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Update on human herpesvirus 7 pathogenesis and clinical 
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ABSTRACT Human herpesvirus 7 (HHV-7) is a common virus that is associated with 
various human diseases including febrile syndromes, dermatological lesions, neurologi
cal defects, and transplant complications. Still, HHV-7 remains one of the least studied 
members of all human betaherpesviruses. In addition, HHV-7-related research is mostly 
confined to case reports, while in vitro or in vivo studies unraveling basic virology, 
transmission mechanisms, and viral pathogenesis are sparse. Here, we discuss HHV-7-
related literature linking clinical syndromes to the viral life cycle, epidemiology, and viral 
immunopathogenesis. Based on our review, we propose a hypothetical model of HHV-7 
pathogenesis inside its host. Furthermore, we identify important knowledge gaps and 
recommendations for future research to better understand HHV-7 diseases and improve 
therapeutic interventions.
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H uman herpesvirus 7 (HHV-7) is a ubiquitous CD4+ T-lymphotropic virus that was 
first isolated from peripheral blood lymphocytes of a healthy individual in 1990 

(1). As a member of the Herpesviridae family, Betaherpesvirinae subfamily, the DNA virus 
HHV-7 closely resembles human cytomegalovirus (HCMV or HHV-5) and even more so 
human herpesviruses 6A and 6B (HHV-6A and HHV-6B), here collectively referred to as 
“HHV-6” unless otherwise specified, with whom it shares the genus Roseolovirus. Along 
with the latter, primary HHV-7 infection is associated with childhood febrile syndromes, 
whether or not accompanied by a rash, classified as “the sixth disease” (2). Over 95% of 
human adults are HHV-7 seropositive due to prior infection and thus persistently infected 
with HHV-7 (3). Indeed, primary herpesvirus infection typically results in a persistent 
infection during which periods of latency are interspersed with periods of reactivation 
(4). Although HHV-7 infection is generally considered to be benign, an increasing 
number of studies link the virus to more severe clinical syndromes such as transplant 
complications and neurological defects. Still, the virus is one of the least studied human 
herpesviruses. Indeed, on March 6th, 2024, merely 904 full-text articles were found using 
the search term “HHV-7” in PubMed (https://pubmed.ncbi.nlm.nih.gov/), compared to 
3,932 items for “HHV-6” and 46,033 for “HHV-5.” The viral genome and particle structure 
(Fig. 1), including the major differences with those of HHV-6, and specific HHV-7-related 
clinical syndromes have been reviewed before (2, 5–8). However, a recent comprehensive 
overview of the viral pathogenesis and associated clinical manifestations is lacking. Here, 
we summarize the current state of knowledge on HHV-7 infection in humans to outline a 
hypothetical model for the viral pathogenesis and highlight areas for future research.

VIRAL LIFE CYCLE

Herpesviral entry in host cells is mediated by interactions between viral envelope 
glycoproteins and molecules on the cell membrane. This complex process is divided into 
the following three steps: (i) virion attachment to the cell surface, (ii) virion interaction 
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with a specific entry receptor, and (iii) virion internalization and membrane fusion. The 
studies of Black et al. (9) and Ablashi et al. (10) show transmission electron micrographs 
of these different steps during HHV-7 infection in lymphocytes. As illustrated in Fig. 2, 
HHV-7 initial adsorption to cells is likely mediated by the binding of viral envelope 
glycoproteins B and Q (gB and gQ) to cell-surface heparan sulfate proteoglycans (11, 12). 
Homologs of gB are found in all herpesviruses studied to date, but gQ is unique to HHV-6 
and -7. The 65 kDa HHV-7 gQ is translated from multiply spliced mRNA encoded by ORF 
U100 (12, 13). In HHV-6, two transcripts of the U100 gene are produced, gQ1 (80 kDa) and 
gQ2 (37 kDa) (14). Whether this is also true for HHV-7 ORF100 gene products is unknown. 
Following initial attachment, HHV-7 virions firmly anchor onto a cellular receptor 
subsequently triggering fusion of the viral envelope and cellular membrane. CD4 is the 
sole known receptor for HHV-7. Indeed, overexpression of CD4 permits HHV-7 entry in 
non-permissive cell lines, while blocking CD4 using monoclonal antibodies or HIV gp120 
inhibits HHV-7 entry (15–17). Still, additional unidentified cellular receptors likely also 
mediate HHV-7 entry, as the virus can productively infect cells lacking CD4 expression 
such as epithelial cells, endothelial cells, natural killer (NK) cells, megakaryocytes, 
dendritic cells, neurons, astrocytes, and oligodendrocytes (15, 16, 18–25). Notably, HHV-7 
binding and entry are independent of HIV co-receptors CXCR4 and CCR5 (26, 27). 
Moreover, a low or mere expression of CD4 is not sufficient for productive viral infection, 
as CD4+ HeLa, Jurkat, and THP1 cells do not support productive viral replication (15, 28). 
Whether these cells are not susceptible and do not support viral entry or are not 
permissive due to a block in viral replication is unknown. The putative viral ligand for 
CD4 is still unidentified, but plausible candidates are viral envelope glycoproteins gH, gL, 

FIG 1 Human herpesvirus 7 (HHV-7) particle structure and genome. (A) Schematic overview of the HHV-7 particle structure with indication of major viral 

components. (B) Schematic representation of the genome arrangement of HHV-7 based on the NCBI reference genome NC_001716.2. DRL (left), DRR (right): 

direct repeats. SCP: small capsid protein, pol: DNA polymerase, gB: glycoprotein B, gN: glycoprotein N, gO: glycoprotein O, gH: glycoprotein H, MCP: major capsid 

protein, kin: serine/threonine protein kinase, gM: glycoprotein M, gL: glycoprotein L, gQ: glycoprotein Q. Scale bars represent the number of base pairs. Figure 

made using BioRender.com.
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or gO (11, 17). Since fusion products between the extracellular domain of HHV-7 gB and 
the Fc domain of human immunoglobulin G heavy chain γ1 do not bind CD4+ T cells, gB 
likely does not engage CD4 (11). Co-expression of gB, gH, gL, and gO in HEK293T cells 
was necessary to induce membrane fusion and CD4 played a major role in this process, 
indicating that all four glycoproteins cooperate in the viral entry step (17). In general, 
herpesvirus gH and gL form a heterodimer complex that interacts with specific cell 
receptors which is then thought to induce a conformational change of the fusogen gB 
(pre- to post-fusion) to complete membrane fusion. In other betaherpesviruses (HCMV 
and HHV-6), gH/gL combines with additional viral envelope glycoproteins to form tri-, 
tetra-, and even pentamers to promote viral entry and provide receptor specificity (Table 
1) (29, 30). Thus, we could speculate that HHV-7 may interact with CD4 through the 
engagement of the gH/gL/gO complex, subsequently triggering membrane fusion with 
the help of gB (11, 17, 31, 32). Alternatively, gH/gL/gQ and gB binding to putative 
receptors might also trigger viral entry into host cells, but evidence is currently lacking. In 
comparison, HHV-6 employs the multiprotein complex gH/gL/gQ1/gQ2 to interact with 
its primary receptor CD46 and subsequently trigger fusion (14, 33, 34). Although highly 
speculative, HHV-7 gH/gL associated with either gO or gQ may even provide additional 
receptor specificity, as was suggested for HHV-6 (Table 1) (35). As such, HHV-7 could 

FIG 2 Hypothetical model of HHV-7 entry in host cells. Virus attachment to, binding to, and entry in host cells occurs through the engagement of viral ligands 

and host cell surface receptors (upper panel). Close-up of these different steps according to models proposed for CD4+ T cells and other cell types (lower panel). 

The figure was created using BioRender.com.
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employ gH/gL/gO for entry into CD4+ cells and gH/gL/gQ for entry into other cell types 
(Fig. 1).

Following herpesvirus de-envelopment, which may occur either at the plasma or 
endosomal membranes, the nucleocapsid and tegument proteins are released inside the 
cytoplasm. The nucleocapsid travels towards the nuclear membrane, where it releases 
viral DNA into the nucleus via the nuclear pore complex. In the nucleus, viral transcrip
tion is initiated and proceeds via a cascade-like manner typical for herpesviruses (36). 
First, immediate early (alpha) genes are transcribed which encode proteins necessary 
for the expression of early (beta) genes. Early (beta) gene products regulate viral 
DNA replication and orchestrate the transcription of the late (gamma) genes encoding 
multiple viral structural proteins (e.g., capsid, tegument, and envelope proteins) (36, 
37). Viral proteins are synthetized in the cytoplasm and capsid proteins reroute to the 
nucleus for assembly of capsids, prior to encapsidation of the viral DNA. The nucleocap
sid then travels via the inner and outer nuclear membrane into the cytoplasm (9, 38). 
Nucleocapsids become decorated with tegument proteins inside the cytoplasm and 
acquire their envelope by budding into the Golgi apparatus. In vitro viral replication 
in T cells induces a typical cytopathic effect (CPE) characterized by the development 
of ballooning degeneration and multinucleated giant cells. The giant cells arise from 
single infected cells undergoing a process of polyploidization and not from the fusion 
of cells into syncytia as described for other herpesviruses (39). The majority of these 
multinucleated cells undergo necrotic cell lysis releasing virions in the extracellular space 
and thus represent a major source of infectious particles (40). Whether virions can also 
exit their host cell through vesicle-mediated exocytosis, as described for HHV-6, is not 
known (41). The complete HHV-7 replication cycle takes 3 to 5 days to complete.

PATHOGENESIS INSIDE THE HOST

A hypothetical model for HHV-7 pathogenesis inside the human body is depicted in 
Fig. 3. Primary infection is established upon intake of virus-loaded bodily fluids. The 
exact portal of entry remains to be fully elucidated but most plausible candidates 
include the epithelial cells and/or CD4+ T lymphocytes and macrophages of the tonsils 
located in the oral and nasopharyngeal mucosa. As suggested for EBV, viral progeny 
propagated in epithelial cells may be able to infect immune cells more efficiently and 
vice versa, fueling primary HHV-7 infection (42). Next, HHV-7-infected immune cells can 
travel toward draining lymph nodes through the action of HHV-7 U12 and U51. Indeed, 
these chemokine receptor-like proteins have been shown to interact with chemokine 
receptor (CCR) 7 agonists, including secondary lymphoid-tissue chemokine (SLC) and 
EBI1 ligand chemokine (ELC), stimulating homing and trafficking of lymphocytes into 
and within secondary lymphoid tissues (43). Furthermore, these virally encoded putative 
chemokine receptors also engage CCR4 agonists including chemokine ligands (CCL) 
17 and CCL22 stimulating close interactions between T cells and T cells and macro
phages (44). These close interactions could enable cell-associated spread of HHV-7 
between neighboring cells, thereby avoiding the release of virus particles into the hostile 
extracellular environment.

TABLE 1 Comparison of viral ligands and cellular receptors implicated in attachment and entry of three major betaherpesviruses HCMV, HHV-6, and HHV-7a

HCMV HHV-6 HHV-7

Viral ligand Cellular receptor Viral ligand Cellular receptor Viral ligand Cellular receptor Reference

Attachment gB and gM/gN HSPGs gQ1/gQ2? HSPGs? gB and gQ HSPGs (11, 12)

Binding and 

entry

gH/gL/gO PDGFR-α gH/gL/gO Unknown gH/gL/gO? CD4 (11, 17)

gH/gL/pUL128/

pUL130/pUL131A

NRP2 gH/gL/gQ1/gQ2 CD46 (HHV-6A) and CD134 

(HHV-6B)

gH/gL/gQ Unknown Speculative

gB None, EGFR, PDGFRα, 

integrins

gB None or unknown gB None or unknown (17)

aThe former two have been extensively reviewed by Nishimura and Mori (30) and specific references are provided for HHV-7. HSPGs: heparan sulfate proteoglycans; 
PDGFR-α: platelet-derived growth factor receptor A; NRP2: neuropilin 2; EGFR: epidermal growth factor receptor; ?: research indicates, but does not prove, interaction.
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Migration of infected peripheral blood mononuclear cells (PBMCs) into the blood
stream can initiate the viremic phase. Whether these cells actively shed free virus 
particles in plasma is not known. A previous study showed that plasma-derived viral 
DNA rather originates from cell lysis and release of viral nucleic acids than from 
virions (45). In addition, the adaptive immune system would rapidly neutralize free 
virus particles, suggesting that HHV-7, like other herpesviruses, initiates a cell-associated 
viremia. Besides, based on the homology between the roseoloviruses, HHV-7 might be 
able to refrain from viral protein expression at the cell surface and together with other 
immune-evasive strategies be capable of decoying patrolling immune cells in the blood 
and lymph system, as has been described for HHV-6.

HHV-7 disseminates to other parts of the body during the viremic phase. Immuno
histochemistry studies show that HHV-7 can infect cells that are morphologically and 
phenotypically distinct from lymphocytes (e.g., dendritic and epithelial-like cells) in 
multiple tissues including lungs, skin, mammary glands, liver, and kidney (18, 24, 46). 
Whether productive HHV-7 replication takes place at these secondary sites is not known.

During primary infection and the viremic phase, a majority of infected immune cells 
will eventually succumb to infection, while other infected immune cells may be “saved” 
by HHV-7 to function as a life-long latency reservoir (40, 47). These cells still harbor 
viral DNA but do not produce viral transcripts or viral progeny. In line with this, viral 
DNA, but not viral transcripts, is frequently recovered from PBMCs of healthy individuals 
(37). Since resting T cells rarely shed infectious progeny, it is believed that these cells 

FIG 3 Hypothetical model of HHV-7 pathogenesis inside the human body. HHV-7 transmission (infection and shedding) occurs at the level of the oropharynx 

and salivary glands (left panel). HHV-7 disseminates to multiple organs inside the host. The gradient color (purple) indicates low to high evidence for HHV-7 

detection in this organ, tissue, or bodily fluid (right panel). The figure was created using BioRender.com.
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act as a latent reservoir (9, 48). Viral reactivation may occur in case infected T cells 
become activated, as cognate antigen stimulation results in the onset of HHV-7 lytic 
replication and release of infectious virus particles (1, 9, 48, 49). Given their susceptibility 
to HHV-7 and their proven involvement in HCMV and HHV-6 latency, myeloid cells such 
as dendritic cells and monocytes could potentially also act as a site of latent infection (4, 
24, 25, 50). Periodic reactivation allows the virus to transfer the infection to new hosts 
or fuel latency reservoirs within a host. In comparison with other herpesviruses, HHV-7 
reactivation typically occurs during periods of immune suppression (51, 52). Still, HHV-7 
reactivation does not always co-occur with immune suppression, as the virus is often 
detected in healthy individuals (18, 19, 53–64). How the virus exactly transfers infection 
from immune cells to salivary glands to shed viral progeny into the outer environment 
is currently unknown. As for EBV, infected leukocytes might reroute to the oro-respira
tory tract and produce virions spiked with specific envelope glycoproteins (42, 65). For 
instance, gH/gL/gQ-pseudotyped virus particles might then be efficiently transferred to 
(salivary gland) epithelial cells, which could amplify the infection and shed a high viral 
load in salivary secretions to infect new hosts. Given the homology of U12 and U51 to 
HCMV U28, a CX3CR1 mimicker that binds fractalkine, fractalkine expression on salivary 
gland epithelial cells may additionally enhance virion-cell binding and thus the transfer 
of infection (66). However, Latchney et al. (67) could not identify a correlation between 
HHV-7 infection and fractalkine expression in human salivary glands, suggesting that 
fractalkine is not a prerequisite for HHV-7 infection. The majority of cell types residing in 
the salivary gland epithelium are susceptible to HHV-7, including ductal, cuboidal, and 
columnar epithelial cells as well as mucous and acinar cells (18, 19, 58, 68).

Multiple researchers suggest that besides the typical periods of herpesvirus latency 
and reactivation, HHV-7 may adopt a state of persistent infection. The high frequency at 
which HHV-7 is detected in saliva and salivary gland cells would indicate that persis
tent HHV-7 infection is established in the mouth (18, 19, 53–64). Still, there is no hard 
evidence for this hypothesis, as it may also be that reactivation events leading to transfer 
infection at the level of the salivary glands happen more frequently for HHV-7 compared 
to other herpesviruses.

IMMUNE EVASION MECHANISMS

Over years of co-evolution with their respective host, herpesviruses have mastered 
various strategies to persist in an immunocompetent host population. The large 
herpesviral genome (145 kilobase pairs for HHV-7) consists of more than a hundred 
different genes providing an arsenal of viral proteins and noncoding RNAs to counteract 
the host immune system (69).

One of the most successful immune evasion mechanisms and hallmark of all 
herpesviruses is the establishment of a lifelong latency in their host following primary 
infection. Except for transcription of latency-associated genes, latent virus shuts down 
the transcription of its genome, allowing the virus to stay hidden from the host’s immune 
surveillance. Upon primary infection, HHV-7 genomes are maintained as episomes in the 
nucleus of latently infected cells such as resting T cells (20, 37, 48). As described for other 
betaherpesviruses, HHV-7 may also be able to establish latency in bone marrow-derived 
hematopoietic progenitor cells (70, 71). The latent stage is sporadically interrupted by 
periods of lytic replication in a subset of latently infected cells, during which infectious 
progeny is produced. In turn, this may be transmitted to new hosts or used to restock 
sites of latent and/or persistent infection. This so-called viral reactivation arises from 
changing host factors promoting cell differentiation or activation. For instance, T-cell 
activation and inhibition of apoptosis facilitate the onset of HHV-7 lytic replication (48, 
49). The activation state of T cells likely primes HHV-7 genomes for transcription either 
by stimulation of cellular transcription factors and/or inhibiting histone deacetylases 
(HDAC) which unwrap chromatin.

Another common herpesvirus strategy HHV-7 utilizes is the downregulation of class 
I major histocompatibility complex (MHC I) surface expression to avoid cytotoxic T 
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lymphocyte (CTL)-mediated killing of infected cells. To do so, the viral protein U21 
associates with class I MHC molecules and a putative Golgi membrane protein or 
adaptor protein resulting in the sorting of these complexes to lysosomes, where they 
are degraded (72–78). Cells with reduced MHC I expression at the plasma membrane 
are normally recognized and cleared by host NK cells. However, HHV-7 circumvents 
NK-induced cell lysis by simultaneously rerouting NK-activating ligand UL-16 binding 
protein 1 (ULBP1) to the lysosomal compartment through the action of the same 
immune-evasion protein U21. In addition, U21 downregulates surface expression of the 
NK-activating ligands MHC class I polypeptide-related sequences A and B (MICA and B), 
resulting in the escape from NK-mediated cytotoxicity (79). Finally, U21 downregulates 
MHC class II proteins, additionally aiding HHV-7 in escaping helper immune cells (77). 
Notably, the host responds to HHV-7 infection by upregulating IL-15 production, which 
then results in an enhancement of NK cell activity (80). This is a neat example of the 
evolutionary arms race between host and virus, where each must counteract the other.

The onset of an adequate immune response may additionally be hampered by 
the function of HHV-7 U12 and U51 gene products. These viral proteins act as che
mokine receptors that may divert chemokines from their natural ligands subverting a 
local immune response (43, 81, 82). Furthermore, viral replication induces apoptosis in 
bystander cells through the release of danger signals. For instance, HHV-7-infected cells 
upregulate the expression of TNF-related apoptosis-inducing ligand (TRAIL) inducing 
a cytopathic effect on adjacent bystander cells via activation of the TRAIL signaling 
pathway (47). Conversely, HHV-7-infected cells show a marked decrease in surface 
TRAIL-receptor 1 (TRAIL-R1) expression, thereby avoiding TRAIL-mediated cytotoxicity 
(47). This favors the survival of infected T cells while neighboring immune cells that may 
sense the virus are killed, enabling the virus to persist in its host. Even though these 
HHV-7-infected CD4 T cells are rescued from apoptosis, virus-induced changes perturb 
the proper immune functions of CD4 cells. For instance, HHV-7 replication in CD4+ T cells 
is accompanied by a downregulation of CD4, CD3, and CXCR4 (27, 83–85). As such, as 
for HIV, the viral tropism for CD4 T cells itself may act as an immune-evasive strategy 
by reducing the repertoire of helper T cells via lytic replication and other immunomodu
latory effects eventually causing immunodeficiency (40, 80).

Finally, direct cell-to-cell spread is another major strategy for HHV-7 to bypass the 
hostile extracellular environment, which contains phagocytes, antibodies, and comple
ment. Indeed, the virus is best spread via cell-cell contact which may be facilitated by 
U54, as described for HHV-6 (10, 86).

EPIDEMIOLOGY

HHV-7 specifically infects humans and is common throughout the globe. Specific IgG 
antibodies against HHV-7 can be found in over 90% of the adult human population 
(3). As for other herpesviruses, primary HHV-7 infection occurs most commonly in early 
childhood and lifelong persistence of the virus via a combination of latency and ongoing 
active replication in salivary glands enables the maintenance of a robust immune 
response for the life of the host (87). Young children become newly seropositive during 
the decline in maternal antibodies, with approximately 18%–43% of children becoming 
seropositive within the first year of life. By the second year, this proportion increases 
to 53%–67%, and by the third year, a substantial majority of children, approximately 
93%, have acquired specific antibodies to HHV-7 (3, 88–91). Prevalence rates based 
on antibody detection are almost universal throughout the world (92, 93). One study 
reported that seasonal (autumn) and ethnicity factors (Black race) were associated 
with a higher prevalence of anti-HHV-7 antibody detection in children (94). However, 
antibody prevalence does not necessarily correlate with active HHV-7 infection and other 
characteristics associated with socioeconomic status may also have confounded these 
results.

HHV-7 infection mainly spreads via infectious bodily fluids such as saliva and 
respiratory secretions. Interestingly, an estimated 55% to 90% of people shed infectious 
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HHV-7 intermittently in saliva (18, 19, 53–57, 59–64). This might imply that HHV-7 rather 
establishes a persistent active infection instead of the typical herpesvirus latency state or 
that the virus repeatedly reactivates from latency in certain anatomical sites like salivary 
glands and tonsils (18, 19). Children can acquire the virus from their parents, siblings, 
or other children (95). Although it has not been proven, mother-to-child transmission 
may occur during birth or through breast milk. HHV-7 DNA has been detected in breast 
milk samples and viral proteins have been found in mammary glands (18, 96). However, 
antibodies to HHV-7 in breast milk may also protect against infection since breastfeed
ing has been associated with a lower risk of early acquisition of HHV-7 infection (94). 
Furthermore, HHV-7 DNA has been detected in 3%–10% of cervical swabs obtained from 
women in their third trimester of pregnancy, but from none of the swabs of non-preg
nant control women, suggesting that pregnancy may be associated with reactivation 
of HHV-7 (97–99). Still, it is unclear whether perinatal transmission can occur through 
contact with infected maternal secretions, and neonatal infections with HHV-7 have 
not been reported to date (100). Urine and stool only sporadically contain traces of 
HHV-7 DNA and are thus unlikely to be a source of transmission (53–55, 101, 102). 
Finally, HHV-7’s T-lymphotropic character and occasional presence in plasma suggest the 
possibility of viral transmission during blood transfusions or organ transplantations, but 
well-documented case reports or series are missing (103–105).

CLINICAL MANIFESTATIONS

It is often difficult to identify direct causality between herpesviruses and clinical 
manifestations due to the ubiquitous nature of herpesviruses and their capacity to 
induce a lifelong infection where only certain individuals experience problems either 
through direct cytopathology or by triggering a pathological immune response (87). 
Therefore, we have used a set of criteria based on the revised postulates of Koch that 
were suggested by Komaroff et al. (106), to evaluate associations between HHV-7 and 
different clinical manifestations (Tables 2 and 3).

Dermatological diseases

HHV-7 has been linked to a number of dermatological diseases, although its role in the 
pathophysiology of these illnesses is not fully understood.

HHV-7, like HHV-6, has a proven association with roseola infantum, also known as 
exanthem subitem or sixth disease, although HHV-7 is less frequently linked to the 
disease compared to HHV-6 (102, 107, 108, 128, 129). Exanthem subitum is a common 
childhood illness that mostly develops before the age of 3 and is non-discriminatory 
in gender and location. Around 50% of HHV-7 infections in children induce exanthem 
subitem and symptoms vary from absence to a fever and/or a rash that lasts one to 
several days (128, 129). The rash is characterized by non-pruritic papules and macules 
and typically starts on the trunk and can spread to the neck, extremities, and face. 
Other symptoms include anorexia, leukopenia, mild diarrhea, palpebral edema, mild 
inflammation of the pharynx, and mild occipital and cervical lymphadenopathy. Serious 
complications are rare but may include febrile seizures and/or status epilepticus (89, 
138). Febrile seizures occur in 2%–5% of children younger than the age of 5 and around 
7% of these cases can be linked to HHV-7 viremia (108, 138). For HHV-6, these febrile 
seizures have been linked to a dysfunctional blood-brain barrier caused by virus-induced 
rises in serum matrix metalloproteinases (171). Whether this also occurs during HHV-7 
infection has not been studied. Most cases of roseola infantum improve on their own. 
Virus replication in the naso- and oropharynx and/or draining lymph nodes along 
with the viremic phase account for most symptoms. Histopathological examination of 
viral exanthem usually shows normal epidermis with sparse perivascular infiltration of 
lymphocytes and/or vasculitis (172).

As shown in Table 2, a more debated association of both HHV-7 and HHV-6 is pityriasis 
rosea, a common skin rash with a prevalence of 1.3% that typically occurs in young 
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adults, usually lasts less than 3 months and disappears without treatment (109, 110, 113–
115, 130, 173). The condition often starts with a single, slightly raised, scaly patch called 
the “herald patch” on the torso, followed by the appearance of smaller similar patches on 
the torso and extremities. HHV-7 antigens and DNA have been detected in up to 83% of 
skin lesions of pityriasis rosea and to a lesser extent in other dermatites (109–111, 117, 
174, 175). Furthermore, higher viral loads in PBMCs and/or plasma are observed in cases 
of pityriasis rosea compared to controls. However, viral DNA and antigens can also be 
retrieved from non-lesional skin or control subjects, and it is not always easy to distin
guish latent from active viral replication (110, 113, 174). Therefore, the exact role of 
HHV-7 in the pathogenesis of pityriasis rosea is still up for debate. An association seems 
likely, but the etiologic mechanism remains unknown.

The presence of HHV-7 has also been linked to several other dermatitis includ
ing atypical exanthems (116), papular purpuric gloves and socks syndrome (PPGSS) 
(116–118, 131), drug-induced hypersensitivity syndrome (DIHS) or drug reaction with 
eosinophilia and systemic symptoms (DRESS) (119–123, 133), immune-mediated toxic 
epidermal necrolysis (124, 133), and lichen planus (24, 46, 125–127). The extent to which 
HHV-7 infection directly contributes to these syndromes acts as an exogenous antigen 
in immune reactions, or if HHV-7 reactivation is simply a side reaction to the disease 
remains largely unknown (Table 2).

Neurological disorders

As described above, seizures are not an uncommon complication of HHV-7 infection and 
are often associated with viral-induced high fever (i.e., febrile seizures) (89, 128, 139, 141, 
142). Congruent with febrile seizures, HHV-7 viremia has also been associated with febrile 
status epilepticus (138). One study also linked the presence of HHV-7 DNA and antigens 
in the brain to inflammatory-mediated hippocampal sclerosis and drug-resistant epilepsy 
(166). Other neurological disorders such as encephalitis, meningitis, myelitis, cerebellitis, 
neuritis, and meningo- or myeloradiculopathy (e.g., Guillian Barré syndrome) have also 
been observed during ongoing HHV-7 infection (6, 128, 129, 139–141, 143–158, 160–165, 
167, 168, 170). In most cases, CNS manifestations ranging from nausea, sensitivity to 
light, and a stiff neck to ataxia and paralysis were accompanied by the detection of 
HHV-7 nucleic acids in cerebrospinal fluid (CSF) and/or synthesis of intrathecal anti-
HHV-7 antibodies (6, 129, 140, 141, 143–158, 160–164, 167, 168). Of note, HHV-7-specific 
antibodies or DNA were usually not accompanied by the presence of other viral DNA 
or antibodies, ruling out potential leakage through the blood-brain barrier (BBB) and 
indicating that HHV-7 can invade the nervous system. In addition, multiple studies 
have detected HHV-7 DNA and antigens in the brains of persons with and without 
neurological pathologies (22, 153, 159, 166, 169). More precisely, HHV-7 DNA has been 
retrieved from the meninges (dura mater and pia mater) (159), frontal lobe (22, 159, 
169), temporal lobe (22, 159, 169), occipital lobe (169), parietal lobe (169), hippocampus 
(159, 166), olfactory tract (159), optic tract (159), cerebellum (169), and brain stem (153). 
Viral proteins have been reported in astrocytes, oligodendrocytes, as well as neurons 
(22, 166). How exactly HHV-7 reaches the brain parenchyma is unknown, but this 
presumably occurs either via retro- and anterograde viral transport through peripheral 
nerves (e.g., olfactory or optic tract) or via the vascular system where the virus passes 
through the BBB either cell-free or cell-associated. Upon reaching the nervous system, 
local viral replication with accompanying damage and/or vasculitis accompanied by a 
focal impairment of blood flow can cause neurological damage resulting in neurological 
disease. Alternatively, as an exogenous antigen, HHV-7 may also be a pathological factor 
in the development of immune-related neurological damage.

The above-described case studies suggest, but do not prove, a neurotropic and 
neuropathogenic potential of HHV-7 (Table 3). Still, unlike HHV-6, HHV-7 is not a common 
cause of encephalitis and in vitro replication in neuronal cell lines has not been repor
ted (176). The development of neurological disease is likely multifactorial depending 
not only on the viral strain but also on host factors such as age and immune status. 
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As described for other herpesviruses, primary HHV-7 infections delayed into adoles
cence might cause more severe neurological diseases than those occurring in early 
childhood (140, 143, 144, 147, 149, 155, 168). This is because the aggressive inflamma-
tory response produced by a more mature immune system can paradoxically lead to 
more tissue damage. Conversely, the inability of the immune system to locally contain 
HHV-7 infection in immunocompromised individuals [e.g., corticosteroids, chemother
apy, transplantation, human immunodeficiency virus (HIV) infection] also predisposes 
patients to more severe neurological diseases (153, 154, 160, 163, 164).

Other clinical associations

HHV-7 infection has been linked to various clinical syndromes not only in individuals 
undergoing transplantations but also in non-transplant settings.

Transplantations are preceded by aggressive conditioning regimens that deplete 
existing bone marrow and immune cells. Suppression of the recipient’s immune system 
is necessary to maximize the chances of engraftment and long-term function of 
the transplanted organ or cells. As stated above, immune suppression may evoke 
reactivation events of endogenous herpesviruses or predispose patients to acquiring 
(re)infections from infected individuals or even donor transplants. HHV-7 reactivation 
or (re)infection has been linked to various complications in transplant recipients with 
or without other concomitant infections, including CNS disease (see above), hepatitis, 
bronchiolitis, pneumonia, transplant rejection, and CMV disease (177–183). These case 
studies have associated HHV-7 with transplant complications based on the detection of 
HHV-7 DNA in either the blood or CSF of the patients but do not describe the underlying 
mechanisms. Furthermore, the exact incidence of specific HHV-7-induced transplant 
complications remains uncertain.

HHV-7 infection has also been implicated in diverse clinical syndromes beyond the 
context of transplantations and in immunocompetent hosts, including mononucleosis-
like illnesses (184–187), acute respiratory distress syndrome and interstitial pneumo
nia (188, 189), hepatitis (190), myocarditis (191, 192), fibromyalgia (193), connective 
tissue disease (194), and periodontitis (195). In these case studies, HHV-7 diagnosis 
was based on seroconversion and/or detection of HHV-7 DNA in several anatomical 
compartments (blood, lungs, BAL, liver biopsies, etc.). Still, whether the viral DNA derives 
from circulating blood-derived PBMCs or tissue-resident cells is unclear. Currently, the 
causative role of HHV-7, either alone or in conjunction with other viruses/factors, in 
causing these syndromes, remains solely speculative, as proving causation remains 
complicated, partially due to the regular detection of HHV-7 in healthy people.

CONCLUSIONS, KNOWLEDGE GAPS, AND RECOMMENDATIONS FOR FUTURE 
RESEARCH

Despite its initial identification in 1990, HHV-7 remains an understudied herpesvirus 
ominously present in the human population. HHV-7, like other herpesviruses, typi
cally presents minimal or no issues when acquired naturally during early childhood 
and remains in a state of equilibrium with its host. However, a slight disruption in 
this equilibrium, such as delayed infections occurring during adolescence or immune 
suppression, can shift the balance toward a more pronounced and severe clinical 
outcome. Still, little is known about the etiological nature of most of these manifesta
tions. To better understand the critical interplay between virus and host, we need to 
gain more insights in viral pathogenesis. More precisely, studies should investigate how 
and where HHV-7 replicates and hides inside its host and how the host immune system 
responds to incoming viruses. This information could reveal triggers of specific clinical 
syndromes of severe HHV-7-induced manifestations, leading to the identification of new 
cures, treatments, and/or prevention strategies, ultimately benefitting patients.

One of the major limitations in HHV-7 research is the species-specific nature of 
HHV-7 and thus the lack of suitable in vivo models to study the viral pathogenesis. 
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Unfortunately, well-controlled inoculation experiments in naïve hosts cannot be tested 
ethically in patients and, therefore, we must rely only on case series and in vitro models. 
Still, case studies lack a well-controlled experimental setup where the early phase of 
infection has usually already passed upon clinical presentation, and invasive sampling 
to study viral dissemination simply cannot be done. Furthermore, the complex inter
play between HHV-7-infected and neighboring cells in a 3D environment, as well as 
the inflammatory processes triggered by HHV-7 cannot be accurately recapitulated in 
vitro. Still, there are solutions and alternatives to explore HHV-7 pathogenesis in animal 
models. First, as for HIV, a humanized mouse model in which human immune cells 
are engrafted could potentially be used to study HHV-7 infection, as described for 
HHV-6 (196). Notably, viral transfer between different anatomical compartments cannot 
be replicated in the latter model, since non-immune cells (e.g., neurons and epithelial 
cells) remain mouse-derived and might not support viral replication. Inoculating mice 
with a mouse-specific roseolovirus closely related to HHV-6 and HHV-7 (e.g., murine 
roseolovirus or MRV) might be an interesting substitute to broaden insights into HHV-7 
immunopathogenesis (197). Similarly, murine CMV is used to mimic HCMV pathogene
sis in mice (198). Alternatively, pigtailed macaque roseolovirus or Macaca nemestrina 
herpesvirus 7 (MneHV7) is another roseolovirus that even more closely resembles HHV-7 
than MRV and could be used to infect non-human primates (199). Besides in vivo models, 
ex vivo models where a 3D architecture between different cell types is reconstructed, 
(e.g., explant, organoid, transwell, and trichamber models) could also partly mimic 
the interplay between epithelial cells and immune cells or even construct segmented 
environments between different cell types to study viral transfer infection (200, 201).

Finally, our review also identified many knowledge gaps in the HHV-7 life cycle, 
especially the entry step. With the rise of versatile gene-editing tools such as CRISPR-
Cas9, new viral mutants, and cellular gene knockouts could more easily be generated 
to further unravel these steps (200). Identifying additional receptors might, for instance, 
provide new targets for cure interventions in severe clinical manifestations related to 
HHV-7 infection (e.g., neurological disorders and transplant complications).

Together, HHV-7 has been associated with a variety of clinical syndromes suggesting 
it has a broader impact on human health than previously thought. However, new ex 
vivo and in vivo experiments are urgently needed to broaden our insights into the viral 
pathogenesis and find new intervention strategies.
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