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Abstract

During embryonic morphogenesis, tissues undergo dramatic deformations in order to form 

functional organs. Similarly, in adult animals, living cells and tissues are continually subjected 

to forces and deformations. Therefore, the success of embryonic development and the proper 

maintenance of physiological functions rely on the ability of cells to withstand mechanical 

stresses as well as their ability to flow in a collective manner. During these events, mechanical 

perturbations can originate from active processes at the single-cell level, competing with external 

stresses exerted by surrounding tissues and organs. However, the study of tissue mechanics 

has been somewhat limited to either the response to external forces or to intrinsic ones. In 

this work, we use an active vertex model of a 2D confluent tissue to study the interplay of 

external deformations that are applied globally to a tissue with internal active stresses that 

arise locally at the cellular level due to cell motility. We elucidate, in particular, the way in 

which this interplay between globally external and locally internal active driving determines 

the emergent mechanical properties of the tissue as a whole. For a tissue in the vicinity of 

a solid-fluid jamming or unjamming transition, we uncover a host of fascinating rheological 

phenomena, including yielding, shear thinning, continuous shear thickening, and discontinuous 

shear thickening. These model predictions provide a framework for understanding the recently 

observed nonlinear rheological behaviors in vivo.
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I. INTRODUCTION

During embryonic morphogenesis, biological tissues undergo dramatic deformations in 

order to form functional organs. The tissues of mature organisms likewise continually suffer 

stresses and deformations. The success of embryonic development and the maintenance 

of proper physiological functioning accordingly both depend intimately on a tissue’s 

rheological (deformation and flow) properties [1]. On short timescales, tissues can withstand 

mechanical stresses. Over longer timescales, they remodel via cell neighbor exchanges 

(topological T1 transitions) [2–5], which thus constitute a key rate-limiting step in important 

processes such as embryo development, wound healing, and cancer metastasis. Recent 

evidence further suggests that dense confluent tissues, which have no gaps between cells, are 
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poised in the vicinity of a transition between a jammed, solidlike state and an unjammed, 

fluidlike state [6–14].

From a fundamental viewpoint, mechanical stresses can either originate internally within 

a biological tissue, via spontaneously active processes intrinsic to the cellular level, such 

as cell contractility [15,16], polarized motility [17], or mitosis [18,19]; or they can be 

exerted externally, by surrounding tissues and organs [20,21]. Recent experiments have 

shown that cell collectives subjected to externally applied stretching [22–25] or shear 

[26] deformations show a strongly nonlinear rheological response. Tissues deformed by 

internally active stresses at the cellular level have likewise been seen to exhibit extreme 

mechanical phenomena such as fracturing [27].

Perhaps surprisingly, studies of tissue mechanics to date have largely been confined either 
to the response of tissues to externally imposed stresses or, separately, to phenomena arising 

from internally active processes. Crucially, however, most living tissues exist in a state 

where both forms of driving work together in concert. For example, during Drosophila 

embryogenesis, polarized actomyosin contractility at the single-cell level interacts with 

external stresses exerted by neighboring tissues to cause the tissue to flow plastically in 

convergent extension [21,28]. During cancer progression, tumor-cell collectives constantly 

experience mechanical stimuli such as compression and shear stresses from the surrounding 

extracellular matrix (ECM) [29]. At the same time, tumor cells generate actomyosin 

contractility at the single-cell level. This interplay between external microenvironmental 

stresses and internal motility has been shown to be central to determining whether a cell 

cluster is jammed or unjammed [12]. Recent work on cancer migration also suggests that 

tumor fluidity depends not only on the single-cell invasive potential (akin to our activity) but 

also on the compressive and shear stresses they experience due to the ECM [30].

With these motivations, in this work, we elucidate, in particular, the way in which the 

interplay between globally external and locally internal active driving determines the 

emergent mechanical properties of the tissue as a whole. Model predictions point towards a 

framework for understanding the recently observed range of nonlinear rheological behaviors 

in vivo [27,28,31] and in vitro [23,26]. For a tissue in the vicinity of a solid-fluid 

jamming or unjamming transition, we uncover a host of fascinating rheological phenomena, 

including yielding, shear thinning, continuous shear thickening (CST), and discontinuous 

shear thickening (DST).

Beyond this context of biological tissues, shear thickening has been the focus of intense 

recent research in the rheology literature more broadly because of its widespread occurrence 

in dense granular materials and suspensions [32–35]. Indeed, simulations [36,37] and 

experiments [38] on dense suspensions show a large discontinuous increase in viscosity 

with increasing shear rate, attributed to a crossover between hydrodynamic and frictional 

interparticle interactions. For shear rates in this transition region, large stress fluctuations are 

seen, with an intermittent bimodal switching between low and high viscosity branches of 

the flow curve [32,37]. Associated with this shear thickening transition is the formation of 

bands of different shear stress stacked with layer normals in the vorticity direction [39]. Our 
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prediction of DST in biological tissues suggests that this phenomenon may be present in a 

broader class of materials than is evident from this existing rheology literature.

II. MODEL

The vertex model that we simulate represents the tightly packed cells of a 2D tissue 

monolayer as a tiling of n = 1⋯N polygons, defined by the positions of the polygon vertices 

[13,40–44]. The vertices of any polygon are joined by edges that form the boundaries with 

the adjoining cells. Each vertex is shared by three cells and each edge by two cells.

The elastic energy of the vertex model comprises two contributions. The first is set by the 

deviation of the area A of a cell from a target value A0, providing a 2D toy model of 3D 

cell volume incompressibility. The second contribution is set by the deviation of the cell 

perimeter P  from a target value P0. Summing over all cells in the packing, the energy is then

E = 1
2 n = 1

N
κA An − An0

2 + κP Pn − Pn0
2 .

(1)

The quantity p0 = Pn0/ An0 defines a cell shape factor and is an important control parameter 

in our study. We set it the same value for all cells in any simulation, independent of n. In 

physical terms, p0 is commonly attributed to a competition between cell cortical contractility 

and cell-cell adhesion [42,45–48], although recent experiments also imply a relationship 

with cell-substrate traction [49]. Cell shape has been shown experimentally to predict 

jamming behavior in epithelial tissues [6,50]. The elastic constants κP and κA set the strength 

of the perimeter and area interactions, and we choose κP = 1 as our basic unit of stress.

The elastic forces exerted on the vertices of any cell due to the elastic contributions of that 

cell are sketched in Fig. 1(a). In this sketch, consider a representative edge of length L, 

connecting two representative adjacent vertices. The cell that is sketched then contributes to 

each of these two vertices an equal and opposite tensionlike force of magnitude κP P − P0 , 

acting tangentially along the edge, inwards along the edge when P > P0, and outwards when 

P < P0. The cell shown also contributes to the same two vertices a pressurelike force of 

magnitude κA A − A0 L, acting perpendicularly to the edge, in towards the cell when A > A0, 

and outwards when A < A0. These expressions are derived in the Appendix. Each vertex in 

Fig. 1(a) additionally belongs to two further cells (not shown) that contribute corresponding 

elastic forces. The total elastic force F j on the jth vertex in the tiling is calculated by 

summing these contributions from its three shared cells.

In an externally applied simple shear flow of rate γ̇, with flow direction x and flow-gradient 

direction y, the position r j of the jth vertex in the tiling obeys overdamped dynamics with 

drag coefficient ζ:
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d r j
dt = 1

ζ F j + v
ij = 1

3
wijn̂ij + γ̇yjx̂,

(2)

with Lees-Edwards periodic boundary conditions [51].

The second term on the right-hand side of this equation describes a random motile activity 

[5,52,53]. The magnitude v of this activity is an important control parameter in our study. 

The direction of the motility of the jth vertex in the tiling is prescribed by the weighted 

sum of the polarization vectors n̂ij = cos θij, sin θij  of the three cells ij = 1,2, 3 in contact with 

that jth vertex. The polarization angle of each cell in the tiling is initialized randomly at 

the start of any simulation from a uniform distribution in the range 0 to 2π. It thereafter 

experiences angular diffusion with a diffusion coefficient Dr, modeled via Gaussian random 

noise. Accordingly, the polarization angle of the nth cell in the tiling obeys

dθn
dt = ηn,

(3)

in which ηn is a random variable with statistics [42]

ηn t = 0, ηn t ηm t′ = 2Drδnmδ t − t′ .

(4)

The weighting factors wij in Eq. (2) ensure that the largest contribution to the polarization 

vector of our representative vertex (the jth in the tiling) arises from whichever of its three 

associated cells ij = 1,2, 3 has the largest value of the summed lengths of cell edges that 

contact that vertex. Specifically, we define lij to be the summed length of the two edges of 

the ijth cell in contact with vertex j, as shown by the color-coded lines in Fig. 1(b), and set

wij =
lij

12LT j
,

(5)

consistent with the weighting function used in previous work [5,13]. Here, LT j is the total 

length of the three edges in contact with vertex j. Topological T1 cell-cell rearrangement 

events also intermittently arise, leading to plastic stress relaxation. Specifically, when any 

cell edge length becomes smaller than a threshold value lT1, a T1 event occurs. Prior to a T1, 

the selected edge is defined by two vertices, one shared between cells αβγ and the other αβδ. 

The T1 event then replaces these two old vertices with two new ones, shared by cells αγδ and 

βγδ [13,54].
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To initialize an amorphous cellular tiling, we start from a uniform lattice of monodisperse 

hexagonal cells of cell edge length 1 stacked in N rows, each of N cells. Target perimeter 

and area values are then assigned to each cell. To avoid the effects of crystallization 

associated with monodisperse packings [55], we use a bidisperse packing in which half 

the cells have a smaller size and half a larger size. Specifically, we assign these two 

populations target perimeters in the ratio 1:1.4, respectively. To maintain a consistent target 

shape factor p0 = P0/ A0  between these two populations, their target areas are set in the 

ratio 1:1.42, respectively. The overall scale of the target area is set such that the target 

area summed over all cells equals that of the domain size created in the initial uniform 

hexagonal tiling. The packing is then randomized by implementing cell motility with 

nonzero v = vprep and Dr = Dr, prep in the absence of shear for tprep time units, then subsequently 

relaxing the system with zero activity (and zero shear) for trelax time units. Choosing 

vprep = 4.0, Dr, prep = 0.25, tprep = 14.5, trelax = 5.5 produces a random bidisperse initial cellular tiling 

with fully relaxed cell areas and perimeters.

The equations of motion described above are integrated using the explicit Euler method with 

time step dt, both during the preparation stage just discussed and the subsequent shearing 

stage. The time step dt is converged to the limit dt 0, and the system size is converged to 

the limit N ∞.

The values, symbols, and dimensions for the parameters of the model and shear protocol are 

listed in Table I.

In what follows, we report the steady-state shear stress σ in the tissue. For any individual cell 

with vertices numbered c = 1⋯C, a cell level stress is calculated at any time as [56]

Sαβ = 1
A c = 1

C
Fcαrcβ .

(6)

Here, Fcα is the α component of the elastic force on vertex c from the elastic contributions 

of that single cell, rcβ is the β component of the position of vertex c, and A is the cell’s area. 

These individual cell stresses, thus defined, are then averaged over all cells in the packing. 

The packingaveraged shear stress is then averaged over many strain units once a state of 

statistically steady shear is attained and, furthermore (for each set of model parameters), 

over three runs with different random number of seeds. It is this averaged shear stress that is 

reported in the results that follow. We have checked it to be robust to changes in system size 

for N > 100. Fluctuations about the average decrease with increasing N.

In the absence of internal activity v = 0  and external applied shear γ̇ = 0 , the vertex model 

captures a fluid-solid transition at a critical target cell shape p0 = p0
* [41,42,48,57], with 

p0
* ≈ 3.81 for the bidisperse tiling studied here. For p0 < p0

*, cells cannot attain their target 

shape, and the energy barriers to local T1 cell rearrangements are significant: The tissue 

resists shear, giving a solid phase. For p0 > p0
*, cells achieve their target shape, and the energy 
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barriers to rearrangements are small, resulting in a liquid phase that cannot resist shear [48]. 

A nonlinear shear applied quasistatically γ̇ 0 , however, induces a solidification transition 

at a critical strain γc p0  for p0
* < p0 < p0

* * , with p0
* * ≈ 4.03 [58]. It does so by deforming cells 

such that they can no longer attain their target shape, eliminating the zero-shear liquid and 

inducing a solidlike response. The steady-state flow curve of shear stress vs shear rate, σ γ̇ , 

then displays a yield stress σY = limγ̇ 0 σ γ̇ ≠ 0 for all p0 < p0
* *  [58].

III. RESULTS

We start by exploring the effects of activity on a sheared tissue, reporting in Fig. 2(a) 

steady-state flow curves σ γ̇  in the (zero-activity, zero-shear) solid phase, p0 < p0
*. At zero 

activity, we see a yield stress σY = limγ̇ 0 σ γ̇ ≠ 0, indicating a solidlike response with infinite 

viscosity η = σ/γ̇ in quasistatic shear γ̇ 0, consistent with Ref. [58]. In contrast, at high 

activity, we find liquidlike flow with σ = ηγ̇, in the limit of small shear rate γ̇ 0, which is 

termed Newtonian flow behavior. The viscosity η = η p0, v  is fit by the black dashed lines.

The zero-shear γ̇ 0  viscosity η p0, v  in the (zero-activity, zero-shear) solid phase, p0 < p0
*, 

thus increases dramatically with decreasing activity v at fixed target cell shape. In Fig. 3(a), 

we fit this increase to the Vogel-FulcherTamman (VFT) form η exp 1/ v − vc  to find the 

critical activity v = vc p0 > 0 below which η diverges at any p0 < p0
*. This divergence of the 

zero-shear viscosity at a critical vc p0  for p0 < p0
* may indicate a true yield stress σY for all 

0 ≤ v < vc, consistent with that at v = 0 [58], although a power law σ ∝ γ̇n with n < 1 is not 

ruled out for 0 < v < vc. Either way, in the solid phase, p0 < p0
*, a critical activity vc p0  is 

needed to eliminate solidlike behavior in favor of Newtonian flow with finite η. This critical 

vc is plotted vs p0 in Fig. 3(b), which also shows a color map of η in the plane of v, p0. The 

zero-shear viscosity is also consistent with the viscosity calculated based on the Green-Kubo 

relation [59]. A linear fit suggests that vc falls to zero at the (zero-activity, zero-shear) 

solid-liquid transition p0 = p0
*. This intercept is consistent with similar data in linear studies 

[59]. However, the curve shape differs, implying a different mechanism at nonzero activity.

The flow curves just discussed, for a tissue in its (zero-activity, zero-shear) solid phase, 

closely resemble those of complex fluids such as glassy colloidal and jammed athermal 

soft particle suspensions [60–62]. These curves show a yield stress at high packing fraction 

ϕ and low temperature, analogous to our curves for low activity. Particle suspensions also 

show low-shear Newtonian behavior at low ϕ and high temperature, analogous to ours at 

high activity.

Next, we consider the effect of activity on a sheared tissue in its liquid phase, p0 > p0
*. 

See the steady-state flow curves in Fig. 2(b). In notable contrast to the solid phase, these 

curves closely resemble the flow curves of dense frictional suspensions and granular matter 

[63–65]. In particular, they show DST, in which the shear stress jumps discontinuously with 

increasing strain rate at high ϕ (in suspensions) or low activity (here). DST then gives way, 

at lower ϕ (in suspensions) or higher activity (here), to CST, in which the stress still steepens 

with shear rate, but without jumping.
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We next explore the origins of DST by examining the spatial-temporal evolution of the stress 

for different shear rates at fixed activity and p0. An example flow curve for v = 0.12, p0 = 3.90
is shown in Fig. 4(a). In Fig. 4(b), the stress as a function of strain γ = γ̇t (which is 

proportional to time t, given constant γ̇) is plotted for three different shear rates, with line 

colors corresponding to marker colors in Fig. 4(a). The corresponding stress distributions 

over each of these strain series are shown in Fig. 4(c). For a low-shear rate (blue), the 

stress fluctuates modestly (in proportional terms) around a low value. Similarly, for a 

high-shear rate (green), the stress fluctuates modestly around a high value. In contrast, at an 

intermediate-shear rate (red), the stress intermittently switches between these low and high 

stress states to give a bimodal distribution.

This intermittent, bimodal stress evolution at the DST transition is also seen in frictional 

suspensions, where it is caused by percolating compressive force chains [32–35,63,66,67]. 

Our simulations likewise evidence percolating force chains in the vertex model of biological 

tissue: Figures 4(d) and 4(e) show representative state snapshots corresponding to the 

lowest and highest strain rates in Figs. 4(a) and 4(b), with the thickness of each cell 

edge proportional to the tensile stress it carries. In the low stress (unthickened) state, the 

tension is distributed fairly evenly across the system. In contrast, the high stress (thickened) 

state displays system-spanning force chains. In important contrast to the compressive 
force chains that form in frictional suspensions, however, we find these stresses to be 

tensile in nature in tissues. This finding is consistent with recent computational [10,15,68] 

and experimental [6,69] studies, which indeed found that tensile stresses overwhelmingly 

dominate in biological tissues.

To further characterize the regime of shear thickening, we define two characteristic shear 

rates, each via the logarithmic slope of the flow curve, G = dlog σ/dlog γ̇ . G = 1 indicates 

Newtonian behavior.) First, we define the onset of shear thickening in Fig. 2(b) via the 

shear rate γ̇thick (shown by black squares) at which G first increases above 1 + ϵ, with ϵ = 0.2. 

Second, we define the reversion to shear thinning at higher strain rates via the shear rate γ̇thin

(black triangles) at which G first falls below 1 − δ, with δ = 0.1. At low activity, where DST 

arises, γ̇thin = γ̇thick, to within the resolution of γ̇ values simulated.

Figure 5 shows γ̇thick as a function of activity v for several values of the target shape p0. For 

p0 values comfortably inside the (zero-activity, zero-shear) fluid phase above p0
*, we find 

γ̇thin ≈ γ̇thick vα at low v. The exponent α decreases with increasing p0, with α ≈ 2.0 at p0 = 4.0. 

In the fluid phase, p0 > p0
*; therefore, any level of activity v, however small, is sufficient 

to restore Newtonian response σ = ηγ̇ in quasistatic shear γ̇ 0, as γ̇ < γ̇thin ≈ γ̇thick vα. This 

finding notably contrasts with the (zero-activity, zero-shear) solid phase, p0 < p0
*, where a 

finite level of activity v = vc p0  is needed to give Newtonian behavior in slow shear, γ̇ 0.

Having examined the shear rate at which shear thickening (if present) arises in the flow 

curve for any pairing of p0, v values, we finally consider which flow curves indeed show 

shear thickening. To do so, we define Gmax to be the maximum of the logarithmic gradient 

G = dlog σ/dlog γ̇ across each flow curve and plot in Fig. 6 a color map of values of Gmax that 

exceed 1 + ϵ with ϵ = 0.2, taking this as the minimal threshold for shear thickening. Values of 
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p0, v for which the flow curve does not meet this threshold are shown as white open symbols. 

As can be seen, very strong shear thickening (large Gmax) arises at high p0 and low v: This 

is the regime of DST, where the value of Gmax is limited only by the resolution of γ̇ values 

simulated. As v increases at fixed p0, we see a crossover to more moderate CST before 

thickening is lost at high v. The black solid line shows a linear fit to the threshold at which 

thickening is lost.

The apparent loss of shear thickening at fixed v with decreasing p0 in Fig. 6 is worthy of 

comment. Towards the left-hand edge of the regime of colored symbols, the shear rate γ̇thick

that marks the onset of thickening decreases, approaching the minimum shear rate that we 

can feasibly simulate. Were we able to simulate arbitrarily low-shear rates, we speculate 

that the observed regime of thickening would in fact extend leftwards, with γ̇thick 0 only at 

the magenta line, consistent with the zero-shear viscosity η being infinite to the left of that 

line (Fig. 3). We have therefore continued the black solid line leftwards as a dashed line 

and suggest that the black and magenta lines together delineate the key rheological regimes 

observed in this work. Representative flow curves for each regime are shown beneath the 

color map in Fig. 6.

At higher shear rates, for all p0, v, we observe shear thinning arising from T1 cell 

rearrangement events. This finding has been seen previously in a vertex model, and it derives 

from an interplay of active fluctuations in vertex length with T1 transitions induced by shear 

[40].

IV. DISCUSSIONS AND CONCLUSIONS

Our work points towards a framework for understanding the emergent nonlinear mechanics 

of biological tissue. In particular, we have shown the nonlinear shear rheology of the vertex 

model to be determined by an intricate interplay between the intrinsic solid-liquid transition 

that arises at a target cell shape p0 = p0
* ≈ 3.81 in the absence of shear or activity [42,70], with 

the mutually competing effects of a global external shear and local internal cell motility.

Indeed, in slow shear, γ̇ 0, a sufficiently high level of activity always ensures a liquidlike 

Newtonian response. The path to this liquified state as a function of increasing activity 

is however markedly different for values of the target cell shape p0 in the (zero-shear, 

zero-activity) solid and liquid phases. In the former, a critical threshold activity level vc p0

is needed to induce liquefaction. In the latter, any level of activity, however small, ensures 

Newtonian response in quasistatic shear γ̇ 0. As the shear rate increases, however, the 

globally coherent effect of shear exceeds that of locally incoherent activity, inducing a 

resolidification transition via DST. The shear thickening behavior thus arises from the 

competition between the accumulation of shear strain due to driving and the dissipation due 

to cellular activity. On the one hand, the applied shear rate drives the formation of tension 

networks in the tissue. On the other, the cellular activity acts as a dissipative noisy process 

that remodels and relaxes the tension network.
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We posit that this competition between externally imposed shear and internal cell motility 

can be characterized via a Péclet number, Pe = γ̇τf [71], in which τf is the timescale 

for cell-cell rearrangements due to active motility. In the regime of high Péclet number, 

Pe ≫ 1, γ̇ ≫ τf
−1, motility is insufficient to affect structural rearrangements caused by the 

imposed shear. As a result, the mechanical response of the tissue is dominated by the 

externally applied shear. Because this provides a global driving that acts in a coherent way 

across the entire tissue, it tends to deform cells away from their target shape, leading to 

solidlike behavior.

In contrast, in the regime of low Péclet number, Pe ≪ 1, τf
−1 ≫ γ̇, the mechanics of the 

tissue is dominated by the active motility. Because it arises internally at the local level 

of individual cells, lacking any spatial coherence across the tissue, it provides a source 

of structural rearrangements that tend to counteract the solidifying effect of the globally 

coherent applied shear just described, resulting in a liquid-like response.

We propose that shear thickening occurs at a Péclet number of approximately 1, such 

that the threshold shear rate for shear thickening is proportional to the inverse of the 

characteristic timescale τf. Deriving an expression for τf is not a simple task. However, we 

suggest that this timescale for structural rearrangement τf will be proportional to the tissue’s 

Newtonian viscosity η, defined as the ratio of stress to strain rate in the zero-shear rate limit 

of the flow curve, i.e., at low Péclet number Pe ≪ 1.

To explore this idea, we show in Fig. 7(a) a set of flow curves for a fixed target cell shape 

p0 = 3.90, for a range of values of the activity parameter v, now with the shear rate on the 

horizontal axis rescaled according to γ̇ γ̇η/v2. As can be seen, the location γ̇thick of the shear 

thickening transition, which is different for different activity values in raw flow curves such 

as those shown in Fig. 2, now collapses to a single scaled shear rate, 1/γ̇thick ∝ η/v2. This 

finding confirms that the inverse shear rate at which thickening occurs in nonlinear rheology, 

and thus our timescale τf, is indeed proportional to the tissue’s zero-shear viscosity η. This 

scaling is further investigated in Fig. 7(b), which shows that the relationship 1/γ̇thick ∝ η/v2 is 

approximately obeyed over the full range of values of v and target cell shape p0 for which 

both a shear thickening transition and a Newtonian viscosity are indeed seen in the flow 

curve.

As just described, this rearrangement timescale τf is important in tissue mechanics because 

it captures the timescale for structural and stress relaxation driven by internal activity. Via 

this scaling argument, we have demonstrated the quantity τf to be closely related to the 

tissue viscosity in the limit of zero-shear rate. Importantly, this finding suggests a possible 

route to accessing the value of τf experimentally in tissue systems, for example, by using 

magnetically responsive ferrofluid microdroplets to perform quantitative spatiotemporal 

measurements of mechanical properties in vivo [72,73].

In our current model, the focus has been on the mechanical properties of individual cells 

and their intercellular interactions, without considering any mechanical role of the cell 

nucleus. Recent studies have elevated the importance of nuclear compressibility and size 
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as factors that not only govern cell migration and rearrangement but also actively regulate 

cellular force generation [8,74]. In light of these findings, future research should incorporate 

mechanics of the cell nucleus into our existing model, which has already been shown 

to undergo a density-driven jamming transition [50,75]. We anticipate that the model’s 

rheological properties will become increasingly sensitive to nuclear packing density when 

the size of the nucleus is substantial relative to that of the cell. This could introduce an 

additional dimension of shear-thickening behavior, similar to the phenomena observed in 

densely packed particulate systems [63–65].

In this work, we have considered a bidisperse distribution of cell sizes. Looking ahead, it 

would be valuable to further include phenotypic heterogeneity by incorporating distributions 

of v, p0, κA, and κP values, grounded in empirical measurements of single-cell properties. 

Previous research has demonstrated that such heterogeneity can significantly influence tissue 

rigidity and fluidity [68,76]. Consequently, we anticipate that the introduction of mechanical 

heterogeneity will give rise to intriguing and complex rheological behaviors.

As noted above, DST has been widely observed in dense granular systems with a 

phenomenology strikingly similar to that reported here for tissues. In each case, a sudden 

increase in viscosity occurs with increasing shear rate, associated with an intermittent 

bimodal switching of stress between low- and high-shear branches for imposed shear rates 

in the vicinity of the transition. However, key differences are also notable. In granular 

systems, DST arises via the development of frictional contacts between particles, leading to 

the formation of compressive force chains that percolate and bear loads across the sample 

[33,63]. In contrast, in tissues, we predict DST to arise when the globally coherent effects 

of an applied shear dominate over the local, spatially incoherent effects of cell motility, 

leading to the formation of tensile force chains that percolate and bear load. The possibility 

of vorticity banding associated with DST in tissues should be investigated in future 3D 

simulations that allow spatial variations in the vorticity direction, to explore the analogy with 

vorticity banding associated with DST in granular systems [39].

In living tissues, our model predictions can be immediately tested in the convergent 

extension of the Drosophila germband epithelium [77–79]. This epithelium experiences 

elongation along the anterior-posterior axis. During this elongation, the germband tissue is 

subjected to external shearing forces from neighboring structures, such as the ventral furrow, 

while simultaneously experiencing internal forces due to planar-polarized contractions 

driven by myosin II motor activity. This scenario presents a prime example of the 

interplay between local active forces and global deformations that is central to our 

theoretical framework. Analyzing the rheological response throughout this process could 

provide significant insights. With recent technological advances in imaging [80] and force-

measurement techniques [81], such analyses are becoming increasingly attainable.

In summary, our study provides a robust framework for understanding the rheological 

behavior of biological tissues. Considering that nearly all living tissues are subject to 

a dynamic interplay between local active forces and global deformations, one of the 

model’s most straightforward yet far-reaching predictions is that this interplay can lead 

to a competition between the timescales of structural relaxation and of external driving 

Hertaeg et al. Page 10

Phys Rev X. Author manuscript; available in PMC 2024 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



forces. This in turn gives rise to diverse rheological responses, including discontinuous shear 

thickening. Consequently, we argue that these predictions are broadly applicable to a wide 

array of biological systems. Furthermore, as mounting evidence increasingly suggests that 

dense tissues operate near a jamming-unjamming transition, our theoretical contributions 

offer valuable insights into how tissue mechanics is modulated in proximity to these critical 

states.

In future work, it would be interesting to extend the concepts explored here to understand 

whether strongly nonlinear mechanical phenomena such as tissue fracture [23,25] and a 

ductile-to-brittle transition [27] are related to the tissue’s ability to shear-thicken.

The code used for this paper is available from the author upon request.
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APPENDIX: DERIVING VERTEX MODEL FORCES

We recall from Eq. (1) in the main text that the elastic energy of a single cell in the vertex 

model comprises two contributions. The first stems from the deviation of the cell’s actual 

area A from its target value A0. The second stems from the deviation of the cell’s actual 

perimeter P  from its target value P0. The resultant force on any given vertex associated 

with each edge that meets that vertex then likewise comprises separate energy and perimeter 

contributions, as shown in Fig. 8. (Additional area and perimeter forces also arise associated 

with the third edge that meets the vertex from neighboring cells that are not shown.) The 

area force is resolved into components perpendicular to each cell edge. The perimeter force 

is resolved into components parallel to each cell edge. We now derive the magnitude of each 

of these components.

1. Area forces

The cell sketched in Fig. 8 can be separated into an upper triangle and a lower pentagon by 

the bisecting dotted line shown. With the coordinates of the vertex of interest at x, y  and the 

origin (0, 0) defined to coincide with the vertex to its left, the cell area can be represented as 

the sum of the triangle’s area and the pentagon’s area:

A = 1
2wy + Ap .

(A1)

In this equation,

w = L1cos θ1 + L2cos θ2 ,
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(A2)

and Ap is the area of the pentagon. The contribution of this cell to the energy in Eq. (1) can 

then be written

Ea = 1
2κA

1
2wy + Ap − A0

2
.

(A3)

The x and y components of the area forces can then be calculated by taking the gradient of 

Ea,

∇Ea =
0

1
2κAw A0 − A ,

=
−Fa1sin θ1 + Fa2sin θ2

Fa1cos θ1 + Fa2cos θ2
.

(A4)

On the second line, the x and y component forces are expressed in terms of the components 

Fa1 and Fa2 perpendicular to the cell edges. The x component then yields the equation

0 = − Fa1sin θ1 + Fa2sin θ2 ,

(A5)

and the y component yields the equation

1
2κAw A0 − A = Fa1cos θ1 + Fa2cos θ2 .

(A6)

Recognizing that

L1sin θ1 = L2sin θ2 ,

(A7)

we obtain, together with Eq. (A5),

Fa2 = Fa1
L2
L1

.

(A8)

Substituting this into Eq. (A6) gives

1
2κAw A0 − A = Fa1cos θ1 + Fa1

L2
L1

cos θ2 .
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(A9)

Rearranging this equation gives

Fa1 =
1
2κAwL1 A0 − A

L1cos θ1 + L2cos θ2
.

(A10)

Substituting the expression for w from Eq. (A2) then gives

Fa1 = 1
2κAL1 A0 − A .

(A11)

Substituting this into Eq. (A8) likewise gives

Fa2 = 1
2κAL2 A0 − A .

(A12)

2. Perimeter forces

The perimeter forces can be derived using a similar method. We start by separating the 

cell perimeter into the contribution from the triangle, L1 + L2, and the contribution from the 

pentagon, P p (this being the pentagon’s perimeter minus w):

P = L1 + L2 + Pp .

(A13)

In this equation,

L1 = x2 + y2

(A14)

and

L2 = w − x 2 + y2 .

(A15)

The contribution of this cell to the energy in Eq. (1) can then be written

Ep = 1
2κp x2 + y2 + w − x 2 + y2 + Pp − P0

2
.
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(A16)

The x and y components of the perimeter forces can then be calculated by taking the 

gradient of Ep:

∇Ep =
κp

x
L1

− w − x
L2

P − P0

κp
y
L1

+ y
L2

P − P0

,

=
FP cos θ1 − cos θ2

FP sin θ1 + sin θ2
.

(A17)

On the first line of this equation, we have substituted the expressions for P, L1, and L2 from 

Eqs. (A13)–(A15). Further recognizing that

x
L1

= cos θ1 , w − x
L2

= cos θ2 ,

(A18)

together with

y
L1

= sin θ1 , y
L2

= sin θ2 ,

(A19)

we finally obtain

FP = κp P − P0 .

(A20)
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FIG. 1. 
(a) Diagram of elastic forces in the vertex model. Forces tangential to cell edges are 

proportional to the deviation in cell perimeter and are all of the same magnitude for a single 

cell. Forces perpendicular to edges are proportional to both the deviation in cell area and 

the associated edge length. (b) Diagram of the jth vertex in the packing (central blue circle), 

showing the three edges connecting this vertex to its three neighboring vertices (other blue 

circles). The cell polarization vectors n̂ij of the three adjoining cells ij = 1,2, 3 are shown as 

vectors. The associated lengths lij used in the weighted sum to calculate the polarization 

vector of the vertex are shown by colored lines.
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FIG. 2. 
Steady-state flow curves of shear stress as a function of shear rate. (a) 

For fixed p0 = 3.65 in the (zero-activity, zero-shear) solid phase with activity 

v = 0.0,0.1,0.2,0.3,0.4,0.5, 0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5 (from top to bottom). For low 

activity, we find a yield stress in the limit of low strain rate. For high activity, we 

see Newtonian flow response at low strain rates with shear thinning for higher strain 

rates. (b) For a fixed p0 = 3.90 in the (zero-activity, zero-shear) liquid phase with activity 

v = 0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.08, 0.10,0.12,0.14,0.16,0.20,0.25,0.30,0.35,0.40 (from top 

to bottom). With no activity, we find a yield stress in the limit of low strain rate. With 

modest levels of activity, Newtonian flow response at low strain rate gives way to a 

discontinuous shear thickening transition with increasing shear rate. Dashed lines fit regimes 

of constant viscosity, η p0, v = σ/γ̇. Black squares show γ̇thick and triangles γ̇thin, defined in the 

main text.
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FIG. 3. 
Newtonian viscosity η p0, v = σ/γ̇ from black-dashed fits in Fig. 2. (a) Plotted vs activity 

v for target shape p0 = 3.500, 3.575,3.650,3.725,3.760,3.800,3.825,3.850,3.875,3.900, 3.950,4.000
(from top to bottom). Solid lines are fits to the VFT form η exp 1/ v − vc  for p0 < p0

* ≈ 3.81, 

suggesting a viscosity divergence as v vc p0 . Dashed lines are spline fits for p0 > p0
*. (b) 

Color map in the plane of v and p0. Black triangles show the value of v = vc p0  at which 

the VFT fit predicts the viscosity to diverge. The magenta line is the linear fit to the black 

triangles.
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FIG. 4. 
Exploring the DST transition. (a) Representative flow curve showing the DST transition. (b) 

Stress as a function of strain γ = γ̇t for the three imposed strain rates denoted by shapes of 

corresponding color in panel (a): blue circles, γ̇ = 5.14 × 10−5; red squares, γ̇ = 7.36 × 10−5; 

green triangles, γ̇ = 1.1 × 10−4. (c) Corresponding probability distributions of the logarithm 

of the stress. Representative state snapshots at (d) γ̇ = 5.14 × 10−5 (blue circles) and (e) 

γ̇ = 1.1 × 10−4 (green triangles), with the line thickness of any cell edge proportional to the 

tensile stress it carries. Regions of high stress are distributed through the system in panel 

(d) but formed into system-spanning force chains in panel (e). Target cell shape p0 = 3.9, and 

activity v = 0.12.
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FIG. 5. 
Shear rate γ̇thick at the onset of shear thickening as a function of activity for target cell shape 

p0 = 3.760,3.800, 3.825,3.850,3.875,3.900,3.950,4.00 (from left to right). Colored straight lines 

show power-law fits to data, γ̇thick ∝ vα, implying that shear thickening will be present even at 

very low levels of activity. The dotted black line shows the power α = 2 as a guide to the eye.
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FIG. 6. 
Phase diagram showing different regimes of flow behavior for different values of v, p0, 

with a representative flow curve in each regime. In the top panel, colored symbols indicate 

maximum logarithmic slope Gmax of the flow curve at any v, p0, provided Gmax > 1 + ϵ with 

ϵ = 0.2, designated as the criterion for shear thickening. Open circles have Gmax < 1 + ϵ and no 

thickening. Black solid line: linear fit to v = v p0  at which thickening is lost. Dashed line: 

extrapolation of black solid line left to meet magenta line. The magenta line is the same as in 

Fig. 3. Panels (a)–(d) show representative flow curves at the v, p0 values indicated: (a) yield 

stress, (b) CST, (c) DST, and (d) Newtonian.
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FIG. 7. 
Data collapse with Péclet number. (a) Flow curves for target cell shape p0 = 3.90 and activity 

v = 0.08,0.10,0.12, 0.14,0.16,0.20,0.25,0.30,0.35,0.40 (from bottom to top). Compared with flow 

curves shown in raw form, as, for example, in Fig. 2, the shear rate on the horizontal axis has 

now been rescaled, γ̇ γ̇ η/v2 , to demonstrate scaling collapse with respect to the location 

of the shear thickening transition. (b) Inverse shear rate at the shear thickening transition 

1/γ̇thick plotted as a function of the scaled viscosity η/v2 across the full range of values of 

cell shape p0 and activity v for which a Newtonian regime and a shear thickening transition 

are observed in the numerically accessible flow curve. The black dashed line shows a linear 

scaling 1/γ̇thick ∝ η/v2 as a guide to the eye.
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FIG. 8. 
Diagram of forces acting on a single vertex from the two edges of one of the cells that meets 

that vertex.
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TABLE I.

Parameters of the model. Dimensions are expressed in terms of modulus (G), time (T), and length (L).

Quantity Symbol Dimensions Value

Number of cells N 1 100

Drag coefficient ζ GT 1 (time unit)

Edge length at initialization L L 1 (length unit)

Perimeter modulus κP G 1 (stress unit)

Area modulus κA GL2 1/2

Bidispersity ratio of the target cell area ⋯ 1 1:1.4

Polarization angle diffusion Dr T−1 0.5

T1 threshold lT1 L 0.07

Shape factor p0 1 Varied

Activity v GL Varied

Shear rate γ̇ T−1 Varied

Time step dt T 0.01
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