at
https://github.com/bcgsc/AMPd-Up. Although the

architecture of our model is relatively simple compared
with existing methods, we show that simple models like
AMPd-Up can work well if properly trained. The simplic-
ity of our model architecture also brings with it lower
computational costs. Moreover, the sequences generated
by AMPd-Up are of high novelty compared with existing
AMP sequences in public databases, demonstrating the
ability of our model to learn high-level AMP features.

While AMPd-Up shows great promise and favorable
performance, the size of its training set is still relatively
small (2253 sequences) compared with that of many tra-
ditional machine learning tasks for broader sequence
data analysis, such as sentiment analysis or machine
translation, which typically use hundreds of thousands to
millions of data points for training available through pub-
lic databases (Khurana et al., 2023). Furthermore, AMPd-
Up does not take the strength of antimicrobial activities
(i.e., MIC values) into consideration during training. The
MIC values of an AMP against the same bacterial strain
may vary due to the differences in protocols utilized
across different laboratories (Schuurmans et al., 2009),
thereby diminishing the comparability of those values
within existing public AMP databases. We expect these
limitations to be gradually resolved as the ongoing dis-
covery and validation of AMPs is bringing more high-
quality and well-organized data, leading to further
improvement in de novo AMP sequence generation tools
like AMPd-Up.

Although the AMPd-Up-generated putative AMPs
have a considerable level of sequence diversity (Figure S3
in Data S1), we still noticed some patterns at the
sequence level. Analyzing a set of 20,000 generated
sequences, we observed that “LLKK” and “LKKL” were
the two most frequently occurring 4-mer motifs, appear-
ing in 44.09% and 40.73% of the generated sequences,
respectively. Previous studies have shown that synthetic
amphipathic alpha-helical peptides made up of repeat
units [LLKK]n or [LKKL]n have antimicrobial properties
(Khara et al., 2017; Wiradharma et al., 2011), which can
explain these findings to some extent. In fact, it is sug-
gested that repeats of 4-mer units such as these are
responsible for the formation of cationic amphipathic
alpha-helical structures, a key initiating step to the bioac-
tivity and membrane-disrupting properties of many
AMPs (Khara et al., 2017; Wiradharma et al., 2011).

Among the 58 novel putative AMP sequences gener-
ated by AMPd-Up, 40 showed antimicrobial activity,
15 of which were broadly antibacterial against both
Gram-positive and Gram-negative isolates. Promisingly,
one of the most active peptides, DeNo1007, not only pos-
sessed high antimicrobial activity against the two bacte-
rial strains tested, but was also without observable
hemolytic activity. We expect the AMP candidates
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generated by AMPd-Up to increase the diversity of
known peptide-derived antibiotics, currently populated
by mostly naturally occurring sequences, and to augment
the candidate set of potential alternatives to conventional
antibiotics. Although some of our putative AMPs did not
show any antimicrobial activity against the two bacterial
strains tested in vitro, they may still be active against
other bacterial species and/or possess unexplored modes
of action. Also, the structures of some AMPs may vary
based on their microenvironment (Cândido et al., 2019).
Further experimentation could be done to test candidate
sequences on a wider panel of bacterial species, to inves-
tigate the variances in their antimicrobial mechanisms
against bacteria with different membrane and cell wall
structures (e.g., Gram-positive vs. Gram-negative bacte-
ria), or to interrogate in vivo biological interactions.

Results from work like ours also have broader poten-
tial impact. Resistance to last-line peptide-based thera-
peutics, such as colistin and other polymyxins, is
increasingly being reported (Aghapour et al., 2019). Con-
cerningly, this is sometimes presented with cross-
resistance to multiple AMPs (Fleitas and Franco, 2016),
highlighting the need for multiple and diverse classes of
peptide-based antimicrobials. De novo AMP sequence
generation provides a rational solution to this problem,
as one would theoretically expect that pathogens would
be naïve to many of the diverse de novo generated AMPs.
Even though there may be natural AMPs similar to some
of the de novo generated ones, the vast sequence space of
amino acids (e.g., 1020 or one hundred quintillion for a
10-residue peptide sequence) virtually ensures that there
would be a practically infinite number of them out
there that are “new” to most common pathogens. Thus,
we expect high-throughput in silico AMP sequence design
tools like AMPd-Up to play a vital role in the fight
against antibiotic resistance and the imminent rise of
antibiotic-resistant bacteria.

4 | MATERIALS AND METHODS

4.1 | Training set

To get our RNN language model well trained, a curated
set of known AMP sequences are required to comprise
the training set. Our work primarily focused on AMPs
with direct antibacterial activity, a major function of most
known AMPs. We also limited the generated AMP
sequences to include only standard amino acids with a
maximum length of 50 aa, reflecting the fact that most
documented AMPs are relatively short (Zhang and
Gallo, 2016).

All antibacterial peptide sequences were downloaded
from APD3 (Wang et al., 2016) on March 20, 2019, a
manually curated and annotated database for AMPs. This
set of sequences contained 2571 AMP records with anti-
bacterial activity, 2276 of which were ≤50 aa long. After
removing duplicates and sequences with non-standard
amino acids, we ended up with a non-redundant set of
2253 antibacterial sequences ≤50 aa in length, forming
the training set for our RNN language model.

4.2 | Model architecture and
implementation

The implementation of the RNN language model was
adapted from the PyTorch online tutorial by Sean Robert-
son (Robertson, 2017), with PyTorch library 1.7.1 (Paszke
et al., 2019) in Python 3.6.7. During the training process,
cross-entropy was used as the loss function, and stochas-
tic gradient descent (Robbins and Monro, 1951) was
applied to optimize the model weights. We also adopted
dropout technique (Srivastava et al., 2014) to prevent
overfitting. The hyperparameters, which cannot be
learned directly from training, were tuned through strati-
fied five-fold cross-validation on the training set. The set
of hyperparameters for model architecture and training
settings with the lowest average cross-validation loss was
determined to be the optimal one to train the final
model.

Figure 1 shows the architecture of the RNN language
model, represented as a chain of repeating RNN cells.
Given the first N-terminal amino acid, the RNN language
model generates a peptide sequence residue by residue
until reaching the EOS signal. In this specific task of
AMP sequence generation, we set the maximum length
to be 50 and only the 20 standard amino acids are consid-
ered. Amino acids, together with the EOS signal, are
encoded as 21 distinct one-hot vectors, with xt �ℝ21

representing the t-th residue of a generated sequence. In
this task, a time step t is defined as the process of an
RNN cell predicting the tþ1ð Þ-th residue xtþ1 of a
sequence. At each time step t of the generation process,
the RNN cell takes the hidden state ht�1 from the previ-
ous time step and the predicted amino acid for the t-th
residue xt as input, and outputs a set of probabilities pt of
amino acid and EOS occurrence at the next position,
from which xtþ1 can be sampled. The hidden state
ht �ℝdh and probability vector pt �ℝ21 at each time step
are calculated as:

ht ¼Wh
xt
ht�1

� �
þbh,
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where Wh �ℝdh� dhþ21ð Þ, Wo �ℝ21� dhþ21ð Þ, and
Wp �ℝ21� dhþ21ð Þ are weight matrices, and bh �ℝdh ,

bo � ℝ21, and bp � ℝ21 are bias vectors. Here,
v1

v2

� �
denotes the concatenation of two vectors v1 and v2, and
the softmax function ensures that the probabilities sum
up to 1. The initial hidden state h0 is set to be a zero vec-
tor. We found the best tuned dh to be 128. A dropout rate
of 0.1 was applied before the softmax function during
training, and the training process was conducted with
100,000 iterations and a learning rate of 0.0005.

Predictions can be made by sampling from the output
probabilities of the RNN cells. The sequence generation
process stops if an EOS signal is predicted or if the maxi-
mum length is reached without EOS signal predicted.
Sequences generated in the former case are annotated as
“complete”, while those in the latter case as “incom-
plete”. AMPd-Up computes a confidence score when gen-
erating each sequence. The score is calculated as the
geometric mean of probabilities of all predicted symbols
in a sequence, including the EOS signal if the sequence is
complete. We refer to this score as the “AMPd-Up score”,
and we use it as a measure of confidence of the RNN lan-
guage model in generating a sequence. In AMPd-Up, the
model is trained multiple times with different random
initializations, yielding multiple model instances.

Given one of the 20 possible starting amino acids, the
symbol with the highest probability estimated at each
time step is taken as the next amino acid prediction
(including the EOS signal), resulting in a maximum of
20 candidate AMP sequences generated by a single model
instance. In a practical use case, the model will be trained
k times and the users would get a candidate AMP list of
up to 20k sequences. Assuming we have a non-convex
loss function like most neural network based tasks, dif-
ferent initializations may result in different trained
models (Fort et al., 2019), allowing different model
instances of AMPd-Up to capture slightly different
aspects of the complex but unknown features of AMPs.

4.3 | Model evaluation

In order to measure the performance of AMPd-Up in an
efficient and cost-effective way, we used the predictions
from three state-of-the-art in silico AMP prediction tools:
AMPlify (Li et al., 2022), AMP Scanner Vr.2 (Veltri

et al., 2018), and iAMPpred (Meher et al., 2017), as a
proxy for AMP sequence generation accuracy. These
AMP prediction tools determine whether an input pep-
tide sequence is an AMP or not. Here, the estimated
AMP sequence generation accuracy measured by a
selected prediction tool was calculated based on the per-
centage of peptide sequences predicted as AMPs among a
generated sequence set. A default setting of balanced
model was chosen for AMPlify (v1.1.0) as described in a
data note (Li et al., 2023), while the “original production
model” was chosen for AMP Scanner Vr.2 on its online
server (Veltri et al., 2018). Predictions by iAMPpred were
obtained through its online server with its trained model
as described in the publication (Meher et al., 2017).

We compared AMPd-Up with three other AMP
sequence generation methods with publicly available
models or generated sequences: the LSTM language
model (Nagarajan et al., 2018), AMPGAN v2 (Van Oort
et al., 2021), and HydrAMP (Szymczak et al., 2022). For
each method, a total of 2000 sequences were generated
for comparison in five batches. This resulted in five gen-
erated sequence sets of 400 sequences for each method.
Sequences for the LSTM language model were sampled
from the dataset the authors provided (Nagarajan
et al., 2018), while those for HydrAMP were obtained
through their online server (Szymczak et al., 2022) on
November 7, 2022. While all other methods focus on the
generation of antibacterial peptides, AMPGAN v2 addi-
tionally allows for generating AMP sequences of other
function types (e.g., antifungal, antiviral) and the gener-
ated sequences are annotated with their predicted func-
tions in the results (Van Oort et al., 2021). For a fairer
comparison, only AMPs targeting bacteria were selected
for AMPGAN v2. For each AMP sequence generation
method measured by each AMP prediction tool, the aver-
age estimated accuracy value of the five generated sets
was reported, along with the corresponding standard
deviation value.

In addition to the estimated sequence generation
accuracy, we evaluated the sequences generated by
AMPd-Up based on their amino acid compositions, phys-
icochemical properties, as well as their sequence similari-
ties to the training set and all publicly available known
AMPs. The same 2000 sequences generated by AMPd-Up
for performance comparison were used in these analyses.

The properties that cause a peptide sequence to have
antimicrobial activity are complex and the mechanisms
are still not well understood (Teimouri et al., 2021). Con-
sidering the fact that most known AMPs share common
characteristics of short lengths and net positive charges
(Zhang and Gallo, 2016), we focused on these two impor-
tant and easy-to-calculate physicochemical properties in
addition to an amino acid composition analysis.
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Moreover, sequence similarities of the
AMPd-Up-generated sequences to the training set were
calculated to evaluate whether the model instances cap-
ture high-level features of AMPs rather than only gener-
ating the same or highly similar sequences to the training
set. A similar comparison between the AMPd-
Up-generated sequences and all publicly available known
AMPs was done to evaluate the novelty of the generated
sequences compared with those known AMP sequences.
We note that the training AMPs are antibacterial, while
the known AMP sequence set additionally includes those
targeting microbes other than bacteria. The known AMP
sequence set comprises 4538 distinct sequences that were
downloaded from APD3 (Wang et al., 2016) and DADP
(Novkovi�c et al., 2012) on July 11, 2022 and December
6, 2018, respectively. The similarity between two

sequences was calculated as 1� di,j
max li, ljð Þ

� �
�100%,

where di,j is the edit distance and li, lj are lengths of the
sequences regarding the numbers of amino acid residues.
The similarity of a sequence to a set of sequences was
defined as the maximum of all similarity values calcu-
lated between that sequence and the sequences in the tar-
get set for comparison (i.e., the similarity of that
sequence to its most similar sequence in the target set).

4.4 | Selecting putative AMPs for
validation

To demonstrate the utility of our tool, we trained the
model 1000 times, yielding 1000 model instances
and 20,000 sequences, 14,188 of which were complete,
and 8737 of the complete sequences were distinct. The
trained models applied to generate the sequences for vali-
dation can be accessed at https://doi.org/10.5281/zenodo.
7905591 (Li and Birol, 2023). We define the “count” of a
sequence as the number of times it appears in the entire
generated set. We further filtered for short sequences
with lengths ≤35 aa and obtained 7434 pept ide
sequences, since shorter peptides are more cost-effective
for synthesis (Lin et al., 2022). We selected 58 of these
peptides using different strategies (forming Lists A, B,
and C), and validated their bioactivity through in vitro
experiments (Table 2).

The peptides comprising Lists A and B were chosen
following a strategy that stratifies the AMPd-Up score
range of 7434 sequences into same-length score intervals.
For n intervals, each interval can be written as a range
from aþ k�1ð Þ b�að Þ

n to aþ k b�að Þ
n , with k¼ 1,2,…,n and a,b

being the minimum and maximum AMPd-Up scores
investigated in the generated sequence set. In our case,

a¼ 0:1462 and b¼ 0:3579. All intervals are left-open and
right-closed, except the first one (k¼ 1) that is closed. If
multiple model instances generated the same sequence,
the AMPd-Up score from the first model that generated
this sequence was used for stratification. Peptides for List
A were sampled by splitting the AMPd-Up score range of
[0.1462, 0.3579] into 40 intervals, and the sequence with
top AMPd-Up score within each interval was chosen. List
B peptides were chosen by splitting the same AMPd-Up
score range into five intervals, and then selecting one pre-
dicted non-AMP (as assessed by AMPlify) in each interval
with the highest count, or with top AMPd-Up score if all
sequences have the same count in the interval. We note
that some intervals did not have any sequences, resulting
in 38 sequences in List A and 4 sequences in List
B. Additionally, 16 more peptide sequences that appeared
with high frequencies (≥40 in sequence counts) in the
generated set were selected as List C. All sequences in
Lists A and C were predicted as AMPs by AMPlify.
In Table 2, we also present the sequence similarity of
each sequence to the known AMPs, showing the novelty
of those sequences compared with the known AMP
sequences.

4.5 | Antimicrobial susceptibility testing

The antimicrobial activity of our selected peptides was
measured in the laboratory by broth microdilution assays
to determine the minimum inhibitory and minimum bac-
tericidal concentrations (MICs and MBCs, respectively)
as outlined by the Clinical and Laboratory Standards
Institute (CLSI) (Clinical and Laboratory
Standards Institute, 2015) with some adaptations for test-
ing cationic AMPs as described previously (Wiegand
et al., 2008). Laboratory isolates of E. coli 25922 and
S. aureus 29213 were purchased from the American Type
Culture Collection (ATCC; Manassas, VA, USA) and
were used to test the 58 selected putative AMPs. Bacteria
from frozen stocks were streaked onto non-selective
Columbia blood agar with 5% sheep blood (Oxoid) and
incubated for 18–24 h at 37�C. The following day, 2–4
colonies were streaked onto a new agar plate and incu-
bated for 18–24 h at 37�C to ensure uniform colony
health prior to the assay. A standardized bacterial inocu-
lum was prepared by suspending isolated colonies in
Mueller-Hinton Broth (MHB; Sigma-Aldrich, St. Louis,
MO, USA). The suspension was adjusted to an optical
density of 0.08–0.1 at 600 nm, equivalent to a 0.5 McFar-
land standard of approximately 1–2 � 108 CFU/mL
(CFU: colony forming units). The inoculum was then
diluted 1:250 to achieve a final concentration of
5 ± 3 � 105 CFU/mL. The target bacterial density was
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confirmed by examining the total viability counts from
the final inoculum.

Candidate AMPs were purchased from and synthe-
sized by GenScript (Piscataway, NJ, USA). These were
received in lyophilized format and stored at �20�C, and
were suspended in sterile ultrapure water prior to test-
ing. A two-fold serial dilution of 1280 down to 2.5 μg/
mL was prepared in sterile 96-well polypropylene
microtiter plates (Greiner Bio-One #650261, Krems-
münster, Austria) before the addition of 100 μL of the
standardized bacterial inoculum, providing a final AMP
testing range of 128 down to 0.25 μg/mL. The MIC
values were reported as the lowest peptide concentra-
tion where no visible bacterial growth was observed fol-
lowing a 20–24 h incubation at 37�C. For determination
of MBC, well contents of the MIC and the two adjacent
wells containing the two- and four-fold higher peptide
concentrations were plated onto non-selective nutrient
agar. The concentration in which 99.9% of the inocu-
lum were killed after an incubation for 24 h at 37�C
was reported as the MBC.

A known AMP Ranatuerin-4 (Goraya et al., 1998)
from the American bullfrog and an in-house peptide
[TKPKG]3 (OT15) were used as the positive and negative
control peptides, respectively. We note that OT15 was
truncated and derived from a negative control peptide
[TKPKG]4 (OT20), which, while not antimicrobial, shares
similar characteristics with AMPs and has been used in
previous studies (Horv�ati et al., 2017).

4.6 | Hemolysis assay

The toxicity of the selected peptides to RBCs was evalu-
ated by hemolysis experiments. Whole blood from
healthy donor pigs was purchased from Lampire Biologi-
cal Laboratories (Pipersville, PA, USA). RBCs were
washed and isolated by centrifugation using Roswell Park
Memorial Institute (RPMI) medium (Life Technologies,
Grand Island, NY, USA). All centrifugation steps were
performed at 500� g for 5 min in an Allegra-6R centri-
fuge (Beckman Coulter, CA, USA). Peptides were sus-
pended and serially diluted from 1280 down to 10 μg/mL
using RPMI medium in a 96-well polypropylene microti-
ter plate, and then they were combined with 100 μL of
the 1% RBC solution. This resulted in a final AMP testing
range of 128 down to 1 μg/mL. Following an incubation
at 37�C for 30–45 min, plates were centrifuged and a 1/2
volume from each supernatant was transferred to a new
96-well plate. The absorbance of the wells was measured
at 415 nm utilizing the Cytation 5 Cell Imaging Multi-
mode Reader (BioTek, CA, USA); the peptide concentra-
tion that lysed 50% of the RBCs (HC50) was used to

report the hemolytic activity. Absorbance readings from
wells containing RBCs treated with 11 μL of a 2%
Triton-X100 solution or RPMI medium (AMP solvent-
only) were used to define 100% and 0% hemolysis,
respectively.

AUTHOR CONTRIBUTIONS
Chenkai Li: Conceptualization; writing – original draft;
methodology; software; investigation; data curation; visu-
alization; formal analysis; writing – review and editing;
validation. Darcy Sutherland: Formal analysis; valida-
tion; investigation; writing – review and editing; method-
ology. Amelia Richter: Formal analysis; validation;
investigation; writing – review and editing; methodology.
Lauren Coombe: Formal analysis; writing – review and
editing. Anat Yanai: Formal analysis; validation; investi-
gation; writing – review and editing; methodology. René
L. Warren: Formal analysis; investigation;
writing – review and editing. Monica Kotkoff: Project
administration; writing – review and editing. Fraser
Hof: Conceptualization; funding acquisition;
writing – review and editing; supervision. Linda M. N.
Hoang: Conceptualization; funding acquisition;
writing – review and editing; supervision. Caren
C. Helbing: Conceptualization; funding acquisition;
writing – review and editing; supervision. Inanc Birol:
Conceptualization; funding acquisition; supervision;
methodology; software; formal analysis; investigation;
writing – review and editing.

ACKNOWLEDGMENTS
This work was supported by Genome BC and Genome
Canada [291PEP]. The content of this paper is solely the
responsibility of the authors, and does not necessarily
represent the official views of our funding organizations.
Additional support was provided by the Canadian Agri-
cultural Partnership, a federal-provincial-territorial initia-
tive, under the Canada-BC Agri-Innovation Program.
The program is delivered by the Investment Agriculture
Foundation of BC. Opinions expressed in this document
are those of the authors and not necessarily those of the
Governments of Canada and British Columbia or
the Investment Agriculture Foundation of BC. The Gov-
ernments of Canada and British Columbia, and the
Investment Agriculture Foundation of BC, and their
directors, agents, employees, or contractors will not be
liable for any claims, damages, or losses of any kind
whatsoever arising out of the use of, or reliance upon,
this information.

CONFLICT OF INTEREST STATEMENT
IB is a co-founder of and executive at Amphoraxe Life
Sciences Inc.

14 of 16 LI ET AL.



ORCID
Chenkai Li https://orcid.org/0000-0002-8748-0099

REFERENCES
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ,

Mahmood SS, Tanomand A, et al. Molecular mechanisms
related to colistin resistance in Enterobacteriaceae. Infect Drug
Resist. 2019;12:965–75. https://doi.org/10.2147/IDR.S199844

Antimicrobial Resistance Collaborators. Global burden of bacterial
antimicrobial resistance in 2019: a systematic analysis. Lancet.
2022;399(10325):629–55. https://doi.org/10.1016/S0140-6736
(21)02724-0

Boman HG. Antibacterial peptides: basic facts and emerging con-
cepts. J Intern Med. 2003;254(3):197–215. https://doi.org/10.
1046/j.1365-2796.2003.01228.x

Cândido ES, Cardoso MH, Chan LY, Torres MDT, Oshiro KGN,
Porto WF, et al. Short cationic peptide derived from Archaea
with dual antibacterial properties and anti-infective potential.
ACS Infect Dis. 2019;5(7):1081–6. https://doi.org/10.1021/
acsinfecdis.9b00073

Clinical and Laboratory Standards Institute. Methods for dilution
antimicrobial susceptibility tests for bacteria that grow aerobi-
cally: approved standard. Wayne, PA: Clinical and Laboratory
Standards Institute; 2015.

Das P, Sercu T, Wadhawan K, Padhi I, Gehrmann S, Cipcigan F,
et al. Accelerated antimicrobial discovery via deep generative
models and molecular dynamics simulations. Nat Biomed Eng.
2021;5(6):613–23. https://doi.org/10.1038/s41551-021-00689-x

Dean SN, Alvarez JAE, Zabetakis D, Walper SA, Malanoski AP.
PepVAE: variational autoencoder framework for antimicrobial
peptide generation and activity prediction. Front Microbiol.
2021;12:725727. https://doi.org/10.3389/fmicb.2021.725727

Donahue J, Krähenbühl P, Darrell T. Adversarial feature learning.
In: 5th International Conference on Learning Representations,
ICLR 2017 – Conference Track Proceedings. 2017.

Dumoulin V, Belghazi I, Poole B, Mastropietro O, Lamb A,
Arjovsky M, et al. Adversarially learned inference. In: 5th Inter-
national Conference on Learning Representations, ICLR 2017 –
Conference Track Proceedings. 2017.

Fleitas O, Franco OL. Induced bacterial cross-resistance toward
host antimicrobial peptides: a worrying phenomenon. Front
Microbiol. 2016;7:381. https://doi.org/10.3389/fmicb.2016.
00381

Fort S, Hu H, Lakshminarayanan B. Deep ensembles: a loss land-
scape perspective. arXiv. 2019. https://doi.org/10.48550/arXiv.
1912.02757

Gagnon M-C, Strandberg E, Grau-Campistany A, Wadhwani P,
Reichert J, Bürck J, et al. Influence of the length and charge on
the activity of α-helical amphipathic antimicrobial peptides.
Biochemistry. 2017;56(11):1680–95. https://doi.org/10.1021/acs.
biochem.6b01071

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, et al. Generative adversarial nets. In: Advances in Neu-
ral Information Processing Systems. 2014.

Goraya J, Knoop FC, Conlon JM. Ranatuerins: antimicrobial pep-
tides isolated from the skin of the American bullfrog, Rana
catesbeiana. Biochem Biophys Res Commun. 1998;250(3):589–
92. https://doi.org/10.1006/bbrc.1998.9362

Guo J, Lu S, Cai H, Zhang W, Yu Y, Wang J. Long text generation
via adversarial training with leaked information. In:

Proceedings of the AAAI Conference on Artificial Intelligence,
Long Text Generation via Adversarial Training with Leaked
Information. 2018.

Gupta A, Zou J. Feedback GAN for DNA optimizes protein func-
tions. Nat Mach Intell. 2019;1(2):105–11. https://doi.org/10.
1038/s42256-019-0017-4

Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.
9.8.1735

Horv�ati K, Bacsa B, Mlink�o T, Szab�o N, Hudecz F, Zsila F, et al.
Comparative analysis of internalisation, haemolytic, cytotoxic
and antibacterial effect of membrane-active cationic peptides:
aspects of experimental setup. Amino Acids. 2017;49(6):1053–
67. https://doi.org/10.1007/s00726-017-2402-9

Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classifica-
tion, design, application and research progress in multiple
fields. Front Microbiol. 2020;11:582779. https://doi.org/10.
3389/fmicb.2020.582779

Jukič M, Bren U. Machine learning in antibacterial drug design.
Front Pharmacol. 2022;13:864412. https://doi.org/10.3389/
fphar.2022.864412

Khara JS, Obuobi S, Wang Y, Hamilton MS, Robertson BD,
Newton SM, et al. Disruption of drug-resistant biofilms using
de novo designed short α-helical antimicrobial peptides with
idealized facial amphiphilicity. Acta Biomater. 2017;57:103–14.
https://doi.org/10.1016/j.actbio.2017.04.032

Khurana D, Koli A, Khatter K, Singh S. Natural language proces-
sing: state of the art, current trends and challenges. Multimed
Tools Appl. 2023;82(3):3713–44. https://doi.org/10.1007/
s11042-022-13428-4

Kingma DP, Welling M. Auto-encoding variational Bayes. In: 2nd
International Conference on Learning Representations, ICLR
2014 – Conference Track Proceedings. 2014.

Koo HB, Seo J. Antimicrobial peptides under clinical investigation.
Pept Sci. 2019;111(5):e24122. https://doi.org/10.1002/pep2.24122

Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL,
Sumpradit N, et al. Antibiotic resistance—the need for global
solutions. Lancet Infect Dis. 2013;13(12):1057–98. https://doi.
org/10.1016/S1473-3099(13)70318-9

Li C, Birol I. Model files of AMPd-up: a tool for antimicrobial pep-
tide sequence generation. Zenodo. 2023. https://doi.org/10.
5281/zenodo.7905591

Li C, Sutherland D, Hammond SA, Yang C, Taho F, Bergman L,
et al. AMPlify: attentive deep learning model for discovery of
novel antimicrobial peptides effective against WHO priority
pathogens. BMC Genomics. 2022;23:77. https://doi.org/10.
1186/s12864-022-08310-4

Li C, Warren RL, Birol I. Models and data of AMPlify: a deep learn-
ing tool for antimicrobial peptide prediction. BMC Res Notes.
2023;16:11. https://doi.org/10.1186/s13104-023-06279-1

Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, et al. Min-
ing amphibian and insect transcriptomes for antimicrobial pep-
tide sequences with rAMPage. Antibiotics (Basel). 2022;11(7):
952. https://doi.org/10.3390/antibiotics11070952

Meher PK, Sahu TK, Saini V, Rao AR. Predicting antimicrobial pep-
tides with improved accuracy by incorporating the composi-
tional, physico-chemical and structural features into Chou's
general PseAAC. Sci Rep. 2017;7:42362. https://doi.org/10.
1038/srep42362

Mikolov T, Karafi�at M, Burget L, Černocký J, Khudanpur S. Recur-
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