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B cells in perivascular and peribronchiolar granuloma-
associated lymphoid tissue and B-cell signatures identify 
asymptomatic Mycobacterium tuberculosis lung infection in 
Diversity Outbred mice
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ABSTRACT Because most humans resist Mycobacterium tuberculosis infection, there is 
a paucity of lung samples to study. To address this gap, we infected Diversity Outbred 
mice with M. tuberculosis and studied the lungs of mice in different disease states. After a 
low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease 
within 60 days, while controllers maintained asymptomatic infection for at least 60 
days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more 
than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by 
applying computational and statistical approaches to multimodal data sets. Cytokines 
and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers 
with chronic pulmonary TB but could not classify mice with asymptomatic infection. 
However, a novel deep-learning neural network trained on lung granuloma images was 
able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in 
progressors vs chronic pulmonary TB in controllers, and discrimination was based on 
perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was 
rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we 
expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the 
significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, 
Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the 
perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis 
infection. Together, these results indicate that genetically controlled B-cell responses are 
important for establishing asymptomatic M. tuberculosis lung infection.

KEYWORDS tuberculosis, Mycobacterium tuberculosis, Diversity Outbred mice, 
host-pathogen interactions, immunity

T uberculosis (TB) is a globally important disease. Over 2 billion people harbor 
infection with Mycobacterium tuberculosis, resulting in 9–10 million new TB cases 

and 1.6 million deaths (1). Humans respond variably to M. tuberculosis infection, ranging 
from extreme susceptibility to extreme resistance. Only 5%–10% of infected adult 
humans develop lung disease, very rarely developing acute fulminant TB and commonly 
developing post-primary TB, a destructive lung disease that can wax and wane (2–5). 
Most humans are highly resistant to M. tuberculosis and clear bacilli by innate immun­
ity (6) or restrict bacillary growth by adaptive immunity and maintain asymptomatic 
latent M. tuberculosis infection (7). Severe immune deficiency, malnutrition, vitamin D 
deficiency, diabetes, extreme age, smoking, illicit drug use, and co-infections are known 
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risk factors for pulmonary TB. However, the presence of these risk factors does not fully 
explain susceptibility, and absence does not fully explain resistance (8–11).

Additional factors, such as genetically controlled immune and inflammatory 
responses, contribute to resistance and susceptibility to M. tuberculosis (12, 13). Large 
effects due to host genetic background have been shown in immune-competent mice 
by using panels of Collaborative Cross inbred mouse strains (14, 15) and by using the 
Diversity Outbred mouse population (16–18). We and others have shown that aerosol­
ized M. tuberculosis causes severe, acute necrotizing inflammation that fails to restrict M. 
tuberculosis growth in ~30% of Diversity Outbred mice, and these progressors succumb 
to acute pulmonary TB within 60 days (16, 18, 19). The remaining ~70% of Diversity 
Outbred mice survive longer, have significantly lower levels of acute inflammation, and 
develop non-necrotizing lung granulomas that better restrict M. tuberculosis (16, 18, 20, 
21).

Previously, we used multiple approaches to study progressors, including granuloma 
analysis, transcriptional profiling, statistical analyses, and machine learning methods 
to find and validate biomarkers (18, 22). We developed and validated a weakly super­
vised, attention-based, multiple instance learning model that automatically diagnosed 
progressors with high accuracy (91.50% ± 4.68%) from digital granuloma images. 
Furthermore, post hoc visual examination by board-certified pathologists confirmed 
that the imaging biomarker of progressors was human interpretable and corresponded 
to pyknotic nuclear debris within granulomas (23). Transcriptional analyses identified a 
neutrophil-associated inflammatory lung signature in progressors, which subsequently 
led to discovery and validation of diagnostic biomarkers for pulmonary TB, one of 
which (the neutrophil chemokine, serum CXCL1) met the World Health Organization’s 
diagnostic criteria for a triage test in human sera (22).

Here, we extend that work by showing the culmination of large survival studies 
lasting nearly 2 years and novel approaches to uncover features of asymptomatic 
resistance to M. tuberculosis in Diversity Outbred mice.

MATERIALS AND METHODS

Mice

Female Diversity Outbred mice (4–5 weeks old; n = 1,009) from generations 15, 16, 
21, 22, 34, 35, 37, and 42 were purchased from The Jackson Laboratory (Bar Harbor, 
ME, USA) and group housed (n = 5–7 mice per cage) on Innovive (San Diego, CA, 
USA) or Allentown Inc (Allentown, NJ, USA) ventilated, HEPA-filtered racks in the New 
England Regional Biosafety Laboratory (Tufts University, Cummings School of Veterinary 
Medicine, North Grafton, MA, USA). The light cycle was 12 hours of light and 12 hours 
of dark. Disposable caging was purchased sterile, and re-usable caging was autoclaved 
prior to use. All cages were lined with sterile corncob bedding and sterile paper nestlets 
(Scotts Pharma Solutions, Marlborough, MA, USA). Cages were changed at least every 
other week. The mice were provided with sterile mouse chow (Envigo, Indianapolis, IA, 
USA) and sterile, acidified water ad libitum.

M. tuberculosis aerosol infection

At 8–10 weeks old, the mice were infected with aerosolized M. tuberculosis strain Erdman 
using a custom-built CH Technologies system (18, 22, 24). Twenty-four hours after each 
aerosol run, 4–12 mice were euthanized by carbon dioxide; the entire lungs were 
homogenized in 5-mL sterile phosphate-buffered saline; and all homogenates were 
plated onto oleic albumin dextrose catalase (OADC)-supplemented 7H11 agar. After 
3 weeks at 37°C, M. tuberculosis colony-forming units were counted to determine the 
retained lung dose (18, 22, 24). The mice were infected with ~100 bacilli in the first two 
experiments and ~25 bacilli in the subsequent eight experiments.
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Clinical monitoring and survival

The mice were observed daily for routine health monitoring. The mice were weighed 
before M. tuberculosis aerosol infection and at least once per week afterward until 
consecutive weight loss was noted, and then were weighed up to daily. Criteria requiring 
euthanasia were any one of the following: severe weakness/lethargy, respiratory 
difficulty, or body condition score of 2 (25). We confirmed morbidity was due to 
pulmonary TB by finding (i) large nodular or severe diffuse lung lesions; (ii) histopatho­
logical confirmation of neutrophilic, lymphoplasmacytic, histiocytic, or granulomatous 
lung infiltrates; (iii) cultivable M. tuberculosis bacilli from lung tissue; and (iv) absence of 
other disease based on necropsy findings. Since the Institutional Animal Care and Use 
Committee disallowed natural death as an endpoint, the day a mouse was euthanized 
due to morbidity was used as a proxy of survival. Mice with morbidity not attributable 
to pulmonary TB were excluded from subsequent analyses. Progressors succumbed to 
pulmonary TB and were euthanized due to morbidity prior to 60 days post-infection. 
Controllers succumbed to pulmonary TB and were euthanized due to morbidity after 60 
days post-infection. Asymptomatically infected Diversity Outbred mice were euthanized 
at a predetermined timepoint (on or before 60 days), and their classification state was 
determined by normal behaviors, postures, movements, eating/drinking, respiration, and 
weight gain.

Quantification of M. tuberculosis lung burden

Immediately after euthanasia, two or three lung lobes were removed from each mouse 
and homogenized in 1-mL sterile phosphate-buffered saline per lobe, serially diluted, 
plated onto OADC-supplemented 7H11 agar, and incubated at 37°C. After 3–4 weeks, 
M. tuberculosis colonies were counted, and M. tuberculosis burden in the lungs was 
calculated (18, 22, 24).

Histology

One or two lung lobes from each Diversity Outbred mouse were inflated and fixed in 
10% neutral buffered formalin, processed, embedded in paraffin, sectioned at 5 micron, 
and stained with carbol fuschin for acid-fast bacteria followed by counterstaining 
with hematoxylin and eosin (H&E) at the Cummings School of Veterinary Medicine’s 
Comparative Genomics and Pathology Shared Resource (North Grafton, MA, USA). 
Stained tissue sections on glass slides were digitally scanned by Aperio ScanScope or AT2 
scanners at 0.23 microns/pixel at Vanderbilt University Medical Center’s Digital Histology 
Shared Resource (Nashville, TN, USA). A separate set of tissue sections from Diversity 
Outbred mice was stained using immunohistochemistry to detect CD20 on B cells. Slides 
were digitally scanned by an Olympus VS2000 scanner at 0.138 microns/pixel at The 
Ohio State University’s Comparative Pathology and Digital Imaging Shared Resource 
(Columbus, OH, USA).

Deep-learning and image analysis on lung tissue dual-stained by carbol 
fuschin and H&E

Lung tissue section images from 129 M. tuberculosis-infected Diversity Outbred mice 
were used for training, and 98 different images were used as a hold-out test set. 
Of the 129 training images, 66 were from asymptomatic mice and 63 images were 
from controllers. Of the 98 test set images, 10 were asymptomatic mice and 88 were 
controllers. Following image preprocessing (see Supplemental Methods), we used an 
attention-based multiple instance learning method (26) to identify regions of the images 
that contributed to classification and yielded an interpretable model (23). Briefly, we 
assigned lung tissue images based on the host classes (controllers and asymptomatic) 
and trained an end-to-end deep-learning model to predict the image-level class. The 
model consisted of two parts: a feature extractor followed by the attention mecha­
nism, depicted in Fig. S5. Optimization used the Adam optimizer with the following 

Full-Length Text Infection and Immunity

July 2024  Volume 92  Issue 7 10.1128/iai.00263-23 3

https://doi.org/10.1128/iai.00263-23


parameters: β1 = 0.9 and β2 = 0.999, an learning rate of 0.0001, a weight decay of 
0.0005, and over 100 epochs. For each fold, 30 Diversity Outbred mice were randomly 
sampled for the validation set, and the rest of the cases were used for the training of the 
model, known as Monte Carlo cross-validation (27). To account for imbalanced training 
sets, the training procedure was modified to randomly select images from controller or 
asymptomatic mice with equal likelihood and then to randomly select a mouse from the 
selected category during every training iteration. Negative log-likelihood was used as a 
cost function.

Deep-learning and image analysis on lung sections stained by immunohisto­
chemistry for CD20

Peribronchiolar and perivascular regions were segmented based on a board-certified 
veterinary pathologist’s (G.B.) manual training annotations using Aiforia Create (v.6.0) 
with default parameter settings (Aiforia Technologies, Helsinki, Finland). To quantify 
CD20+ B cells within the peribronchiolar and perivascular regions, we first identified the 
nuclei within the segmented regions at ×40 magnification using CellViT-SAM-H-x40 (28). 
Next, to identify CD20+ (brown colored) pixels, we used an entropy-based cell quantifi-
cation method (29). Entropy-based cell quantification makes use of the uniform and 
perceptually aligned color representation of International Commission on Illumination 
(CIE) L*a*b* color space (30) to transform the complex quantification problem into an 
automatic entropy-based thresholding problem. Subsequently, we detected nuclei in 
contact with CD20+ (brown) pixels to identify the CD20+ cells. Finally, the total count of 
CD20+ B cells in the perivascular and peribronchiolar regions and the density of CD20+ 
B cells per square millimeter of peribronchiolar and perivascular segmented regions were 
calculated.

Gene expression in lung tissue by microarray analysis

One lung lobe from Diversity Outbred mice (n = 117) was homogenized in TRIzol and 
stored at −80°C, and RNA was extracted using PureLink RNA Mini Kits (Life Technolo­
gies, Carlsbad, CA, USA). The Boston University Microarray and Sequencing Resource 
Core Facility (Boston, MA, USA) confirmed RNA quality and quantity and prepared and 
hybridized material to Mouse Gene (v.2.0) ST microarrays. Raw CEL files were normal­
ized to produce gene-level expression values using the implementation of the robust 
multiarray average in the affy R package (v.1.62.0) and an Entrez Gene-specific probeset 
mapping (v.17.0.0) from the Molecular and Behavioral Neuroscience Institute (Brainarray) 
at the University of Michigan (31). All microarray data processing was performed using 
the R environment for statistical computing (v.3.6.0).

Quantification of lung cytokines, chemokines, and anti-M. tuberculosis 
antibodies

After plating for M. tuberculosis colony-forming units, the remaining lung homogenates 
were aliquoted and stored at −80°C. Homogenates were thawed overnight at 4°C, 
serially diluted and assayed by sandwich enzyme-linked immunosorbent assay (ELISA) 
for cytokines and chemokines [CXCL5, CXCL2, CXCL1, tumor necrosis factor (TNF), matrix 
metalloproteinase 8 (MMP8), S100A8, interferon gamma (IFN-γ), IL12p40, interleukin 
(IL)-12p70, IL-10, and vascular endothelial growth factor (VEGF)] using antibody pairs 
and standards from R&D Systems (Minneapolis, MN, USA), Invitrogen (Carlsbad, CA, 
USA), eBioscience (San Diego, CA, USA), or BD Biosciences (San Jose, CA, USA), per kit 
instructions. A subset of these ELISA results was reported previously (22). The amount 
of immunoglobulin G (IgG) bound by M. tuberculosis cell wall fraction, M. tuberculo­
sis culture filtrate proteins, M. tuberculosis antigen 85 complex, and M. tuberculosis 
ESAT-6:CFP-10 complex was quantified using in-house optimized ELISAs (22, 32). Briefly, 
high-binding immunoassay plates (Corning Costar #9018) were coated overnight in 
100 µL/well of 1- to 5-µg/mL M. tuberculosis cell wall fraction (NR-14828); M. tuberculosis 
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culture filtrate proteins (NR-14825); purified native M. tuberculosis antigen 85 complex 
(NR-14855); or recombinant purified M. tuberculosis ESAT-6 (NR-49424) and M. tubercu­
losis CFP-10 (NR-49425) obtained through BEI Resources, National Institute of Allergy 
and Infectious Diseases, National Institutes of Health. The following day, plates were 
blocked, and lung homogenates were serially diluted in 1% bovine serum albumin and 
incubated overnight at 4°C. After multiple washes, goat anti-mouse IgG-horseradish 
peroxidase (HRP) (Rockland Immunochemicals #610–13) was diluted per manufacturer’s 
instructions, incubated, washed multiple times, developed with TMB (Thermo Fisher 
or R&D Systems), stopped using 0.25-M HCl, and read at 450 nm using a BioTek Plate 
reader. The concentration of bound IgG was computed based on standard curves and 
four-parameter logistic regression models.

Classification using cytokines, chemokines, and anti-M. tuberculosis IgG

Data

The linear classifier we used for the cytokines and chemokines, and IgG antibody-based 
classification can only be applied to tabular data sets that do not have missing entries. 
Therefore, we filtered for the mice with complete measurements for the 12 cytokines 
and antibodies: CXCL5, CXCL2, CXCL1, TNF, IFN-γ, IL-12, IL-10, MMP8, S100A8, VEGF, 
anti-M. tuberculosis cell wall (CW), and anti-M. tuberculosis CFP. This filtering yielded 
asymptomatic (n = 30), controllers (n = 48), and progressor mice (n = 38) from two 
independent experimental infections.

Classification methods

To discriminate between acute pulmonary TB in progressors, chronic pulmonary TB 
in controllers, and asymptomatic lung infection, we first used a linear classifier, L1 
regularized logistic regression. The regularization term promotes sparse coefficients (33), 

and λ is selected through grid search among 0, 10−2, 10−1.95,…, 101.95, 102 . We used 
the scikit-learn implementation (34) of the logistic regression model. To mitigate the 
unbalanced classes, sample re-weighing with the “balanced” option of the scikit-learn 
library was used. We defined feature importance of a biomarker as the ratio of its 
(absolute) effect size (defined below) to the sum of all (absolute) effect sizes. More 
formally, let βj denote the effect size of the jth biomarker; its feature importance is given 

by 
βj∑j = 1

p βj , where p is the total number of biomarkers in that panel (i.e., 10 or 12). As 

an alternative method, we also tested a non-linear classifier, XGBoost (35). We used the 
python interface of the XGBoost and grid searched the two parameters: “learning_rate” 
([1e-3, 1e-2]) and “n_estimators” ([3, 5, 100]). We fixed the parameter “max_depth” to 
3 and used the default values for the remaining parameters. During training, we again 
used sample re-weighing. We reported the performance corresponding to the classifier’s 
best hyper-parameter using 30-fold cross-validation. Further details are discussed in 
the Supplemental Methods (36). The code used in the analysis will be made publicly 
available upon publication.

Statistical analyses and other performance metrics

Data from M. tuberculosis-infected mice

Survival, weight loss, M. tuberculosis lung burden, total number of CD20+ cell, total 
number of CD20+ cell per square millimeter, and ELISA data were analyzed and graphed 
in GraphPad Prism (v.10.2.1 for CD20+ cell data, v.8.4.2 for all remaining data) with 
significance set at P < 0.05 and were adjusted for multiple comparisons. Survival curves 
were analyzed using log-rank (Mantel-Cox) test. To correct for optical density attrib­
uted to non-specificity in ELISAs measuring anti-M. tuberculosis CW, anti-M. tuberculosis 
CFP, and anti-M. tuberculosis Ag85, baseline correction was performed. First, outlier 
measurements in the non-infected group were detected using ROUT and excluded. 
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Then the average of the cleaned data from non-infected group was calculated and 
subtracted from all measurements. Body weight data, lung M. tuberculosis burden, and 
lung cytokines, chemokines, and baseline-corrected antibody measurements were then 
tested for normal or log-normal distributions prior to one-way analysis of variance by 
Kruskal-Wallis with Dunn’s post-test or Brown-Forsythe and Welch’s with Dunnett’s T3 
post-test as indicated in the figure legends.

Imaging biomarkers

Model performance was evaluated using overall sensitivity, specificity, and area under 
the receiver operating characteristics curve (AUC) of a 10-fold Monte-Carlo cross-val­
idation. Ninety-five percent confidence intervals for each statistic were computed 
using bootstrapped samples of predictions (equal to the number of observations) 
with replacement (n = 1,000). Percentiles (97.5th and 2.5th) were taken as bounds for 
confidence intervals.

Microarray gene expression analyses

For each gene, AUC analysis was performed using R package pROC (v.1.18) (37). 
Corresponding P values to the AUC were calculated using one-sided Mann-Whitney 
U-statistic (38) with Python package statsmodels (v.0.13.2) (39). In the Supplemental 
Methods, we compared the statistically significant genes resulting from Mann-Whitney 
U-statistic with a parametric alternative, Welch’s t-test. For each classification problem, 
the directionality of the test was selected such that the gene expression values were 
statistically higher in the class with longer survival under the alternative hypothesis. 
Benjamini-Hochberg correction was applied separately to each classification problem 
to control the false discovery rate at 0.05 after filtering the genes without correspond­
ing gene symbols. Clustermap is drawn using the python package seaborn (v.0.11.2) 
(40) with clustering metric “correlation.” Enrichr (https://amp.pharm.mssm.edu/Enrichr) 
(41) was used to identify Gene Ontology (GO) biological processes (v.2023) that were 
significantly overrepresented (adjusted P < 0.05) within an input set of official mouse 
gene symbols. A subset of microarray data and analyses from progressor mice were 
published elsewhere (22, 42), deposited in Gene Expression Omnibus (GEO) and assigned 
series ID GSE179417.

RESULTS

Survival, M. tuberculosis lung burden, and inflammatory biomarkers in 
infected mice

A low dose of aerosolized M. tuberculosis (20 ± 12 bacilli) results in early morbidity 
and mortality in approximately one-third of Diversity Outbred mice that succumb to 
acute necrosuppurative pulmonary TB with high bacterial burden within 60 days. This 
phenotype is reproducible across sexes, institutions, aerosol infection methods, and 
strains of M. tuberculosis and is not due to immune deficiency (16, 18, 19, 22). M. 
tuberculosis infection significantly reduced survival of Diversity Outbred mice compared 
to identically housed, age- and sex-matched non-infected Diversity Outbred controls, 
and survival was significantly different from M. tuberculosis-infected C57BL/6J inbred 
mice, with approximately 25% of Diversity Outbred mice surviving longer than the 
median survival of C57BL/6J (Fig. 1A). The ~70% of Diversity Outbred mice that were 
more resistant to M. tuberculosis (i.e., controllers) survived longer than progressors (Fig. 
1B). Table 1 summarizes forms of TB in humans (43–46) that may be comparable to 
relative susceptibility and resistance to M. tuberculosis in Diversity Outbred mice.

We speculated that resistance to M. tuberculosis could have been due to larger body 
size. However, retrospective analysis of preinfection body weight data failed to identify 
significant differences (Fig. 2A). As expected from inbreeding, age- and gender-matched 
C57BL/6J mice had a narrow preinfection weight range and, on average, weighed 
significantly less than Diversity Outbred mice (Fig. 2A). Controllers achieved higher body 
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weights (Fig. 2B) due to normal growth while infected and longer duration of weight 
gain (Fig. 2C) prior to disease onset. Once disease onset occurred, controllers lost weight 
over a longer duration (Fig. 2D) and had a slower rate of weight loss or no weight loss 
(Fig. 2F). By euthanasia, both progressors and controllers had lost a similar percentage of 
weight (Fig. 2E), and controllers had a wider range of weight loss. Asymptomatic mice 
were euthanized before the end of their growth phase and thus achieved lower body 
weight than non-infected controls (Fig. 2B), and had a truncated duration of weight gain 
(Fig. 2C) and weight fluctuations without losing significant weight (Fig. 2D and E).

We expected controllers with end-stage pulmonary TB to achieve the same level of 
M. tuberculosis lung burden as progressors with end-stage pulmonary TB. Contrary to 
expectations, controllers had significantly lower M. tuberculosis burden than progressors 
(Fig. 3A). Likewise, we expected controllers and progressors to have similar levels of 
inflammatory mediators. However, except for IL-10, this also was not true. MMP8, CXCL1, 
TNF, and IFN-γ (22) were significantly lower in controllers compared to progressors (Fig. 
3B, C, E and F) (Fig. 3D). These differences indicate that end-stage pulmonary TB in 
Diversity Outbred mice has two distinct pathogeneses: an “acute” form that is highly 
necrotizing, inflammatory, and promotes high M. tuberculosis bacillary growth, and a 
“chronic” form that is less inflammatory. Asymptomatic mice had significantly lower M. 
tuberculosis burden, CXCL1, and MMP8 and trend for lower levels of TNF, IL-10, and IFN-γ 
than progressors, and only lung M. tuberculosis burden and IL-10 were significantly lower 
between asymptomatic mice and controllers (Fig. 3A and D).

FIG 1 Survival of M. tuberculosis-infected mice. We infected 8- to 10-week-old, female Diversity Outbred (DO) mice and C57BL/6J mice with aerosolized M. 

tuberculosis bacilli and monitored as described in Materials and Methods. Non-infected, identically housed, and age- and gender-matched Diversity Outbred 

mice served as controls. Mice were euthanized at a predetermined timepoint, or if any one of three morbidity criteria developed a body condition score of <2, 

severe lethargy, or increased respiratory rate/effort. (A) The percent alive over time (cumulative survival) and the red vertical line mark 60 days post-infection 

when approximately 30% of Diversity Outbred mice succumbed to pulmonary TB due to early morbidity (progressors). Controllers survived at least 60 days 

without morbidity and succumbed later. Survival of non-infected Diversity Outbred mice (brown dashed line), infected Diversity Outbred (brown solid line), and 

infected inbred C57BL/6J (solid gray line) mice was significantly different by Mantel-Cox log-rank test. ****P < 0.0001. (B) A subset of 556 mice from panel A that 

were euthanized because of pulmonary TB-related morbidity (526 mice) or non-infected controls euthanized at the end of the experiment (30 mice). Groups are 

shown on the X-axis box-and-whiskers plots in panel B, with interquartile range with whiskers at the minimum and maximum. Statistical analysis was performed 

using Brown-Forsythe and Welch’s one-way analysis of variance followed by Dunnett’s T3 post-test. ****P < 0.0001.

Full-Length Text Infection and Immunity

July 2024  Volume 92  Issue 7 10.1128/iai.00263-23 7

https://doi.org/10.1128/iai.00263-23


TA
BL

E 
1 

Su
sc

ep
tib

ili
ty

 to
 M

. t
ub

er
cu

lo
si

s a
nd

 fo
rm

s 
of

 T
B 

in
 h

um
an

s 
an

d 
D

iv
er

si
ty

 O
ut

br
ed

 m
ic

ea

Pr
im

ar
y

Fu
lm

in
an

t
Po

st
-p

ri
m

ar
y

La
te

nt
 in

fe
ct

io
n

Re
si

st
er

s

H
um

an
Su

sc
ep

tib
ili

ty
Va

ria
bl

e
H

ig
hl

y 
su

sc
ep

tib
le

Su
sc

ep
tib

le
Re

si
st

an
t

H
ig

hl
y 

re
si

st
an

t
Pr

ev
al

en
ce

Co
m

m
on

Ra
re

5%
–1

0%
 o

f i
nf

ec
te

d
90

%
–9

5%
 o

f i
nf

ec
te

d
~2

0%
 o

f e
xp

os
ed

Su
rv

iv
al

N
or

m
al

 li
fe

sp
an

W
ee

ks
Ye

ar
s

D
ec

ad
es

N
or

m
al

 li
fe

sp
an

Sy
m

pt
om

s
U

su
al

ly
 n

on
e

Ye
s

Ye
s

N
o

N
o

Ra
di

og
ra

ph
y

Fo
ca

l c
on

so
lid

at
io

n
D

iff
us

e 
pn

eu
m

on
ia

Fo
ca

l, 
no

du
la

r, 
an

d 
ca

vi
ta

te
d

N
o 

le
si

on
s

N
o 

le
si

on
s

H
is

to
lo

gy
Pn

eu
m

on
ia

 a
nd

 
at

el
ec

ta
si

s
Fi

br
in

ou
s 

an
d 

ne
cr

ot
iz

in
g

N
ec

ro
tic

 g
ra

nu
lo

m
as

 a
nd

 c
av

iti
es

Po
or

ly
 d

efi
ne

d
N

o 
le

si
on

s

A
nt

ig
en

-s
pe

ci
fic

 im
m

un
or

ea
ct

iv
ity

Va
ria

bl
e

Va
ria

bl
e

Ye
s

Ye
s

N
o

Cu
lti

va
bl

e 
ba

ci
lli

N
D

Va
ria

bl
e

Po
si

tiv
e

BA
L:

 n
eg

.
Lu

ng
 ti

ss
ue

: N
D

N
o

Pr
og

re
ss

or
s 

(a
cu

te
 

en
d-

st
ag

e)
Co

nt
ro

lle
rs

 (c
hr

on
ic

 
en

d-
st

ag
e)

A
sy

m
pt

om
at

ic

D
iv

er
si

ty
 

O
ut

br
ed

Su
sc

ep
tib

ili
ty

H
ig

hl
y 

su
sc

ep
tib

le
Su

sc
ep

tib
le

M
od

el
 fo

r l
un

g 
re

si
st

an
ce

Pr
ev

al
en

ce
~3

0%
 o

f i
nf

ec
te

d
~7

0%
 o

f i
nf

ec
te

d
N

A
Su

rv
iv

al
<6

0 
da

ys
>6

0 
da

ys
N

A
Sy

m
pt

om
s

Ye
s

Ye
s

N
o

Ra
di

og
ra

ph
y

N
D

N
D

N
D

H
is

to
lo

gy
Fi

br
in

os
up

pu
ra

tiv
e 

an
d 

ne
cr

ot
iz

in
g

Ly
m

ph
oh

is
tio

cy
tic

 w
ith

 
ne

cr
ot

ic
 fo

ci
 a

nd
 ra

re
 

ca
vi

tie
s

N
on

-n
ec

ro
tiz

in
g 

an
d 

ly
m

ph
oc

yt
ic

 c
uff

s

A
nt

ig
en

-s
pe

ci
fic

 im
m

un
or

ea
ct

iv
ity

Ye
s

Ye
s

Ye
s

Cu
lti

va
bl

e 
ba

ci
lli

Ye
s

Ye
s

BA
L:

 N
D

Lu
ng

 ti
ss

ue
: p

os
.

a Th
e 

up
pe

r 
an

d 
lo

w
er

 h
al

ve
s 

of
 t

he
 t

ab
le

 p
re

se
nt

 t
he

 c
ha

ra
ct

er
is

tic
s 

of
 T

B 
in

 h
um

an
s 

an
d 

D
iv

er
si

ty
 O

ut
br

ed
 m

ic
e,

 r
es

pe
ct

iv
el

y.
 C

ol
um

ns
 c

or
re

sp
on

d 
to

 d
iff

er
en

t 
fo

rm
s 

of
 

TB
 a

nd
 r

ow
s 

co
rr

es
po

nd
 t

o 
di

ffe
re

nt
 p

ro
pe

rt
ie

s. 
W

e 
pr

es
en

t 
pa

irs
 o

f T
B 

fo
rm

s 
w

hi
ch

 s
ha

re
 s

im
ila

r 
ch

ar
ac

te
ris

tic
s 

in
 t

he
 s

am
e 

co
lu

m
n,

 i.
e.

, f
ul

m
in

an
t 

an
d 

pr
og

re
ss

or
s 

(a
cu

te
 

en
d 

st
ag

e)
, P

os
t-

pr
im

ar
y 

an
d 

co
nt

ro
lle

rs
 (

ch
ro

ni
c 

en
d 

st
ag

e)
, l

at
en

t 
in

fe
ct

io
n,

 a
nd

 a
sy

m
pt

om
at

ic
. S

uc
h 

pa
irw

is
e 

co
m

pa
ris

on
s 

ca
n 

ha
ve

 li
m

ita
tio

ns
 (

se
e 

D
is

cu
ss

io
n)

 o
r 

no
t 

un
av

ai
la

bl
e 

in
 g

en
er

al
 a

s 
th

e 
tw

o 
fo

rm
s, 

pr
im

ar
y 

an
d 

re
si

st
er

s, 
do

 n
ot

 h
av

e 
a 

co
rr

es
po

nd
in

g 
cl

as
s 

in
 th

e 
D

iv
er

si
ty

 O
ut

br
ed

 p
op

ul
at

io
n.

 B
A

L,
 b

ro
nc

ho
al

ve
ol

ar
 la

va
ge

; N
A

, n
ot

 
av

ai
la

bl
e;

 N
D

, n
ot

 ro
ut

in
el

y 
do

ne
; n

eg
., 

ne
ga

tiv
e;

 p
os

., 
po

si
tiv

e.

Full-Length Text Infection and Immunity

July 2024  Volume 92  Issue 7 10.1128/iai.00263-23 8

https://doi.org/10.1128/iai.00263-23


Next, we analyzed data from four different modalities: protein measurements, 
histopathology, gene expression profiles, and immunohistochemistry staining for B-cell 
quantification by machine learning and statistical methods to find signatures that could 
distinguish acute pulmonary TB (progressors) vs chronic pulmonary TB (controllers) vs 
asymptomatic infection (see Fig. 4). We hypothesized that unique features identified by 

FIG 2 Preinfection body weights and weight-related indicators of pulmonary TB in M. tuberculosis-infected mice. We infected 8- to 10-week-old, female Diversity 

Outbred mice and C57BL/6J mice with aerosolized M. tuberculosis bacilli and monitored as described in Materials and Methods. Non-infected, identically housed, 

and age- and gender-matched Diversity Outbred mice served as controls. Mice were euthanized at a predetermined timepoint, or if any one of three morbidity 

criteria developed: body condition score of <2, severe lethargy, or increased respiratory rate/effort. (A) Preinfection body weights, (B) peak body weight achieved 

during infection, (C) duration of weight gain, (D) duration of weight loss, (E) percentage of peak body weight lost, and (F) rate of weight lost are shown. 

Box-and-whiskers plots in all panels show interquartile range with whiskers at the minimum and maximum. Group names and sample sizes are shown on the 

X-axis. Statistical analyses were performed using Brown-Forsythe and Welch’s one-way analysis of variance followed by Dunnett’s T3 post-test. Non-significant P 

values are not shown. ****P < 0.0001.
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FIG 3 Lung M. tuberculosis burden, cytokines, chemokines, and anti-M. tuberculosis antibodies in M. tuberculosis-infected mice. We infected 8- to 10-week-old, 

female Diversity Outbred mice and C57BL/6J mice with aerosolized M. tuberculosis bacilli and monitored as described in Materials and Methods. Non-infected, 

identically housed, and age- and gender-matched Diversity Outbred mice served as controls. Mice were euthanized at a predetermined timepoint or if any one of

(Continued on next page)
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models with high classification accuracy might provide insight into mechanisms of 
disease progression and of resistance to M. tuberculosis.

A panel of lung cytokines, chemokines, and IgG antibodies classify acute TB 
and chronic pulmonary TB but not asymptomatic lung infection

To classify acute vs chronic end-stage pulmonary TB (i.e., progressors from controllers) 
vs asymptomatic infection, we analyzed a set of immune cytokines, chemokines, and 
growth factors by pairwise comparisons (Table 2). We first trained an L1-regularized 
logistic regression model using the following 10 cytokines, chemokines, and growth 
factors: CXCL5, CXCL2, CXCL1, TNF, IFN-γ, IL-12, IL-10, MMP8, S100A8, and VEGF. The 
classifier had high 30-fold cross-validation AUC (0.966) for progressor vs asymptomatic 
(Fig. S1) but performed relatively poorly (0.792 and 0.803) for comparisons against 
controllers (Table 2). When we included anti-M. tuberculosis CW IgG and anti-M. 
tuberculosis CFP IgG to the panel of lung proteins, the 30-fold cross-validation perform­
ance improved (Table 2). The improvement was highest for the progressor vs controller 
comparison in which the AUC increased from 0.792 to 0.933 (Fig. 5A). That improvement 
was attributed to anti-M. tuberculosis CW specifically, which had the highest average 
percentage of importance, while the other antibody, anti-M. tuberculosis CFP, was not 
used by the model (Fig. 5B). The classification between controllers and asymptomatic 
mice was the most challenging (AUC 0.83) (Table 2; Fig. S2). When an additional 
non-linear classifier, gradient tree boosting, was tested, the AUC did not improve (Table 
S1). All but one of the six panels performed with >90% accuracy when tested with 
(n = 22) non-infected Diversity Outbred mice previously unused during the training 
(Table S2). One panel, although successful for classifying between the two forms of 
end-stage pulmonary TB using antibodies, had low classification accuracy (32%) for the 
non-infected mice. That was because the non-infected Diversity Outbred mice had low 
levels of anti-M. tuberculosis CW (Fig. 3), which the classifier associates with lower survival 
(Fig. 5).

Qualitative evaluation of lung granulomas yields insight into asymptomatic 
lung infection

Anti-M. tuberculosis CW IgG improved the classification of progressors and controllers 
with acute and chronic end-stage pulmonary TB (Fig. 5) but not those with asympto­
matic lung infection. To find features of asymptomatic lung infection, a board-certified 
veterinary pathologist (G.B.) examined lung sections of progressors, controllers, and 
mice with asymptomatic lung infection (Fig. 6). Qualitative differences in size, cellular 
infiltrates, and distribution of granulomas were noted, like previous publications (18, 
22, 23, 42). The lungs of progressors contained coalescing fibrinous and necrosuppur­
ative granulomas with abundant pyknotic nuclear debris in alveoli and obstructing 
bronchioles, and necrosis of alveolar septae (panels A through D), often with fibrin 
thrombosis of septal capillaries (not shown). In contrast, the lungs of asymptomatic 
mice typically contained small, discrete, non-necrotizing lesions with perivascular and 
peribronchiolar aggregates of lymphocytes and few neutrophils (panels E through H). 
The lungs of controllers typically contained diffuse, macrophage-dominated lesions, with 
many foamy macrophages, dense foci of lymphocytes and plasma cells, and occasional 
multinucleated giant cells (panels I through L), resembling end-stage pulmonary TB in 
the commonly used inbred mouse strain C57BL/6J (47). Additional features in controllers 

FIG 3 (Continued)

three morbidity criteria developed: body condition score of <2, severe lethargy, or increased respiratory rate/effort. We quantified M. tuberculosis colony-forming 

units in the lungs (A) and measured eight lung proteins using sandwich ELISAs (B–I). Box-and-whiskers plots in all panels show interquartile range with 

whiskers at the minimum and maximum. Sample sizes are shown in the X-axis. Statistical analyses were performed using Kruskal-Wallis one-way analysis of 

variance (ANOVA) with Dunn’s multiple comparisons post-tests (A) or Brown-Forsythe and Welch’s one-way ANOVA followed by Dunnett’s T3 post-test (B–F). 

Non-significant P values are not shown. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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with end-stage pulmonary TB included cholesterol clefts, small pyogranulomas, septal 
fibrosis, cavitation with peripheral fibrosis, and bronchiolar obstruction with epithelial 
degeneration (not shown).

FIG 4 Four modalities, (i) protein biomarkers, (ii) H&E-stained lung tissue sections, (iii) gene expression profiles, and (iv) immunohistochemistry staining for 

B-cell quantification, are used to characterize asymptomatic M. tuberculosis lung infection in Diversity Outbred mice. We used statistical/machine learning 

approaches to quantify the feature importance of protein biomarkers; an interpretable deep-learning model to identify regions of H&E-stained slides, AUC 

analysis to filter genes for subsequent Enrichr pathway analysis, and entropy-based cell quantification for quantifying the CD20+ cells in segmented perivascular 

and peribronchiolar regions of immunohistochemistry (IHC)-stained images. *During the gene expression analysis, we used two separate data sets. The images 

corresponding to modalities ii and iv are included as examples to illustrate the analysis process and are presented with further details (see Fig. 7A and 9C, 

respectively). AS, asymptomatic; CR, controller; PR, progressor.
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A deep-learning neural network produced an accurate, human-interpretable 
imaging biomarker of asymptomatic lung infection

Qualitative histopathological evaluation of granulomas provided insight; however, 
quantification of unique histopathological granuloma features was not feasible. 
Therefore, we trained and validated a deep-learning neural network using multiple 
instance learning and attention-based pooling to (i) classify asymptomatic mice and 
controllers and (ii) identify regions within the granulomas where the model made 
classification decisions based on feature importance. Table 3 shows the model achieved 
close to 90% sensitivity and 70% specificity with AUC close to 90%, an improvement over 
the lung biomarker panel.

When we mapped attention weights back to the original images, the granuloma 
regions used as the basis for classifying asymptomatic lung infection was interpreted 
by a board-certified veterinary pathologist (G.B.) as perivascular and peribronchiolar 
lymphoplasmacytic cuffs (Fig. 7A and B; white areas, annotated in yellow). In contrast, the 
neural network did not weight granuloma regions that contained abundant macro­
phages, cholesterol clefts, or small pyogranulomas (Fig. 7C and D; black areas, annotated 
by red circles), which were characteristic of chronic pulmonary TB in controllers. Thus, 
the model identified an imaging biomarker (perivascular and peribronchiolar lympho­
plasmacytic cuffs, a form of GrALT) is a diagnostically accurate granuloma feature of 

FIG 5 Feature importance analysis for classification between progressors and controllers using cytokine, chemokine, and anti-M. tuberculosis antibody 

measurements. (A) Receiver operating characteristic (ROC) curve comparison of the 10-biomarker panel (blue) and 12-biomarker panel (orange) for the 

progressor vs controller comparison. (B) Percent Importance of the different biomarkers in two panels. Logistic regression is the classifier and importance scores 

averaged over 30-fold. Biomarkers corresponding to the unhatched colors are associated with longer survival and vice versa for the hatched colors. Biomarkers 

with less than 1% importance are omitted. The feature scores for other comparisons are shown in Fig. S1 and S2.

TABLE 2 Thirty-fold cross-validation performance of the two panels (10 and 10 + 2 antibodies) in three 
classification tasks (progressor vs controller, progressor vs asymptomatic, and controllers vs asympto­
matic)a

Metric PR vs CR PR vs AS CR vs AS

10 10 + 2 10 10 + 2 10 10 + 2

AUC 0.792 0.933b 0.966 0.971 0.803 0.83
Sensitivity (%) 57.9 81.6 89.5 86.8 68.8 68.8
Specificity (%) 85.4 83.3 90 90 76.7 80
aIncluding antibodies improves the AUC in all three comparisons. The sensitivity is calculated with respect to 
Progressors in the first two comparisons and Controllers in the last comparison. Please refer to Fig. S3 for the 
confusion matrices. AS, asymptomatic; CR, controller; PR, progressor.
bFor each of the classification tasks and their corresponding metrics, the panel with the higher performance is 
highlighted in bold.
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asymptomatic lung infection. We hypothesized this granuloma feature corresponded to 
unique functional responses capable of restricting M. tuberculosis.

Gene expression analysis identifies functional correlates of asymptomatic 
infection in lung tissue

To identify functional correlates of asymptomatic lungs, we used transcriptional profiling 
and pathway analyses on two available data sets. One data set consisted of non-infected 
(n = 5), asymptomatic (n = 13), controller (n = 16), and progressor Diversity Outbred (n = 
10) mice. The second data set consisted of non-infected (n = 9), asymptomatic (n = 36), 
and progressor Diversity Outbred (n = 28) mice.

Within each data set, we performed a one-sided AUC analysis (see Materials and 
Methods) comparing progressor and asymptomatic lung samples, which identified sets 
of 2,569 and 6,891 genes expressed at significantly (false discovery rate [FDR] q < 0.05) 
higher levels in the lungs of asymptomatic mice within data sets 1 and 2, respectively. 
These two sets contained 2,264 genes in common, with the average AUC values of the 
two data sets ranging from 0.743 to 0.969 with a median of 0.844 (File S1). This set 

FIG 6 Representative histopathological lesions in the lungs of M. tuberculosis-infected Diversity Outbred mice. We infected 8- to 10-week-old, female Diversity 

Outbred mice with M. tuberculosis bacilli by inhalation. Lung lobes were fixed, stained, and sectioned for microscopic examination. (A–D) Representative 

necrosuppurative lung lesions with bronchiolar obstruction in progressors. (E–H) Non-necrotizing lymphohistiocytic lung lesions in asymptomatic mice. (I–L) 

Diffuse, non-necrotizing lesions with abundant macrophages, foamy macrophages, scattered lymphocytic foci, and a few cholesterol clefts in controllers. 

Magnifications are ×2, ×4, ×20, and ×40.
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of genes was input using Enrichr for pathway analysis, which identified 21 statistically 
significant (adjusted P < 0.05) Gene Ontology terms (Table S3).

In the same manner, we compared controller and progressor lungs using data set 1 
and identified a set of 303 genes expressed at significantly (FDR q < 0.05) higher levels 
in the lungs of controllers. The AUC of the selected genes ranged from 0.888 to 1.0 
with a median of 0.919 (File S1). Enrichr analysis identified four pathways containing 
statistically significant, highly expressed genes in controllers, and the pathways represent 
adaptive immunity, i.e., T-cell activation and B-cell receptor signaling pathway and 
antigen receptor-mediated signaling pathways (Table 4).

None of the genes were significant at FDR q < 0.05 for asymptomatic vs controller 
lungs. Upon further inspection, however, we observed that genes with high diagnostic 

FIG 7 Perivascular and peribronchiolar lymphocytic cuffs are imaging biomarkers of asymptomatic lung infection and resistance to M. tuberculosis. For each 

panel pair, the H&E-stained lung tissue section is displayed on the left, and the corresponding attention weights for the same lung region are displayed on 

the right. (A and B) Representative examples where the deep-learning neural network found an imaging biomarker of asymptomatic lung infection in Diversity 

Outbred mice, and then a board-certified veterinary pathologist determined that the regions receiving the highest attention weights (white) corresponded to 

perivascular and peribronchiolar lymphoplasmacytic cuffs, outlined in yellow. In contrast, (C and D) representative examples within the granulomas where the 

regions received very low attention weights are in black, and then a board-certified veterinary pathologist determined that the regions receiving little attention 

were the macrophage-rich regions, encircled in red. A scale bar corresponding to 50 microns is displayed on each top left corner.

TABLE 3 Results of attention-based multiple instance learning model classification of asymptomatic mice 
and controllers

Metric Cross-validation (n = 129) Testing (n = 98)

AUC 0.987 (0.969–0.999) 0.884 (0.862–0.903)
Sensitivity 0.985 (0.949–1.000) 0.719 (0.632–0.804)
Specificity 0.906 (0.831–0.969) 0.899 (0.873–0.921)
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potential for the binary classification between asymptomatic and controller groups can 
include genes that are elevated in the non-infected lungs (Fig. S6), consistent with 
the histopathological finding that asymptomatically infected Diversity Outbred mice 
maintain a substantial fraction of normal lung tissue.

To focus on finding unique transcriptional signatures, we compared lungs from 
asymptomatic mice to lungs from all other groups: controller, progressor, and non-infec­
ted using data set 1. This identified 105 genes that were expressed at significantly (FDR 
q < 0.05) higher levels in the lungs (Fig. 8). The AUC values of the identified genes 
ranged from 0.844 to 0.963 with a median of 0.864 ( File S1). Pathway analysis using 
Enrichr identified eight statistically significant (adjusted P < 0.05) GO terms associated 
with the 105 genes (Table 5). Five pathways are specific to B-cell functions. Two pathways 
indicate generic lymphocyte proliferation and differentiation and include B-cell genes 
(e.g., CD79A), and one pathway involves transcriptional responses. Overall, the unique 

FIG 8 Cluster heat map of the 105 genes selected for the asymptomatic vs rest classification. Columns correspond to the (n = 44) mice used in the asymptomatic 

vs rest classification. Rows correspond to the identified 105 genes. Color indicates the z-score, which is calculated by first subtracting the row wise average from 

the gene expression value and next dividing it by the row wise standard deviation. Gene expression values are first log2 transformed.

TABLE 4 Microarray Enrichr analysis resulting from the significantly different, highly expressed genes in the lungs of controllers with end-stage chronic 
pulmonary TB vs progressors with end-stage acute pulmonary TBa

Term Overlap Adjusted P value Genes

Antigen receptor-mediated 
signaling pathway

14 of 134 <0.0001 IGHM, THEMIS, CD3E, LAX1, IGHG3, CD79B, CD79A, IGKC, CD8A, LCK, TRBC2, TRBC1, BLNK, 
and SKAP1

B-cell receptor signaling 
pathway

7 of 46 0.0032 CD79B, IGHG3, IGHM, and CD79A
IGKC, LCK, and BLNK

T-cell activation 9 of 111 0.0189 CD2, PPP3CB, CD8A, IRF4, and LCK
TRBC2, TRBC1, CD3E, and LY9

Regulation of lymphocyte 
activation

4 of 18 0.0387 KAT2A, LCK, SIT1, and IKZF3

aOnly the significant pathways (adjusted P < 0.05) are displayed.
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pathways with highly expressed genes indicate that B-cell differentiation, proliferation, 
activation, and effector functions may be important for establishing asymptomatic lung 
infection and early resistance to M. tuberculosis.

Immunohistochemistry and quantitative image analysis shows more B cells 
in perivascular and peribronchiolar regions of asymptomatic lung infection

Gene expression profiles suggested that B cells were functionally important in 
asymptomatic control of M. tuberculosis  lung infection but could not spatially locate 
B cells to the perivascular and peribronchiolar regions that were identified in the 
lung sections stained by carbol fuchsin and hematoxylin and eosin. To confirm, 
localize, and quantify B cells in the perivascular and peribronchiolar regions, we 
stained lung tissue sections from Diversity Outbred mice using immunohistochem­
istry to detect CD20. CD20 is specifically expressed by immature and mature B 
cells and is encoded by the gene Ms4a1,  which was highly expressed (Table 5). 
Next, the peribronchiolar and perivascular regions were segmented, and areas were 
analyzed for CD20+ cells using entropy-based cell quantification combined with a 
deep learning-based nuclei detector, CellViT-SAM-H-x40.

Pathologist evaluation confirmed positive and negative assay controls worked as 
expected, and confirmed the presence of perivascular and peribronchiolar CD20+ cells in 
all lung tissue sections. Representative images from non-infected, progressor, asympto­
matic, and controller lungs at low and high magnification show the brown staining 
for CD20 is most evident around bronchioles and blood vessels of asymptomatic and 
controller mice (Fig. 9A through D). The total number of CD20+ cells in the peribron­
chiolar and perivascular regions showed statistically significant differences between 
the asymptomatic (n = 27), progressor (n = 9), controller (n = 18), and non-infected 
Diversity Outbred mice (n = 19) (Fig. 9E). Controllers and asymptomatic mice had 
higher total CD20+ cell counts, and both groups were statistically different compared 
to the progressor and the non-infected groups. The density of CD20+ cells per square 
millimeter of peribronchiolar and perivascular regions also varied significantly between 
the four groups (Fig. 9F), with progressor lungs having significantly lower CD20+ cell 
density than all other groups and a trend for highest CD20+ cell density in asymptomatic 
that was not statistically significant. The median value of the density of CD20+ cells was 
the lowest in progressors, 48.66 cells/mm2, followed by non-infected mice with 256.0 
cells/mm2, controllers with 324.9 cells/mm2, and asymptomatic mice with the highest 
median value, 619.2 cells/mm2. Overall, these quantitative immunohistochemistry results 
validate the gene expression profiles of asymptomatic lung infection and spatially 
locate B cells to the discriminatory imaging biomarker (perivascular and peribronchiolar 
lymphocytic cuffs) of asymptomatic lung infection.

TABLE 5 Microarray Enrichr analysis resulting from the genes selected for the asymptomatic lung classification vs other groups (progressor, controller, and 
non-infected)a

Term Overlap Adjusted P value Genes

B-cell activation 8 of 92 <0.0001 CD79B, CD79A, CR2, FLT3, BANK1, PAX5, MS4A1, and CD22
B-cell differentiation 6 of 68 0.0004 CD79B, CD79A, CR2, FLT3, PAX5, and MS4A1
Lymphocyte differentiation 6 of 91 0.0014 CD79B, CD79A, CR2, FLT3, PAX5, and MS4A1
B-cell proliferation 4 of 31 0.0025 CD79A, CR2, CD19, and MS4A1
Lymphocyte proliferation 4 of 38 0.0046 CD79A, CR2, FLT3, and MS4A1
B-cell receptor signaling pathway 4 of 46 0.0082 CD79B, CD79A, CD19, and MS4A1
Regulation of B-cell activation 3 of 25 0.0211 BANK1, CD19, and CD22
Transcription-dependent tethering of RNA 

polymerase II gene DNA at nuclear periphery
2 of 6 0.0251 NUP107 and RAE1

aOnly the significant pathways (adjusted P < 0.05) are shown.
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FIG 9 Distribution of CD20+ cells in the perivascular and peribronchiolar regions. To quantify the B cells within perivascular and peribronchiolar lymphocytic 

cuffs, we IHC-stained the lung tissue sections of n = 73 Diversity Outbred mice. The perivascular and peribronchiolar regions within the IHC images are 

segmented using Aiforia Create. In each segmented region, the CD20+ cells are detected by entropy-based cell quantification combined with a deep learning-

based nuclei detector, CellViT-SAM-H-x40. (A–D) Representative perivascular and peribronchiolar regions of mice with CD20+ cell density close to their class 

medians. Each panel corresponds to a tissue section from a different susceptibility class: (A) non-infected, (B) progressor, (C) asymptomatic controller, and (D)

(Continued on next page)
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DISCUSSION

Although pulmonary TB remains a global health problem with high morbidity and 
mortality, most humans develop asymptomatic infection of various forms (e.g., primary 
TB, latent TB infection, and resisters). Only a minority of infected humans develop any 
of the symptomatic disease forms (e.g., progressive primary TB, miliary TB, fulminant TB, 
or active pulmonary TB) (1, 6, 48–51). Because infection is often silent and lung tissues 
from naturally resistant humans are not readily available, mechanisms of lung resistance 
are difficult to model and identify. A growing body of evidence supports the use of 
the Diversity Outbred mouse population to model disease states of pulmonary TB in 
biomarker discovery, gene expression signatures, and pathogenesis (14–19, 22, 32, 52). 
However, fewer studies focus on resistance to M. tuberculosis, which occurs in asympto­
matic infection. The novelty of this work is finding unique features of lung resistance 
to M. tuberculosis by using the Diversity Outbred mouse population and multimodal 
computational approaches.

To discover signatures of resistance to M. tuberculosis infection, we performed 
long-term survival studies in the Diversity Outbred mouse population and showed 
survival was bimodal: less than 60 days or greater than 60 days. Interestingly, no infected 
mice reached the median survival of non-infected mice, and even the most resistant 
Diversity Outbred mouse eventually succumbed to chronic progressive pulmonary TB, as 
occurs in commonly used inbred strains of mice (47). We determined that the cytokines 
and chemokines that accurately classified progressors with acute pulmonary TB from 
non-progressors (22) could not distinguish progressors from controllers with chronic 
pulmonary TB but that the addition of anti-M. tuberculosis CW IgG significantly improved 
diagnostic accuracy. None of cytokines, chemokines, growth factors, or antibodies in 
our data set produced a biomarker panel that could accurately classify asymptomatic 
lung infection. This interesting result is consistent with historical challenges to accurately 
diagnose latent TB infection in humans by using skin tests, interferon gamma respon­
ses, and antibody-based serological tests (53–59). However, recent studies are more 
promising as specific types of antibodies have more diagnostic power (60–62).

In our studies, histopathological analyses combined with gene expression were much 
more useful to find key features of asymptomatic lung infection that have diagnostic 
value and provide mechanistic insight. Our deep-learning model automatically identified 
a granuloma feature specific to asymptomatic M. tuberculosis lung infection, which was 
interpreted by a pathologist as perivascular and peribronchiolar lymphocytic cuffs. This 
histopathological granuloma feature aligns with a large body of prior work in inbred 
mice, non-human primates, and natural experiments in humans (e.g., humans with 
acquired immune deficiency, or with genetic immune deficiencies), indicating that CD4 
T lymphocytes and their effector molecules are required for resistance to M. tuberculosis 
(63). We therefore expected that lung tissue from asymptomatically infected Diversity 
Outbred mice would contain highly expressed genes and gene expression pathways 
indicative of CD4 T cell functions. However, we were surprised to find that the differ-
entially expressed genes in lungs of Diversity Outbred mice with asymptomatic M. 
tuberculosis infection corresponded to B-cell functions and signaling, not to CD4 T-cell 
functions and signaling. Of the eight upregulated pathways in lungs of asymptomati­
cally infected Diversity Outbred mice, seven involved B-cell differentiation, proliferation, 

FIG 9 (Continued)

controller. Magnification is ×80, and the high-magnification inserts are magnified ×400. The images were not altered in any way (i.e., not zoomed in or out) after 

extraction. (E and F) Visualization of the total number of CD20+ cells and density of CD20+ cells (cells per mm²) within the perivascular and peribronchiolar 

regions respectively. Box-and-whiskers plots in all panels show interquartile range with whiskers at the minimum and maximum. Each dot is one Diversity 

Outbred mouse and n = 27 Asymptomatic, n = 9 Progressor, n = 18 Controller, and n = 19 non-infected mice are shown. Statistical analyses were performed using 

Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons post-tests (E and F). Non-significant P values are not shown. **P < 0.01, ***P < 0.001, ****P < 

0.0001, * P<0.05.
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activation, or effector functions. None of the significant pathways were specific for T 
lymphocytes or CD4 T cells of any subtype.

We compared our gene expression results with a 2020 study by Ahmed et al. (19), 
which used RNAseq to identify differences between Diversity Outbred mice with a 
high-risk disease score (n = 16), low-risk disease score (n = 13), and non-infected (n = 
10). Of the 105 genes we identified in the lungs of asymptomatically infected Diversity 
Outbred mice, 14 were also reported by Ahmed et al. as significantly overexpressed 
in low-risk vs high-risk disease scores, and 52 were significantly overexpressed in the 
low-risk disease score vs non-infected (19). The different results may reflect differen-
ces in methods (microarray vs RNAseq) and sample size (hundreds vs tens). However, 
more importantly, among the matching sets of 14 and 52 highly expressed genes, 10 
overlapped: Pax5, Zfp318, Thada, Ralgps2, Dclk2, Itpr2, Cyb561a3, Dock8, F8, and Bach2. 
Many of these genes transcriptionally regulate B-cell differentiation and immunoglobulin 
production. Esaulova et al. reported similar findings in a 2021 study that B-cell follicles 
were smaller in the lungs of macaques with pulmonary TB (n = 5) compared to those 
with latent TB infection (n = 2), and a negative correlation between the B-cell follicle 
size and lung M. tuberculosis burden (64) supported a protective role of inducible 
bronchiolar-associated lymphoid tissue. Their single-cell RNAseq analysis indicated the 
relative number of CD79A+ B cells was higher in the pulmonary TB compared with 
latent TB infection (64). Our results suggest the opposite: lungs of asymptomatically 
infected Diversity mice had significantly higher expression of Cd79a as well as other 
B-cell genes, including Ms4a1 that encodes CD20. We also observed more CD20+ B cells 
in perivascular and peribronchiolar regions.

Our studies examining resistance to M. tuberculosis using protein biomarkers, lung 
histopathology, deep-learning neural networks, gene expression profiles, and immuno­
histochemistry provide insight, but there are limitations. One limitation is that Diversity 
Outbred mouse population does not model all forms of TB in humans, likely because M. 
tuberculosis is a human-adapted bacillus and because humans and mice have different-
sized lungs, leading to clinical disease at different-sized lesions. For example, the lungs of 
an asymptomatic human could readily tolerate a 1-cm3 granuloma, but that same-sized 
lesion would cause mortality in a mouse. Although we have nearly 900 mice available 
for survival and body weights, we have gaps in the data sets, and subsequent analyses 
used smaller subsets, often 100–200 samples. In part, these data gaps reflect smaller 
volumes, for example, in biomarker panel studies. The gene expression profiles had 117 
samples available, and second sets of gene expression profiles remain in processing and 
will become available for future studies. Lastly, this work did not explore joint analysis 
of different modalities because using either gene expression profiles or histopathology 
slides alone enabled accurate classification between acute pulmonary TB in progressors, 
chronic pulmonary TB in controllers, and the lungs from asymptomatically infected mice. 
A future direction can be capturing the intermodal relationships for identifying more 
complex resistance signatures and boosting the diagnostic accuracy.

Overall, our results show two main findings that have important implications. First, 
there are two distinct forms of end-stage pulmonary TB in Diversity Outbred mice, 
which can inform the pathogenesis of pulmonary TB in humans and support research to 
discover and host-directed therapies against these two forms of TB. Second, by applying 
novel computational approaches, image analysis, and lung transcriptional profiles, we 
found granuloma regions of perivascular and peribronchiolar lymphocytic cuffs specific 
to asymptomatic lung infection and lung functional responses, which show B cells may 
be important to establish asymptomatic M. tuberculosis lung infection in genetically 
heterogenous populations. Future studies using the Diversity Outbred mouse population 
can define the genetic control upstream of B-cell responses to M. tuberculosis to improve 
our understanding of how genotype controlled responses restrict M. tuberculosis.
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