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Abstract

Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can 

simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single 

histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used 

hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. 

As biological H&E staining is not feasible, previous efforts have been made to obtain H&E 
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whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the 

tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E 

synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is 

typically performed at the patch-level. Thus, discontinuous intensities might be visually identified 

along with the patch boundaries assembling all individual patches back to a WSI. In this work, we 

propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual 

H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, 

we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation 

supervision as spatial constraints. Then, we introduce a random walk sliding window shifting 

strategy during the optimized inference stage, to alleviate the tiling effects. The validation results 

show that our spatially constrained synthesis method achieves a 56% performance gain for the 

downstream cell segmentation task. The proposed inference method reduces the tiling effects 

by using 50% fewer computation resources without compromising performance. The proposed 

random sliding window inference method is a plug-and-play module, which can be generalized for 

other high-resolution WSI image synthesis applications. The source code with our proposed model 

are available at https://github.com/MASILab/RandomWalkSlidingWindow.git
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1. Introduction

Multiplex immunofluorescence (MxIF) is a recently developed imaging platform that allows 

multiple (i.e., more than 20) cellular and histological markers to be investigated on a single 

tissue section (Vahadane et al., 2023). The hematoxylin and eosin (H&E) staining is still 

considered the gold standard in pathology that has an immense amount of historical data 

with well-established clinical guidelines (Simonson et al., 2021). With the rich molecular 

features, linking the MxIF images with the more broadly used H&E images might provide 

new insights for clinical research. Unfortunately, the H&E images are typically unavailable 

with MxIF on the same tissue section due to the physical restrictions in imaging procedures 

(Berens et al., 2019). As the biological H&E staining is not feasible, generative adversarial 

networks (GANs) have been applied for obtaining virtual H&E (vH&E) whole slide image 

(WSI) via deep learning empowered virtual staining (Zhang et al., 2020; Nadarajan and 

Doyle, 2020; Bayramoglu et al., 2017). However, the prior arts did not explicitly model the 

uniquely rich structural information in MxIF. Some research works also demonstrated MxIF 

inter-modality set synthesis (i.e., more than 10 stains) (Saurav et al., 2022; Bao et al., 2021b, 

2022), but their models were trained with paired MxIF data, and H&E was not involved.

In this work, we propose a novel unpaired “set to image” synthesis model (MxIF to H&E) 

by utilizing 27 MxIF channels (Figure 1A). Briefly, we extend the CycleGAN (Zhu et al., 

2017) framework with a multi-channel synthesis network with extra semantic segmentation 

branches to ensure anatomical consistency across modalities.
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Another long-lasting issue for deep learning based synthesis in histology is that patch-wise 

training is inevitable for the high-resolution WSIs (de Bel et al., 2018). As shown in 

Figure 1B, discontinuous intensities are visually identified along the patch boundaries when 

assembling the individual patches back to a WSI. To address this problem, Lahiani et al. 

refined the CycleGAN to reconstruct H&E WSIs from FAP-CK images and reduce the tiling 

artifact by adding the encoder level consistent loss (Lahiani et al., 2020). However, given 

the domain shifts on H&E RGB images and 27 multi-channel MxIF grayscale images, it 

is challenging in practise to impose similarity constraints between the encoder of MxIF to 

H&E and the encoder for H&E to MxIF. In this paper, we introduce a random walk sliding 

window shifting strategy during the optimized inference stage to alleviate the tiling effects 

that is generalizable.

The contribution of this work is four-fold: (1) We propose a novel unpaired “set to image” 

synthesis model (MxIF to H&E) that utilizes the rich structural information in 27 MxIF 

channels by aggregating simultaneous nuclei and mucin segmentation supervision as spatial 

constraints; (2) We introduce a sliding window shifting strategy during the optimized 

inference stage so as to alleviate the tiling effects; (3) The proposed random sliding window 

inference method is a plug-and-play module, which can be generalized and used for other 

high-resolution WSI image synthesis applications; (4) We evaluated the synthesis model in a 

quantitative manner by employing epithelial cell segmentation as a downstream task.

2. Methods

2.1. Unpaired set to image synthesis

We used CycleGAN as the backbone of the study. Given two synthesis domains, the 

generators G1 and G2  synthesize fake images to fool the relevant discriminators D1 and 

D2 to enhance the reconstruction in both ways. As Figure 2 shows, the G1 of the base model 

has multiple channels for the MxIF markers (denoted as X , G2 takes H&E (denoted as Y ) to 

synthesize MxIF, so the input of G2 is a regular three channels for RGB images. The output 

of G1 is three channels, while the output of G2 is 27 channels. Since the G1 and G2 have 

incompatible output channels, the total loss we use for the base model is defined in equation 

1 without identity loss (Zhu et al., 2017):

Lbase = LGAN G1, D2, X, Y + LGAN G2, D1, X, Y + wcycleLcycle G1, G2

(1)

where LGAN is the adversarial loss and Lcycle is the cycle consistency loss, wcycle is a constant 

weight value equal to 10, as referenced in the original CycleGAN article (Zhu et al., 2017). 

Because the pattern and shape of the nuclei are the critical factors for H&E interpretation, to 

ensure the structure consistency for each nucleus, and inspired by the Synseg-net (Huo et al., 

2018b,a), we added a Res-net based segmentation network (SegNet) that took the vH&E as 

input (Figure 2). The target reference truth labels were generated from the pretrained model 

DeepCell using the DAPI stains and the Muc2 stains (Bannon et al., 2021; Greenwald et al., 

2022). We converted the DeepCell instance labels to one-hot semantic labels (denoted as Z) 
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to ease the segmentation task. Then, the final loss for the proposed MxIF and H&E refining 

CycleGAN model is defined in equation 2:

Lpropose = Lbase + LDICE G1 X , Z

(2)

where LDICE is the DICE loss to penalize the wrong prediction (Shen et al., 2018).

2.2. Random sliding window for inference

(de Bel et al., 2018) proposed using overlap patches to generate inference of the adjacent tile 

to prevent artifacts at the edges of tiles. To create the final inference result of the overlap 

sections, (de Bel et al., 2018) claimed to calculate the sum of the weighted pixel values and 

divide by the sum of the weights. Inspired by (de Bel et al., 2018), we further define the 

pixel close to the center of the sliding window would contribute 100%, and the pixel in the 

inference sliding window boundary would contribute 50%, as shown in Figure 3. To avoid 

confusion, we only make the sliding window move in the direction of right or down. The 

region of the sliding window outside the target patch would be weighted average by relevant 

adjacent patches. We define the inference sliding window’s size as W s. The issue of (de Bel 

et al., 2018) is computationally expensive. For instance, if the pre-defined moving step of the 

sliding window is step = 1
2W s, then the target patch is split as a grid with a size S = 2. The 

base model would traverse all possible S2 = 4 nodes. Similarly, if step = 1
4W s, then the grid 

size is S = 4, and the base model would use S4 = 16 inferences per patch.

In our proposed approach, for the first patch of the whole WSI (the top left one), if the grid 

size S is pre-defined, then we downgrade the seeking of the potential inference point as a 

random walk problem, which means the inference sliding window start moving from the top 

left corner and it should not visit any inner grid lines twice. Then, we randomly select a 

potential S node as a set as

R = { x0, y0 , …, (xs − 1, ys − 1)}

(3)

where x, y  is a node in the grid, x0, y0  is always the top left corner of the WSI. Obviously, 

the size of R is S. For any two nodes xi, yi  and xj, yj  in R, xi ≠ xj, yi ≠ yj. Including the 

randomness on sliding window has been proven effective for model training, especially on 

3D medical images (Tang et al., 2021, 2022). Very few, if any, studies have been focused on 

utilizing the random shifting window for medical image inference. Once the R is finalized, 

we keep moving sliding window by step = W s horizontally and vertically from any node in 

R. The main motivation behind the random design is to ensure that multiple sliding windows 

would cover each pixel of the tissue in the WSI under a statistical fashion. The proposed 

way reduces the inference computation complexity from O S2  to O S  per patch.
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3. DATA AND EXPERIMENTAL DESIGN

3.1. Data and preprocessing

The data were collected from in-house patients with Crohn’s disease (CD), a challenging 

inflammatory bowel disease (IBD), which is characterized by chronic relapsing and 

remitting bowel inflammation and causes tremendous intestinal inury(Baumgart and 

Sandborn, 2012). 28 biopsies (14 ascending colon (AC) tissue samples, 13 terminal ileum 

(TI) samples) were collected from 16 CD patients, and 4 healthy controls with IRB 

approval (Bao et al., 2021a). The MxIF markers were stained and acquired from three 

batches with 20× magnification. The markers are DAPI, Muc2, γActin, CD45, CD11B, 

Collagen, CD20, PCNA, β-catenin, pSTAT3, pEGFR, CgA, CD4, CD3d, HLA-A, PanCK, 

OLFM4, CD8, αActinin, CD68, NaKATPase, Vimentin, Sox9, FOXP3, Lysozyme, SMA, 

and ERBB2. Each MxIF marker images was preprocessed by DAPI-based spatial alignment, 

autofluorescence correction, and background masked-out (McKinley et al., 2017). 28 H&E 

WSI images were used from the adjacent section close cut of MxIF tissue sections (more 

detail of dataset description is listed in Appendix-B).

3.2. Experimental Design

We set up the training testing 8 : 2 split-ratio and considered sample diversity, where 22 

samples were used for training while 6 were tested. We crop all WSIs into 1024×1024 

patches (0.324 μm/pixel) while only keeping the ones with 80% and more foreground 

tissues. Finally, 265 patches were remained for MxIF and 181 for H&E. The experiments 

were performed on a workstation with an NVIDIA RTX A6000 GPU.

Tiling effect evaluation.—We infer the testing samples using six ways. The first is 

default inference uses one inference. The second to fourth approaches use the proposed 

method with different grid sizes S = 2,4, 8 . Then the proposed method would use 2, 4, 

and 8 inferences per patch. The fifth and sixth inference methods use the baseline when 

S = 2 and 4, which causes 4 and 16 inferences per patch. For computation efficiency, we 

do not perform baseline when S = 8. To validate the effect of random walk, we validate the 

proposed method when S = 4, where 3! = 6 cases are available.

To evaluate the tilting effect removal performance, we find all lines of longitude and latitude 

if the coordinates of lines can be divisible by 128. Then we collect the pixels of two sides of 

the lines with one width or height, convert the RGB values to CIELAB space, and calculate 

the Euclidean distance of relevant two adjacent stripe pixels along the lines. In summary, 

there are 1521 lines across all six testing samples are collected for validation.

vH&E for downstream task.—To further quantitatively evaluate the overall synthesis 

performance, we performed downstream epithelial cell segmentation experiments using 

vH&E. To generate the reference label, we manually select the threshold to find definite 

positive signals of (NaKATPase+ PanCK+) and exclude Vimentin+. Then we integrate 

such MxIF biological rule-based threshold knowledge to annotate the DeepCell instance 

segmentation label and convert the annotation to semantic labels as the training and testing 

annotations. We crop the WSI into 256×256 patches (0.5 μm/pixel). We run the pretrained 
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HoVerNet model for the CoNIC challenge (Graham et al., 2019, 2021) on the 319 vH&E 

patches and get the generated epithelial labels. We utilize the masked DICE coefficient score 

for epithelial cell segmentation label consistency from MxIF and vH&E.

4. RESULTS

Tiling effect evaluation.

Figure 4 shows the qualitative results of titling effect removal on a random selective region 

of interest (ROI). Both vH&E in raw intensity and grayscale vH&E in jet colormap are 

shown. The quantitative results are listed in Table 1, where we found that for each of the two 

vH&E syntheses, the proposed method with grid size S = 8 outperformed the best baseline 

setup with 50% less computation usage. Table 4 also presents the effect of random walk, 

where no significant difference is found.

vH&E for downstream task.—Figure 5 shows qualitative and quantitative results for 

the two vH&E syntheses on epithelial cell segmentation consistency between DeepCell and 

MxIF biological rule-based label and H&E HoverNet label. Two sample ROIs from testing 

AC and TI samples are randomly selected. The results show that the proposed CycleGAN 

with structure constraints outperforms the baseline by 56% improvement.

5. Discussion and Conclusion

Direct evaluation on image similarity is essential. However, we do not have paired MxIF 

and H&E data for such direct comparison. A downstream epithelial cell segmentation task 

would be helpful for evaluating the quality of synthesis only, which is a main limitation of 

our work. DeepCell nuclei segmentation is prone to over-segmenting the nuclei, which could 

introduce bias in the downstream analysis when we compare the results between the MxIF 

DeepCell label and the HoverNet label. A refined MxIF label could potentially improve 

validation accuracy that requires further investigation.

In this paper, we present a novel unpaired “set to image” synthesis model (MxIF to 

vH&E) that fully utilizes the rich structural information in 27 MxIF channels by adding 

simultaneous nuclei and mucin segmentation supervision as spatial constraints. A random 

sliding window shifting strategy is introduced during the optimized inference stage torwards 

alleviate the tiling effects. Our simple inference method is a plug-and-play module that can 

be generalized and used for other high-resolution WSI image synthesis applications. Our 

model our proposed vH&E synthesis method achieves superior performance compared with 

the baseline approach.
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Appendix A. Supplementary information on tiling Effect

Figure 6: 
Selective field of view on MxIF WSI data. Only 4 (out of 27 stains) markers are chosen for 

visualization. The intensity are adjusted for illustration purpose.
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Figure 7: 
Selective bad examples of the tiling effect in vH&E after stitching the patch back into WSI 

using default inference method with above MxIF data as input.
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Figure 8: 
Same field of view with the tiling effect removal in vH&E using proposed inference method.

Appendix B. Supplementary detail of random walk inference

How to guarantee random walk can cover all pixels of WSI.

For default inference, the WSI is divided using a sliding window with a static step, where the 

step size is equal to the size of the sliding window. This ensures that all divided patches have 

no overlap, and every pixel of the WSI is covered. The proposed method uses the default 
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inference as the base inference for further averaging. Additionally, the proposed method 

only shifts the starting position of the first top-left corner of the sliding window in the WSI, 

as shown in Figure 3. Starting from the top-left corner, we randomly walk the graph and 

select a few nodes as potential starting positions for the sliding window, ensuring that none 

of the nodes share the same x or y coordinate. Once the nodes are finalized, for each node, 

we allow the sliding window to move with a static step equal to the size of the sliding 

window, using the default inference method.

For instance, to get the final intensity values per pixel, if the grid size is 8, then there will 

be an 8 potential start position of the first sliding window in one random walk. After each 

sliding window traverses the WSI, every pixel will have 8 values to be averaged, except for 

the leftmost column and the topmost row of the patches WSI, where each pixel may have 1 

to 8 potential weights for averaging. However, these areas are usually empty glass. If there is 

indeed tissue in those areas, zero padding can be applied to the WSI to ensure that all pixels 

that contain tissues have 8 values for the weighted average.

How inference map is created and used.

The weight for a single pixel is based on the following formula is based on

w = − max x − xcp , y − ycp linear normalize to 0.5, 1

(4)

where x, y  is the coordinate of the pixel within a sliding window, xcp, ycp  is the center 

coordinate of the sliding window. The final value of a pixel in a target coordinate is 

calculated by the sum of all inference values of the pixels divided by the sum of weights.

Appendix C. Supplementary detail of dataset description

The dataset was collected from an ongoing clinical study to understand Crohn’s disease. 

The tissue biopsies of patients were obtained from the ascending colon and terminal ileum, 

with a focus on epithelial cell nuclei as a proof of concept. Epithelial cells are one of the 

important cell types in the colon area for Crohn’s disease. The slides used for MxIF were 

cut at a different time than those used for the H&E staining. Typically, a formalin-fixed 

paraffin-embedded tissue section placed on a slide is a 5um thick cut. When cutting new 

sections from a tissue block, the first section is usually not usable, and it may take a few cuts 

to get intact sections to put on a slide. The exact distance between the MxIF and H&E slides 

was not recorded in the clinical data acquisition. To define the dataset more precisely, we 

ensured that the section of MxIF and the section of H&E were adjacent sections. However, 

based on our empirical image registration, either rigid or non-rigid, on the closely cut MxIF 

and H&E tissues, the results at the cellular level were poor. Figure 1 shows that the cell 

pattern between MxIF (top left) and the real H&E (top right) did not match at the cellular 

level (although the shape of the WSI seems to match), making it almost impossible to align 

the MxIF and H&E in our dataset.
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The MxIF data was acquired using a 20× magnifying camera that generated images with 

a physical size of 0.324 μm per pixel. For training the CycleGAN, 265 MxIF patches 

with a patch size of 1024×1024 pixels and 0.324 micron per pixel were used. To perform 

downstream analysis, we needed to leverage the results from the HoverNet, which was 

trained on H&E 20× images with a physical size of 0.5 μm per pixel. Therefore, we had to 

downsample the virtual H&E (vH&E) images to the HoverNet space. Additionally, the input 

patch size for HoverNet is 256×256 pixels, and we only kept patches that contained over 

10% epithelial cells as determined by the MxIF biological rule-based labels. This is how we 

ended up with 319 vH&E patches for testing in the downstream analysis.

Appendix D. Supplementary detail of downstream analysis

There are two types of MxIF labels used in this work: (1) we use the DeepCell pre-trained 

model to segment DAPI/Muc2, and convert the initial instance segmentation (denoted as LS) 

output to a semantic mask (LSN) for CycleGAN training only. (2) For downstream analysis, 

we annotate the LS and convert it to a semantic mask as epithelial cell labels (denoted as 

LSE), which will then be further compared with the output labels from the HoverNet models. 

To prove the usefulness of the vH&E, the HoverNet pre-trained model could segment the 

vH&E, generate nuclei instance segmentation mask, and the HoverNet can annotate the 

type of the nuclei submontanely. We converted those instance nuclei labels and created a 

semantic mask as LH. Finally, we can utilize the HoverNet semantic epithelial mask LH to 

compare with the LSE for evaluation.

Limitation of downstream analysis.

Direct evaluation of image similarity is essential. However, we do not have paired MxIF 

and H&E data for such direct comparison. A downstream epithelial cell segmentation task 

would be helpful for evaluating the quality of synthesis only, which is a main limitation of 

our work. DeepCell nuclei segmentation is prone to over-segmenting the nuclei, which could 

introduce bias in the downstream analysis when we compare the results between the MxIF 

DeepCell label and the HoverNet label. A refined MxIF label could potentially improve 

validation accuracy that requires further investigation. It is also essential to perform the 

tiling approach on the downstream task. Given that the downstream analysis only focuses 

on epithelial nuclei segmentation and the limited epithelial cell sitting on the tile edges, we 

should include this experiment design for the further extension of this work with a larger 

scale dataset.
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Figure 1: 
This figure shows the problem setting of the unpaired “set to image” synthesis and the tiling 

effects in WSI synthesis. (A) We propose to use all 27 markers (set) to synthesize the virtual 

H&E images (vH&E). (B) The left panel shows that the default patch-wise inference method 

causes the tiling. The right panel shows that our new method alleviates solve the tiling effect.
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Figure 2: 
This figure presents the baseline and proposed models for the MxIF and vH&E unpaired 

synthesis. The baseline models take all 27 channels as a set to synthesize the H&E image. A 

structural consistent branch (SegNet) is introduced that takes vH&E as input to conduct the 

nuclei (DAPI) and mucin (Muc2) segmentation.
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Figure 3: 
The baseline inference setup and proposed random sliding window inference way. We fix the 

size of the inference sliding window, and the weighted map is used to average the different 

inferences. We start the inference from the left top corner of the WSI, then we split the target 

patch by a grid with size as S, the baseline inference will cost S2 inference/patch with a 

pre-defined step, and the proposed inference will take S inference/patch.
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Figure 4: 
The qualitative results of titling effect removal on a random selective ROIs. Both vH&E in 

raw intensity and grayscale vH&E in jet colormap are shown.
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Figure 5: 
The performance of the downstream epithelial cell segmentation task using vH&E synthesis. 

The left panel shows the epithelial cell segmentation performance with significance found 

by the Wilcoxon signed-rank test (p < 0.05, marked as *). The right panel shows the 

qualitative results between the DeepCell and MxIF rule-based label versus the vH&E 

HoverNet label.
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Table 1:

Results for the tiling effect removal mean (standard deviation) Euclidian distance values from different 

inference methods. The best strategy is highlighted with a significant difference from other ways by the 

Wilcoxon signed-rank test (p < 0.05).

vH&E base model vH&E proposed model

Validation of different setup (num. of inference per patch)

Default-(1) 460.6 (408.4) 489.2 (398.2)

Baseline-(4) 383.2 (237.l) 413.4 (243.9)

Baseline-(16) 356.2 (200.2) 386.8 (213.l)

Proposed-(2) 397.9 (252.9) 425.7 (254.5)

Proposed-(4) 366.0 (206.0) 394.7 (217.7)

Proposed-(8) 349.7 (193.4) 379.2 (207.6)

vH&E base model vH&E proposed model

Effect of random walk

Proposed-(4) casel 366.0 (206.0) 394.7 (217.7)

Proposed-(4) case2 365.7 (206.2) 394.9 (217.8)

Proposed-(4) case3 365.6 (205.8) 394.6 (217.5)

Proposed-(4) case4 366.1 (206.l) 395.3 (217.8)

Proposed-(4) case5 366.6 (206.3) 394.8 (217.8)

Proposed-(4) case6 366.6 (206.4) 395.3 (217.9)
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