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Abstract

Fibromyalgia (FM) is a central disorder characterized by chronic pain, fatigue, insomnia,

depression, and other minor symptoms. Knowledge about pathogenesis is lacking, diagno-

sis difficult, clinical approach puzzling, and patient management disappointing. We con-

ducted a theoretical study based on literature data and computational analysis, aimed at

developing a comprehensive model of FM pathogenesis and addressing suitable therapeu-

tic targets. We started from the evidence that FM must involve a dysregulation of central

pain processing, is female prevalent, suggesting a role for the hypothalamus-pituitary-

gonadal (HPG) axis, and is stress-related, suggesting a role for the HP-adrenocortical

(HPA) axis. Central pathogenesis was supposed to involve a pain processing loop system

including the thalamic ventroposterolateral nucleus (VPL), the primary somatosensory cor-

tex (SSC), and the thalamic reticular nucleus (TRN). For decreasing GABAergic and/or

increasing glutamatergic transmission, the loop system crosses a bifurcation point, switch-

ing from monostable to bistable, and converging on a high-firing-rate steady state supposed

to be the pathogenic condition. Thereafter, we showed that GABAergic transmission is posi-

tively correlated with gonadal-hormone-derived neurosteroids, notably allopregnanolone,

whereas glutamatergic transmission is positively correlated with stress-induced glucocorti-

coids, notably cortisol. Finally, we built a dynamic model describing a multistable, double-

inhibitory loop between HPG and HPA axes. This system has a high-HPA/low-HPG steady

state, allegedly reached in females under combined premenstrual/postpartum brain allo-

pregnanolone withdrawal and stress condition, driving the thalamocortical loop to the high-

firing-rate steady state, and explaining the connection between endocrine and neural mech-

anisms in FM pathogenesis. Our model accounts for FM female prevalence and stress cor-

relation, suggesting the use of neurosteroid drugs as a possible solution to currently

unsolved problems in the clinical treatment of the disease.
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Introduction

Fibromyalgia (FM) is a syndrome characterized by a wide set of apparently uncorrelated symp-

toms, the most annoying of which is chronic, multi-focal pain. Other major symptoms include

fatigue, sleep disorder, cognitive impairment, and depression [1]. It is a disabling condition

with a worldwide prevalence of 1–5%, which makes it a significant health, social, and eco-

nomic burden [2]. The clinical approach to FM raises a series of problems that originate from

the absence of reliable knowledge about the pathogenesis mechanisms [3]. In addition, diagno-

sis is difficult and frequently delayed by years [4]. Despite repeated efforts to define a set of

standard diagnostic criteria [3,5], FM diagnosis is made particularly hard by the lack of bio-

markers and symptom overlapping with akin disorders, collectively called central sensitivity

syndromes [6]. Because of these drawbacks patient management is disappointedly challenging.

Limited rates of remission or improvement are achieved with pharmacological treatments,

notably anticonvulsants and antidepressants [7]. Slightly better results are frequently obtained

with physical treatments, exercise, or mind-body techniques [4].

The difficulties met with FM are linked to its obscure etiology, despite a wide set of hypoth-

esized mechanisms of pathogenesis [8]. Hence, there is a strong urgency of disclosing the

causes of the disorder. To this aim, we started from a few fundamental FM aspects, summa-

rized as follows. First, there is a wide consensus on the idea that FM is a central disorder [9],

and therefore, it must involve a dysregulation of some spinal and/or supraspinal network,

including pain processing. Second, it is characterized by a significant female prevalence, with a

worldwide average female:male ratio of 3:1, arriving locally to 10:1 [10,11]. This suggests that

the hypothalamus-pituitary-gonadal endocrine (HPG) axis must have a role. Third, there is

evidence that FM is a stress-related disorder [12]. Alteration of endocrine stress biomarkers in

consolidated FM conditions has been questioned [13], but on the other hand, FM patients

show hypothalamus–pituitary–adrenocortical axis (HPA) dysfunction [14,15]. Hence, it is

conceivable that the HPA axis could be involved in the mechanism of pathogenesis. Consis-

tently, there is strong evidence that physical and psychological stressful events, including early

life traumatic experience, are FM predisposing factors [16,17].

We have previously proposed a mechanism leading to FM chronic pain based on a thalamocorti-

cal loop system [18]. This hypothesis was based on the following assumptions: (i) spinal pain pro-

cessing can be excluded as a generator of the disorder because of the negligible efficacy of opioids in

FM pain treatment [19,20]; (ii) the thalamus is the major supraspinal relay center in brain pain pro-

cessing. In this study, we propose an extension of this model, by implementing together the above

triad of FM basic elements, namely central network disorder, HPG axis, and HPA axis. We then

show how the interplay between HPG and HPA axes, under peculiar combination of stress and

gonadal conditions, can eventually produce weakening of GABAergic and strengthening of gluta-

matergic transmissions, thus switching the thalamocortical network to the pathological status.

Methods

This is a theoretical study that presents a hypothesis about the biological mechanisms giving

rise to a transition leading to the development of the FM syndrome. The hypothesis was based

on a literature search on the PubMed database (National Institutes of Health, Bethesda, MD,

USA), from inception through September 2023, combined with our previous thalamocortical

loop model of FM chronic pain [18], and our review concerning FM in pregnancy [21]. The

PubMed search was conducted by using as main keywords the names of different gonadal hor-

mones, glucocorticoids, neurosteroids, and endocrine axes, variously combined with each

other or with any of the following: “fibromyalgia”, “pain”, “glutamate”, “GABA”, and the

names of various glutamate and GABA receptors.
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The above literature data were used to build a graphical and mathematical description of an

endocrine loop system representing the interaction between the HPG and HPA axes. Litera-

ture data were also used to infer possible repercussions of the endocrine system on the thala-

mocortical system, while the dynamics of the two systems were analyzed using MATLAB

(version R2022a, MathWorks, Natick, MS, USA).

Results

Previous model: Thalamocortical loop system

Analysis of the system dynamics. We have previously proposed that FM chronic pain

depends on the malfunctioning of a thalamocortical loop network (Fig 1) [18]. The network is

part of brain pain processing and is composed of the thalamic ventroposterolateral nucleus

(VPL), the primary somatosensory cortex (SSC), and the thalamic reticular nucleus (TRN) [22].

Excitatory, first order glutamatergic fibers of the VPL projects to SSC and TRN; glutamatergic

fibers of the SSC project to first order neurons of VPL and to TRN, and inhibitory GABAergic

fibers of the TRN project to VPL (Fig 1) [23]. The SSC, despite its arrangement into distinct layers,

is considered a single element in the loop given the excitatory coupling among layers [24,25].

The system consists of positive and negative loops, and we have demonstrated that it can

globally behave as a monostable system (see Box 1) (when the negative loop is dominant) for

Box 1. Terms used in the analysis of dynamic systems

Dynamic system A system that evolves over time, described in mathematical terms by a system of

differential equations that represent the time evolution of the state variables in the

phase space, where each axis is associated with a state variable and each point in

the space represents a possible state configuration.

Steady states (equilibria) Values of the state variables obtained by setting the time derivatives to zero in the

system of differential equations and solving the corresponding algebraic system. If

the system is at an equilibrium at a certain time, it will remain at the same

equilibrium unless an external perturbation occurs.

Monostable, bistable,

multistable systems

An equilibrium is stable if the system, after having moved away from this

equilibrium due to a (sufficiently small) external perturbation, goes back to the

equilibrium. Monostable systems admit only one stable equilibrium, bistable

systems exactly two, and multistable systems more than two.

Bifurcation parameter A parameter present in the differential equations that is varied when computing a

bifurcation diagram.

Bifurcation diagram It is the diagram that shows the values and the stability properties of the system

equilibria for different values of a bifurcation parameter, and thus reveals whether

a bifurcation (i.e., a change in the number of equilibria and/or in their stability

properties) occurs. We call bifurcation value the value of the bifurcation parameter

at which the system undergoes a bifurcation (for instance, transitioning from

monostability to multistability).

Phase portrait Graphical representation of the trajectories of a dynamic system during its time

evolution starting from given initial conditions. Each point of a trajectory

represents the values of the state variables (i.e., their Cartesian coordinates) at a

different time instant.

Initial condition It is the starting point of a trajectory, namely, the configuration in which the

system happens to find itself at the beginning of its time evolution. In the analysis

of dynamic systems, the initial conditions are typically assumed to be determined

by factors that are external to the model (perturbing events).

Basin of attraction of a given

steady state

Set of initial conditions starting from which the system trajectories reach the given

steady state. Depending on the starting point, the system will converge to one of

the stable steady states. Each steady state has its own basin of attraction and there

is no overlapping among different basins of attraction. A system trajectory is

attracted by a certain stable steady state when it starts sufficiently close to it

(namely, within its basin of attraction).

https://doi.org/10.1371/journal.pone.0303573.t001
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Fig 1. Simplified diagram of the thalamocortical loop considered in our previous FM model. Blue lines with

arrowhead: excitatory glutamatergic connections; red lines with hammer endings: inhibitory GABAergic connections.

https://doi.org/10.1371/journal.pone.0303573.g001
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stronger GABAergic transmission, or as a bistable system (when the positive loop is dominant)

for a weakening of GABAergic transmission [18]. Bistable switches are known to promote pre-

dictable functional changes in living systems [26], also including pathogenesis processes [27].

We developed here a more complete analysis of the thalamocortical loop system by consid-

ering variations in strength of both GABAergic and glutamatergic transmission. In addition,

the strength of the self-limiting term in the differential equations and its effect on the system

dynamics were also considered. The dynamics of the thalamocortical loop system were mathe-

matically described by the following system of differential equations [18]:

t _S þ yS ¼ f ðbVÞ ð1Þ

t _T þ yT ¼ f ðbV þ bSÞ ð2Þ

t _V þ yV ¼
gðaTÞ � ðbSÞh

f ðaTÞh þ ðbSÞh
ð3Þ

where f(�) are increasing Hill functions:

f ðbVÞ ¼ m1

ðbVÞh

eh þ ðbVÞh
; f ðbV þ bSÞ ¼ m2

ðbV þ bSÞh

eh þ ðbV þ bSÞh
; f ðaTÞ ¼ e0 þm2

ðaTÞh

eh þ ðaTÞh
;

g(�) is a decreasing Hill function:

g aTð Þ ¼
m1

1þ aT
e

� �h ;

where _x denotes the time derivative of x, the variables S,T, and V are the mean firing rates of

SSC, TRN, and VPL, respectively, the parameters a,b, and θ are coefficients varying in the

interval (0,1), representing the efficacy of GABAergic transmission, glutamatergic transmis-

sion, and the self-limiting term, respectively.

The choice of using Hill functions in our thalamocortical model is suggested by literature

data about neuron input-output relationships [28]. The values of the Hill function parameters

have been previously set on the basis of literature data: time constant τ = 0.5 s; maximum firing

rate of excitatory fibers m1 = 100 Hz; maximum firing rate of inhibitory fibers m2 = 80 Hz; Hill

function’s half-saturation constant e = 20 Hz; basal half-saturation constant e0 = 20 Hz; and

Hill coefficient h = 2.5 [18]. Having established these points, Eq (1) represents the excitatory

effect of VPL glutamatergic fibers acting on SSC; Eq (2) the combined excitatory effect of VPL

and SSC glutamatergic fibers acting on TRN; and Eq (3) the combination of the excitatory

effect exerted by SSC glutamatergic fibers and of the inhibitory effect exerted by TRN

GABAergic fibers, both acting on VPL. In Eq (3), the combined excitatory and inhibitory

effects have been represented by using an increasing Hill function of variable S in which m and

e are represented by decreasing and increasing Hill functions of variable T, respectively. We

have adopted this kind of function because the inhibitory effect of GABAergic fibers on the

response of neurons to excitatory fibers causes either a reduction of maximum firing rate

(reduction of m), or a decrease of neuron sensitivity to excitatory pulses (increase of e), in both

cases fitting Hill functions [28,29].

Literature data about the effects of neurosteroids on neurotransmission, and about the

reciprocal interactions between endocrine axes, led us to adopt Hill functions as a suitable

mathematical model also for the other functional interactions considered in this study (see

below).

PLOS ONE Fibromyalgia pathogenesis model

PLOS ONE | https://doi.org/10.1371/journal.pone.0303573 July 11, 2024 5 / 32

https://doi.org/10.1371/journal.pone.0303573


Relationships between the strength of the interactions and the system bifurcation point. In

our previous study, we have shown that for b = 1, i.e. a theoretical maximal value for the gluta-

matergic strength, the system is monostable for a>0.265, with a single basin of attraction and

a low-firing-rate steady state (see Box 1). At a = 0.265 there is a bifurcation point (see Box 1),

so that if a goes below this value the system becomes bistable, acquiring an additional high-fir-

ing-rate steady state. In general, in the dynamics of a loop system representing a living system,

the appearance of a bifurcation corresponds to a critical physiological event, as it enables a sta-

ble change of functional regime. In this case, the bifurcation enables the existence of two alter-

native stable steady states, involving all the three elements, or regions, of the thalamocortical

loop. One steady state is characterized by basal, i.e. low-firing-rate activity, and the other one

by high-firing-rate activity. The basin of attraction of the high-firing-rate steady state rapidly

enlarges for decreasing a, making the system progressively prone to fall on the high-firing-rate

steady state, which is assumed to represent the FM chronic pain condition [18].

We conducted here a further analysis by considering the relationship between b and the

bifurcation value of a (see Box 1), indicated as â. We showed that, as b decreases, the value of â
also decreases according to a sigmoid curve (Fig 2). This trend is conserved for different

values of θ, but the steepness of the curve is lower for decreasing θ (Fig 2). The b=â curves, cal-

culated for θ = 1 and θ = 0.5, cross each other in correspondence of b≌0.55, showing that for

values of b around this point, the variation of θ has a limited influence on the value taken by â
(Fig 2).

Fig 2. Influence on the thalamocortical system dynamics exerted by the coefficients of the differential equation variables. The coefficient b shows a

positive, non-linear correlation with â^, the bifurcation value of a. The coefficient θ influences the steepness of the correlation curve. The pink area highlights a

range of b values within which the variation of θ has scarce influence on the corresponding values of â^.

https://doi.org/10.1371/journal.pone.0303573.g002
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New extended model: Involvement of endocrine axes in FM pathogenesis

The thalamocortical loop model explains the possible mechanism leading to chronic pain, but

it does not account for the causes of the weakening of GABAergic transmission and/or gluta-

matergic strengthening. However, as stated above, evidence argues for the involvement in FM

of the HPG and HPA axes [30]. This is consistent with our thalamocortical model since these

axes are known to affect GABAergic and glutamatergic transmissions in the brain. The HPA

axis consists of sequential interactions among the hypothalamus, the anterior pituitary, and

the adrenal glands. It regulates responses to various stress conditions through the release into

the plasma of corticosteroid hormones. This function promotes adaptation to environmental

perturbations (acute stress) but can also produce detrimental changes in response to persistent

traumatic agents (chronic stress) [31]. The HPG axis consists of sequential interactions among

the hypothalamus, the anterior pituitary, and the gonads. It regulates reproductive activities

and functions in both female and male individuals through the release into the plasma of

gonadal steroids [32].

Influence of the HPG axis on the thalamocortical loop. Various data point to modula-

tory effects of gonadal hormones or their derivatives on GABAergic and glutamatergic trans-

missions. In female FM patients, changes in progesterone and testosterone during the

menstrual cycle have shown an inverse correlation with pain intensity [33]. In the rat cerebral

cortex, testosterone has been shown to upregulate the expression of the GABAA receptor α2

subunit, involving higher ion currents [34]. In depressed women, anxiolytic and antidepres-

sant effects of testosterone have been related to increased GABA levels in the posterior-cingu-

late cortex [35].

Neurosteroids are more directly involved in the regulation of brain neurotransmission [36].

Allopregnanolone (3α,5α-tetrahydroprogesterone), a derivative of progesterone, and its struc-

turally related androstanediol (5α-androstane-3α,17β-diol), a derivative of testosterone, poten-

tiate GABAergic transmission through a positive allosteric modulation of the GABAA receptor

[37]. They have been found to induce sedative, anxiolytic, and antiepileptic effects [38,39]. The

presence of neurosteroids in the brain can derive from de novo synthesis or from the metabo-

lism of progesterone and testosterone that cross the blood brain barrier [40,41]. Their brain

levels are correlated with gonadal hormone blood levels, especially for wide fluctuations of

these latter.

We first considered the possible effects of allopregnanolone, given that female progesterone

undergoes much wider fluctuations than male testosterone along the reproductive cycle. Allo-

pregnanolone and other neurosteroids act on both synaptic (γ-type) and extrasynaptic (δ-

type) GABAA receptors, thereby prolonging phasic and enhancing tonic GABAergic inhibi-

tion, respectively [42]. By considering the total effect of neurosteroids on GABAergic transmis-

sion, we derived a quantitative relationship between allopregnanolone brain levels and the

coefficient a in the differential equations of the thalamocortical model. To this aim, we first

derived allopregnanolone plasma and brain levels at different woman reproductive phases

from literature data or estimated them from the brain/plasma ratio at the luteal phase

(Table 1). These are representative values, since there is a range of concentrations to be found

in different phases and among different individuals, and are used to quantify the strength of

GABAergic transmission, expressed in our mathematical model by parameter a (see also Fig

3). The model is valid regardless of the precise parameter values, and our approach and our

analysis can still be adopted.

We then derived from the literature the parameters of dose-response curves for the effect of

allopregnanolone on GABAA receptors. These curves fit Hill functions, and therefore, we

obtained median values for Hill curve parameters (Table 2). In a couple of studies, values of
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baseline GABAA activities were also indicated, allowing us to estimate the maximum increase

of receptor activity induced by allopregnanolone as 100% and 200% with respect to baseline,

respectively [45,46].

Hence, the allopregnanolone modulation of GABAA activity at different female reproduc-

tive phases was quantified as follows. The value a = 1 was set as the maximum reachable

GABAA activity, i.e. the activity observed at the highest pharmacological doses of allopregna-

nolone, ranging in the interval 90–1500 ng/mL, with a median of 450 ng/mL (Table 2). Con-

versely, the minimum physiological effect of allopregnanolone was assumed to occur at

follicular brain levels, estimated at 2.4 ng/mL (Table 1). At the follicular phase, the value of a
was assumed to be proximal to the basal GABAA activity observed in the absence of allopreg-

nanolone in experimental studies. Therefore, by considering an average maximum increase of

150%, the value of a at the follicular phase (af) was derived from the equation af+1.5af = 1,

yielding af = 0.4. Consequently, the EC50 of allopregnanolone, taken as the median value of the

half-saturation constant in Table 2, 18 ng/mL, should correspond to a = 0.7, i.e. the midpoint

between 0.4 and 1. Based on these estimates, the value of a = 1 is never reached around the

female cycle, since luteal allopregnanolone brain levels are around 20 ng/mL, i.e. definitely

below the doses inducing maximum GABAA activation in experimental studies (Table 2).

The values of a corresponding to allopregnanolone brain levels ranging from the follicular

to the luteal phase, are always above the bifurcation point of our thalamocortical loop systems.

As previously shown, the bifurcation value is â ¼ 0:265 for a maximum value of b = 1, while it

even scales down for lower b values. Hence, we must argue whether GABAergic strength

below the bifurcation level can occur in the organism. A positive answer seems to come from a

depressive effect of very low allopregnanolone levels on GABAA activity, driving GABAergic

strength below basal follicular levels. Perimenstrual or post-partum progesterone drop has

been reported to cause brain allopregnanolone withdrawal. Due to its positive effect on

GABAA, allopregnanolone has sedative, anxiolytic, and anticonvulsant properties, and accord-

ingly, allopregnanolone withdrawal has been correlated to premenstrual syndromes, such as

anxiety and seizure susceptibility [52–54].

Table 1. Representative steroid concentrations in the woman at different reproductive phases.

Reproductive phase Steroid Tissue Concentration (ng/mL) Source

Follicular Progesterone Plasma 1.5 [43]

Brain – –

Allopregnanolone Plasma 0.15 [43]

Brain 2.4 Estimated*
Luteal Progesterone Plasma 10 [43]

Brain 41 [43]

Allopregnanolone Plasma 1.2 [43]

Brain 20 [43]

Late pregnancy Progesterone Plasma 204 [44]

Brain – –

Allopregnanolone Plasma 16 [44]

Brain 260 Estimated*

* = estimated from the brain/plasma ratio at the luteal phase.

https://doi.org/10.1371/journal.pone.0303573.t002
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Fig 3. Relationship between estimated allopregnanolone brain levels and the strength of GABAergic transmission, expressed by the coefficient a, as

derived from Eq (4). Top panel. The pink band indicates the transition zone separating two ranges of allopregnanolone where different effects on the

GABAA receptor are prevalent: In the lower range the effect on GABAA α4 subunit expression, while in the higher range the positive allosteric modulation on

GABAA activity. The points corresponding to allopregnanolone concentrations and a values at the follicular and luteal phases, and the value of the

bifurcation point at the maximal glutamatergic strength (â^¼ 0:265; b ¼ 1), are indicated. Bottom panel. Zoom-in view of the bottom left inset in the top

graph. The point corresponding to allopregnanolone withdrawal and related a value is indicated. The horizontal red lines indicate the values taken by the

bifurcation point at half-maximal glutamatergic strength (â^¼ 0:116; b ¼ 0:5), and for a 20% rise of b above this level (â^¼ 0:16; b ¼ 0:6). At

allopregnanolone withdrawal, the thalamocortical loop system is still monostable for b = 0.5 ða > â^Þ, but it becomes bistable for b = 0.6 ða < â^Þ.

https://doi.org/10.1371/journal.pone.0303573.g003
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In a progesterone-withdrawal paradigm in the rat, mimicking post-menstrual and post-par-

tum syndromes, reduced levels of allopregnanolone enhance the expression of GABAA α4 sub-

unit, involving GABAA reduced activity [55]. Such an effect is distinct from the positive

allosteric modulation of GABAA at higher allopregnanolone levels, and it has been shown to

depend on the upregulation of the early growth response factor-3 (Egr3) [56]. This effect

involves a 6-fold decrease in the GABAA current time constant. Hence, by considering the ion

current decay equation:

I ¼ I0e
� tt;

where I is the current at time t,I0 is the current at time t = 0 (set to I0 = 1),τ is the time constant,

and integrating for τ = 1 and τ = 1/6 as follows:

ITOT ¼ I0

Z 1

0

e� ttdt;

an about 3-fold decrease of GABAA currents was inferred. Hence, by applying a 3-fold

decrease to the previously derived follicular value of a = 0.4, a value of a≌0.13 was inferred for

allopregnanolone withdrawal.

In addition, to derive an estimate of allopregnanolone brain concentrations at withdrawal,

we referred to an animal model of perimenstrual catamenial epilepsy in which allopregnano-

lone withdrawal has been obtained through the administration of the 5α-reductase inhibitor

finasteride [57]. Finasteride has induced in female rats a reduction of allopregnanolone plasma

levels from 9 to 6 ng/mL. Hence, assuming a similar reduction for allopregnanolone brain lev-

els in women, by starting from the above estimated brain follicular level of 2.4 ng/mL, we can

roughly estimate a withdrawal allopregnanolone brain level of 1.6 ng/mL, to be put in corre-

spondence with the above-derived value of a = 0.13.

To sum up, we modeled the effect of allopregnanolone on the strength of GABAergic trans-

mission by considering two independent actions. One occurs starting from follicular to luteal

and pregnancy brain levels, with a dose-dependent rise of GABAergic strength due to positive

GABAA modulation. The other one occurs for allopregnanolone sub-follicular, withdrawal lev-

els, pulling down GABAergic strength due to a rearrangement of GABAA α subunits. The

mathematical expression for such a combined effect is the sum of two increasing Hill

Table 2. Hill function parameters derived from the curve fitting of allopregnanolone effects on GABAA receptors.

Experimental model n h a e b (ng/mL) e c

(%)

Threshold dose for max effect (ng/mL) Ref.

Bovine chromaffin cells 5 2 15 20 – [47]

Rat hippocampus/cortex 6 2 45 8 600 [45]

Xenopus oocytes 6 2 300 2 1500 [48]

Rat neurons 5 2 18 5 150 [49]

Mouse L-tk cells 8 1.2 9 0.3 300 [50]

Rat dentate granule cells 7 1.15 3.9 5 90 [46]

Rat embryo hippocampal neurons 7 2.8 300 4.8 900 [51]

Median values 2 18 5 450

aHill coefficient, bHill function’s half-saturation constant derived from raw data, cHill function’s half-saturation constant derived from data standardized on a 0–100

scale. The half-saturation constant corresponds to the EC50, i.e. the input concentration inducing 50% output response.

https://doi.org/10.1371/journal.pone.0303573.t003
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functions:

a ¼ fwðAÞ þ fgðAÞ; ð4Þ

where fw(A) is the withdrawal component:

fw Að Þ ¼ af
Ahw

ðehww þ AhwÞ
; ð5Þ

fg(A) is the positive allosteric component:

fg Að Þ ¼ 1 � af
� � Ahg

ðehgg þ Ahg Þ
; ð6Þ

A is the brain allopregnanolone concentration, a is the GABAergic strength, af is the value

of a at the follicular A level, ew and hw are the EC50 and Hill coefficient for the genomic effect

induced by allopregnanolone on the GABAA α subunit at withdrawal brain concentrations,

and eg and hg are the EC50 and Hill coefficient for the positive allosteric effect on GABAA. For

computational analysis, we adopted eg and hg values corresponding to the median values

reported in Table 2. Conversely, no literature data are available for ew and hw, except that, in

general, steroid hormone genomic effects fit a Hill function (see below). Therefore, given that

the withdrawal effect occurs at sub-follicular allopregnanolone levels, we considered a Hill

function having maximum at the follicular value of af = 0.4, asymptotically approached at a

value of A≌2.4, and admitting a solution for the above-reported values, A = 1.6 and a = 0.13.

The derived values for the parameters of the Hill functions in Eqs (5) and (6) are reported in

Table 3.

Symbols as in Table 2. The values of e and af are expressed as ng/mL

Eq (4) describes the predominance of the withdrawal effect of allopregnanolone on the

strength of GABAergic transmission for subfollicular brain levels, i.e. concentrations ranging

between 0 and 2.4 ng/mL, while the positive allosteric GABAA modulation is predominant for

concentrations above 2.4 ng/mL (Fig 3). As shown in the figure, allopregnanolone withdrawal

drives the coefficient a down to an estimated value of 0.13. To understand possible pathogenic

consequences of such a decrease, this value must be related on the one hand to the bifurcation

value â, and on the other hand to the strength of glutamatergic transmission b, as determined

by the dynamics of our thalamocortical model.

Influence of the HPA axis on the thalamocortical loop. Indirect data on N-methyl-D-

aspartate receptor (NMDAR)-dependent cytosolic Ca2+ rise suggest that glutamate-induced

excitotoxicity involves an about 100% increase of glutamatergic transmission [58], which in

our model can be assumed as maximum glutamatergic strength, corresponding to b = 1.

Hence, we can estimate that a value of b = 0.5 represents physiological glutamatergic strength,

because a 100% increase of b = 0.5 yields b = 1. According to the b=â relationship depicted in

Fig 2, b = 0.5 corresponds to â ¼ 0:116, i.e. a bifurcation point that is close to, but still below,

the value of a = 0.13 estimated for allopregnanolone withdrawal. However, if b reaches a value

of 0.6, the bifurcation value becomes â ¼ 0:16. Hence, a 20% increase of glutamatergic

strength would be sufficient to drive the bifurcation point above the reduction of GABAergic

Table 3. Hill function parameters used in Eqs (4), (5) and (6).

Allopregnanolone effect Allopregnanolone range Hill function e h af
GABAA activity Follicular-luteal-pregnancy fg(A) 18 2 0.4

α4 subunit expression Withdrawal-luteal fw(A) 1.8 6.5 0.4

https://doi.org/10.1371/journal.pone.0303573.t004
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strength imposed by allopregnanolone withdrawal (Fig 3). It should be noted that the numeri-

cal values of our analysis have been estimated from indirect data; therefore, they are not

expected to exactly measure real transition processes leading to FM. Yet, our model allows us

to conclude that a strong reduction of GABAergic transmission combined with a mild rise of

glutamatergic transmission are likely to induce a pathogenic functional state in the thalamo-

cortical loop system.

We then explored possible causes leading to an increase of glutamatergic transmission able

to induce an FM pathogenic condition. Consistent with the correlation between FM and acute

or chronic stress, the activation of the HPA axis is known to induce glutamatergic strengthen-

ing [59–61]. This relationship is difficult to estimate quantitatively, since various corticoste-

roids are released upon HPA axis activation, inducing different effects on central

neurotransmission. For instance, pituitary ACTH stimulates adrenals to release allopregnano-

lone and THDOC, both passing the brain barrier and acting as positive allosteric modulators

(PAM) of GABAA receptors, being part of a homeostatic mechanism that limit the impact of

HPA axis activation [62]. Cortisol is also known to induce negative feedback on the HPA axis

by suppressing the release of glutamate and facilitating that of GABA in magnocellular neu-

rons of the hypothalamic supraoptic and paraventricular nuclei [63]. Conversely, dehydroepi-

androsterone (DHEA) and its sulphated derivative DHEA-S, also released by adrenals, act as

negative modulators of GABAA and positive modulators of NMDA glutamate receptors [64].

In addition, cortisol has also been shown to act pre- and post-synaptically by facilitating gluta-

matergic transmission [59]. This action occurs in various brain areas, including the hippocam-

pus, amygdala, prefrontal and frontal cortex [60,61,65]. Accordingly, the first global effect of

acute stress is a rapid decrease of GABAergic transmission together with an increase of gluta-

mate transmission in brain areas involved in cognitive functions, such as prefrontal cortex and

hippocampus [66,67].

Hence, a central GABA/glutamate unbalance in favor of brain network excitability can be

considered a distinctive consequence of HPA axis activation. Such an effect can also be exacer-

bated under specific conditions. A mental stressor test on humans showed that the homeo-

static allopregnanolone response to HPA axis activation was absent in postpartum women

[68], and was negatively correlated with baseline allopregnanolone levels in men [69], thus

possibly enhancing the GABA/glutamate unbalance.

HPG and HPA axes as a loop system

Double-inhibitory interaction between the HPG and HPA axes. Until now, we have

considered HPG and HPA axes as independent units inducing distinct effects on neurotrans-

mission. However, evidence argues for the possibility that, under some circumstances, these

axes become entangled and form a feedback loop due to a reciprocal inhibitory action [70].

Available data indicate that weak correlations are observed for circadian or follicular-to-luteal

fluctuations of these axes, while significant negative correlations are found for wider fluctua-

tions under stress conditions, perimenstrual, pregnancy, or pharmacological treatments [71].

Repression of the HPA axis is due to inhibitory activities exerted by estrogens, androgens,

progesterone, and their metabolites on neurons of the hypothalamic peri-paraventricular and

paraventricular nuclei, and the anterior pituitary. Repression of the HPG axis is due to inhibi-

tory activities exerted by corticosteroids on hypothalamic kisspeptin and gonadotropin-releas-

ing-hormone (GnRH) neurons, the anterior pituitary, and gonads [72].

Variable or absent correlations between the circadian profiles of progesterone and cortisol

have been reported for cycling and postmenopausal women [73,74]. Conversely, various stud-

ies have reported evidence of HPG-HPA interactions for wider hormone fluctuations. In gilt
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pigs, treatments inducing sustained elevation of cortisol, but not acute elevation, have inhib-

ited the luteinizing hormone (LH) surge, together with estrus and ovulation [75]. In female

monkeys, elevation of serum cortisol by tissue infusion has decreased the availability of proges-

terone to target organs [76]. In pregnant women, the circadian variation of progesterone has

been found inversely correlated with that of cortisol [77,78], while intravenous cortisol infu-

sion has caused transient estrogen, progesterone, and androgen suppression [79]. Hydrocorti-

sone administration to eumenorrheic women in the early follicular phase has slowed down

hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary LH pulse frequency

[80]. A study on premenstrual dysphoric disorder (PMDD) has reported higher levels of allo-

pregnanolone and lower nocturnal cortisol levels in patients, compared with healthy controls

[81]. An in vitro study on primary cultures of human placenta has indicated cortisol as an anti-

progestin causing pre-labor progesterone withdrawal in pregnant women [82]. HPG-HPA

interference can also occur via an indirect mechanism, since enhanced synthesis of cortisol

may reduce the amount of pregnenolone available for the synthesis of progesterone [83].

HPG-HPA interactions have also been highlighted in mammal males. In bulls and rams,

administration of the synthetic glucocorticoid dexamethasone has induced lowering effects on

circulating LH and testosterone by acting at the hypothalamic level [84,85]. In human adult

males, pharmacologically increased cortisol plasma level has shown a detrimental effect on cir-

culating testosterone [86]. Similarly, endurance exercise has caused cortisol plasma level

increase concurrently with testosterone decrease [87]. On the other side, testosterone replace-

ment has lowered cortisol levels and cortisol excursion after corticotropin-releasing hormone

(CRH) stimulation tests [88].

Possible molecular mechanism of the HPG-HPA double-inhibitory interaction. Differ-

ent studies have provided insight about possible mechanisms explaining the inverse correla-

tion between HPG and HPA axes. In vertebrate models, stress-induced glucocorticoids repress

the HPG axis by inhibiting GnRH neurons or stimulating neurons releasing gonadotropin-

inhibitory hormone (GnIH) [89–91]. In castrated male rats, electroshock-induced stress has

inhibited LH release by acting through CRH release [92]. Allopregnanolone has induced the

GABAergic inhibition of HPA axis activation in female rats [93,94] and pregnant women [95].

However, the data that explains more clearly the double negative HPG-HPA interaction for

wide hormone fluctuations are those that point to the role of GABA and glutamate. In rodents

and humans, pituitary LH secretion is stimulated by GnRH neurons that are prevalently acti-

vated by the neurotransmitter kisspeptin, released by two other groups of neurons, one located

rostrally in the preoptic area (POA), and the other more caudally in the arcuate nucleus (ARC)

[96,97]. The ARC kisspeptin neurons receive negative estradiol feedback and induce small,

pulsatile GnRH and LH release. The POA kisspeptin neurons receive positive estradiol feed-

back and are responsible for the large GnRH and LH surge preceding ovulation [98]. Both

neuron populations are sexually dimorphic in sheep and humans. Male rodents have lower

kisspeptin neurons in the rostral periventricular area of the third ventricle, possibly explaining

male inability to mount the estrogen-induced LH surge [99].

Even though estradiol is considered the main regulator of gonadotropin release, GnRH and

kisspeptin neurons express various glutamate and GABA receptors and respond to these neu-

rotransmitters [100,101]. Different data converge to indicate that the LH surge is stimulated by

glutamate [102,103] and inhibited by GABA [104,105], and that its occurrence is coincident

with a decline of GABAergic transmission to both POA kisspeptin neurons and GnRH neu-

rons [106,107].

On the HPA axis side, the CRH neurons in the hypothalamic paraventricular nucleus

require a tight regulation predominantly exerted by three neurotransmitters: GABA, gluta-

mate, and norepinephrine [108–110]. Glutamate is excitatory on CRH neurons, whereas
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GABA exerts both phasic and tonic inhibition, mediated by synaptic and extrasynaptic

GABAA receptors, respectively [111]. Noradrenergic inputs originating in the brainstem act

on peri- and intra-paraventricular GABAergic and glutamatergic interneurons to regulate

CRH release. Norepinephrine both suppresses and enhances GABAergic inhibition, whereas

its excitatory effect on the HPA axis is mainly due to a facilitation of glutamate release onto

CRH neurons [110].

Brain regions implicated in the integration of psychogenic and social stressor stimuli, such

as the hippocampus, amygdala, and prefrontal cortex, regulate CRH neurons activity through

complex polysynaptic routes with multiple relays. These pathways include the bed nucleus of

the stria terminalis, the medial preoptic area, and peri-paraventricular neurons, among others.

The vast majority of these routes converge onto the regulation of the GABAergic transmission

to the CRH neurons, that is stimulated by inputs from the hippocampus and the prefrontal

cortex (downregulating the stress response), and inhibited by the activation of the amygdala

(stimulating the stress response) [112]. However, the GABAergic synapse shows different

forms of plasticity following acute and chronic stress. For example, immediately after the onset

of stress the GABA synapse on CRH neurons becomes excitatory, due to the disruption of the

chloride gradient induced by norepinephrine action. This effect is necessary for the attenua-

tion of the inhibiting GABA action and the disinhibition of the HPA axis [113].

Quantitative evidence of the double-inhibitory interaction. To obtain a mathematical

model of the interplay between HPG and HPA axes, we started from an analysis of the correla-

tion between the plasma levels of glucocorticoids and gonadal hormones such as progesterone

and testosterone, which, as we have seen, induce directly or indirectly the strongest effects on

GABAergic and glutamatergic transmission. We considered a series of studies on both animals

and humans reporting combined measurements of corticosteroids and gonadal hormones. As

stated above, we found weak correlation or partial positive correlation for hormone circadian

oscillations; see e.g. [114–116]. By contrast, significant negative correlations were found in

studies reporting the following data: (i) plasma values of glucocorticoids induced by stress con-

dition, together with the reciprocal variations of gonadal hormones; (ii) plasma values of

gonadal hormones caused by pregnancy or pharmacological treatment, together with the

reciprocal variations of glucocorticoids (Table 4). Dose-response relationships were derived by

considering the hormone whose variation was induced by environmental, reproductive, or

pharmacological effects, as the input (independent) variable, and the other hormone as the

output (dependent) variable. In a couple of cases these roles were undefined and two dose-

response curves were obtained by flipping the two variables with each other. A decreasing Hill

function was fitted to data, whose function parameters were derived after data normalization

on a 0–100 scale. (Table 4).

The median value of the Hill coefficient for endocrine axis interactions, h = 4.2 (Table 4),

and the one for the genomic allopregnanolone effect on GABAA, h = 6.5 (Table 3), are higher

than those derived for the input-output neuron firing rate relationship of our thalamocortical

model, h = 2.5 [18], and for the allopregnanolone positive allosteric modulation on GABAA,

h = 2 (Table 3). The Hill coefficient h is a measure of cooperativity in interacting systems [122]

and hence, it is conceivable that direct effects on neuron electrophysiology yield lower values

of h than genomic effects or interactions between endocrine axes. Therefore, we can take the

different values of h as further evidence that the Hill function is a suitable fit for the kind of

interactions that we have analyzed. This agrees with general evidence that the Hill function fits

stimulus-response data in a wide set of biological systems [123–128].

Dynamic model of the HPG-HPA interaction. After having acquired data about the

mathematical expression of the mutual HPG-HPA interaction, and having estimated the val-

ues of its parameters, we modelled the overall interaction as a dynamic system (see Box 1). As
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shown above, the hypothalamic neurons responsible for the activation of the HPA and HPG

axes receive inputs from various brain pathways, which in turn are influenced by HPA and

HPG hormones or their brain derivatives. The realization of an extensive computational

model for this network of positive and negative feedback interactions is currently impossible

due to the lack of suitable qualitative and quantitative data. However, two macroscopic effects

can be considered: (i) the existence of a negative feedback mechanism (self-inhibition) in each

axis; (ii) the double-negative interaction between the two axes (mutual inhibition) emerging

for wide oscillations of gonadal and/or corticosteroid hormones.

We therefore considered a simplified loop system consisting of two elements, each repre-

senting one of the axes. From a mathematical standpoint, each of the endocrine axes can be

seen as a monotone aggregate of subsystems and therefore considered as a single, condensed

element in the mathematical model of the considered dynamic system, still enabling the analy-

sis of its behavior based on the presence of signed loops [129]. In our simplified model, two

inhibitory arcs start from each node (element): one is a negative self-loop that represents the

self-inhibition of the axis, while the other is directed to the other element and represents part

of the double-inhibitory interplay between the two axes (Fig 4).

The dynamics of this system were mathematically described by two differential equations

involving two state variables that represent the activity of the endocrine axes on a 0–100 scale

(e.g. referring to the plasma concentration of cortisol for the HPA axis and of progesterone for

the HPG axis). The mathematical model accounts for both the self-inhibition due to the nega-

tive feedback of each axis (self-limiting factor) and the mutual inhibition between the axes

(double-inhibitory, positive loop), which becomes significant at high hormone plasma levels.

Table 4. Hill function parameters determined by fitting to matched samples of gonadal hormone/corticosteroid plasma levels.

x a y b e c h d n e p f Species Ref.

corticosterone progesterone 1 4.2 6 < 0.001 chicken [117]

corticosterone testosterone 5 3.9 4 < 0.001 chicken [117]

cortisol testosterone 28 5.2 6 < 0.001 rabbit [118]

cortisol LH 28 2.4 13 < 0.001 swine [75]

cortisol progesterone 23 8 8 < 0.001 humans [119]

cortisol testosterone 22 6 10 < 0.001 men [87]

cortisol testosterone 48 2.4 71 < 0.001 men [86]

progesterone corticosterone 32 3.5 11 < 0.001 chicken [120]

testosterone cortisol 17 7.3 6 < 0.001 rabbit [118]

testosterone cortisol 58 7.5 12 < 0.001 rabbit [118]

LH cortisol 50 7.5 6 < 0.001 rabbit [118]

LH cortisol 51 4.1 12 < 0.001 rabbit [118]

testosterone cortisol 23 1.5 71 < 0.001 male humans [86]

progesterone cortisol 64 3.8 23 < 0.001 female humans [77]

progesterone cortisol 65 8 6 < 0.001 female humans [121]

28‡ 4.2‡

aInput variable, expressed as hormone plasma level standardized on a 0–100 scale
boutput variable, expressed as the input variable
cHill function’s half-saturation constant
dHill coefficient
esize of the matched sample
fcorrelation p-value
‡median values.

https://doi.org/10.1371/journal.pone.0303573.t005
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Fig 4. Simplified diagram of the feedback loop system formed by the HPA and HPG axes. Line ends as in Fig 1.

https://doi.org/10.1371/journal.pone.0303573.g004
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The variation of the activity of each axis over time was set to depend on the activity of the

other axis (mutual inhibition), according to a decreasing function, and on itself, according to a

decreasing function (self-inhibition). Decreasing Hill functions, which generally provide the

best fit for endocrine effects (see above), were chosen to describe all these interactions. The sys-

tem of differential equations was therefore defined as follows:

t _�HPA ¼ f ðHPGÞ � kðHPAÞ � HPA ð7Þ

t _�HPG ¼ f ðHPAÞ � kðHPGÞ � HPG ð8Þ

where the variables HPA and HPG represent the activities of the axes, τ is the time constant

(equal for both axes), and _x denotes the time derivative of x. The two functions f(�) and k(�)

appear in both Eqs (7) and (8), applied to two different variables. The functions f(�) are

decreasing Hill functions that take values in the interval (0,100] and have the form:

f xð Þ ¼
100

1þ x
ex

� �hx

where ex and hx are the parameters of the Hill function, as defined above (Table 5). The self-

limiting functions k(�) are shifted decreasing Hill functions that take values in the interval (1,5]

and can be written as:

k xð Þ ¼ 1þ
4

1þ a�x
ek

� �hk

where parameter α2(0,1) modulates the self-limiting effect, while ex and hx are the parameters

of the Hill function, as above (Table 5). The constant offset is needed to obtain values of k(x)

that asymptotically approach 1 as x tends to infinity (lower importance of the self-limiting fac-

tor) and approach 5 as x tends to zero (higher importance of the self-limiting factor). When

the value of the function k tends to 5, the self-limiting mechanism of each axis dominates over

the mutual inhibition between the axes; in the absence of mutual inhibition, the two axes

would behave as two independent systems, each with its own self-inhibition. Conversely, when

the value of the function k tends to 1, the mutual inhibition dominates; in the absence of self-

inhibition, the system would behave as a double-inhibitory positive loop and thus admit two

stable equilibrium points (see Box 1), one with high HPA and low HPG, and the other with

low HPA and high HPG. The parameters of the differential equations were chosen identical for

both axes. The time constant τ, representing the timescale of the response of each element, was

Table 5. Values of the parameters in the differential equations describing the interactions among axes.

Interaction Hill function Parameter value

Double inhibition f xð Þ ¼ 100

1þ x
exð Þ

hx ex = 28 a

hx = 4.2 b

Self-limiting effect k xð Þ ¼ 1þ 4

1þ a�x
ek

� �hk
ek = 25.57 a

hk = 6.6 b

α = 0.48 b

Units
ang/mL
bdimensionless.

https://doi.org/10.1371/journal.pone.0303573.t006
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set to 30 min, which is typical for endocrine responses. The parameters of the Hill functions

describing the interactions between axes were set equal to the median values of the data

reported in Table 4. The parameters of the Hill function representing the self-limiting effect

were set so that the resulting system behavior is consistent with the observed patterns of corre-

lation between HPA and HPG axes for different intensities of their activity.

The numerical simulations of the complete system dynamics showed the existence of 3 sta-

ble equilibrium points, as shown in the phase portrait (see Box 1) of Fig 5. With reference to

Fig 5. Phase portrait of the dynamic system representing the HPG-HPA interaction according to the diagram of Fig 4. The trajectories of the

dynamic system have been computed with MATLAB by using Eqs (7) and (8) with the parameters reported in Table 5. Initial conditions have been

randomly selected to be representative of different possible evolutions of the system. Each trajectory converges to one of the three stable equilibrium

points (black dots). Black lines mark the boundaries between the basins of attraction of the three equilibria. The basin of attraction of the equilibrium

point with high HPA and low HPG activity (which attracts the red trajectories) is assumed to represent the functional states leading to the onset of FM.

https://doi.org/10.1371/journal.pone.0303573.g005
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FM pathogenesis, it is interesting to analyze the behavior of the system for extreme values of

HPA and HPG. When both variables are high (upper-right corner in the phase portrait), the

value of function k tends to 1 for both axes and the system behavior is dominated by the

mutual inhibition (giving rise to a positive loop) which should drive the trajectories towards

either of the opposite steady states (upper-left and lower-right corners of the phase portrait).

However, due to mutual inhibition, both variables initially tend to decrease and hence the

value of k increases, thus making the self-limiting effect of each axis more and more prevalent.

Due to this mechanism, the system trajectories converge to the steady state corresponding to

low activity for both axes (lower-left corner of the phase portrait). Similarly, if the activity of

both axes is medium or low the system is also attracted to the lower-left equilibrium point,

which has the widest basin of attraction (see Box 1). It should be noted that endocrine axes

never reach a constant value of activity, but rather undergo circadian fluctuations. Hence, the

system should actually converge not to a fixed point, but rather to a limit cycle representing a

Lissajous figure, i.e. the combination of two independent cycles with different periods, repre-

senting circadian variations of the HPG and HPA axes. However, since the range of circadian

endocrine activities is confined with respect to the wide fluctuations that are expected to play a

role in FM pathogenesis, they can be reasonably neglected when modeling the pathogenesis

process.

On the other hand, if one variable is high and the other is low, the self-limiting effects do

not prevail over the double-inhibitory mutual interaction and the system converges to either

of the equilibrium points at the upper-left or lower-right corner of the phase portrait. The

basin of attraction of the lower-right equilibrium represents a functional zone characterized by

low HPG axis activity, e.g. the one corresponding to allopregnanolone withdrawal, and high

HPA axis activity, e.g. induced by some stressful condition. Hence, such a mix of conditions

drives the system towards a stable equilibrium associated with an inhibitory effect on GABAer-

gic transmission and a stimulatory effect on glutamatergic transmission in the thalamocortical

loop. This causes bistability in this brain loop network and its likely stabilization on a high-fir-

ing-rate steady state.

Comprehensive multistable model of FM pathogenesis

Combined role of the endocrine and thalamocortical loops. The mutual inhibition

between HPG and HPA axes gives rise to a positive loop; therefore, the dynamic system is a

candidate multistable system that can admit multiple equilibria [130]. Hence, similarly to the

thalamocortical loop, this endocrine loop can behave as a switch driving pathogenesis [27].

Such double-inhibitory loop operates physiological functions [72,131], but under peculiar cir-

cumstances could lead to functional disorders.

As we have seen, a wide complex of data suggest that the conditions leading HPG and HPA

axes to develop a prevalent double-inhibitory loop are the same that induce a pathogenic bist-

ability on the thalamocortical loop. A switch of the endocrine loop to the high-HPA/low-HPG

steady state could produce sustained weakening of GABAergic and strengthening of glutama-

tergic transmissions in the pain processing thalamocortical loop. This would considerably

increase the probability of the thalamocortical loop to cross the bifurcation point, thus causing

its transition to bistability, with an immediate tendency to fall on a hyperexcitation steady state

leading to the development of FM (Fig 6).

In conclusion, our model, consisting of two interconnected dynamic systems, provides a

theoretical explanation of a transition leading to FM pathogenesis starting from possible pri-

mary causes acting on endocrine mechanisms. The high-firing-rate activity of the thalamocor-

tical loop is assumed to produce anomalous pain processing leading to chronic pain. This
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could induce cascade events in other brain regions causing the onset of symptoms that accom-

pany pain in the FM syndrome. Alternatively, these symptoms could derive from the parallel

occurrence of GABA/glutamate unbalance in other brain networks arranged as the thalamo-

cortical loop.

Predictivity and limitation of the model. Our model predicts that a combination of

high-HPA/low-HPG activities is a predisposing condition for FM. Hence, it provides a unify-

ing explanation for the supposed multifactorial origin of the disease [1], by making a variety of

triggering events upstream HPA and HPG axes to converge to a common neuroendocrine

mechanism. However, it does not make predictions about the frequency of such occurrences

Fig 6. Global representation of transitions leading to FM pathogenesis according to our neuroendocrine multistable model. Top strip: Phase portrait of

the HPA/HPG loop system, showing three stable equilibria (main graph). The lower-left (circadian) and lower-right (pathogenic) equilibria are connected with

corresponding points on the graphs of the relationship between allopregnanolone brain concentration and GABAergic strength a (side graphs). The red lines

in the side graphs indicate the bifurcation values â^, showing that the lower-right equilibrium point in the phase space leads to a value a < â^. Bottom strip: The

pain processing thalamocortical loop (left diagram), under the influence of the lower-right equilibrium point of the endocrine loop, crosses its bifurcation

point, which leads to the appearance of two stable equilibria in its own phase space (right diagram). The high-firing-rate equilibrium represents the chronic

pain condition and has a much wider basin of attraction. Therefore, once bistability has arisen, the thalamocortical system is prone to converging to the high-

firing-rate equilibrium, thus causing the onset of FM symptoms. The variables considered in the endocrine phase space (top) represent the percent activities of

the endocrine axes, e.g. estimated from the plasma levels of cortisol (HPA) and progesterone (HPG). The phase space shown in the bottom strip is a

bidimensional projection on the VPL/SSC plane of the three-dimensional thalamocortical phase space, and the graph axes represent the percent firing rate

above baseline of the thalamic ventroposterolateral nucleus (VPL) and the primary somatosensory cortex (SSC).

https://doi.org/10.1371/journal.pone.0303573.g006
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in the population. For implementing this prediction, further modeling should be developed

based on statistical data, including, e.g. for women, the frequency of excessively high choles-

terol, the occurrence of one allopregnanolone withdrawal per cycle or pregnancy, and the indi-

vidual variability of cholesterol and allopregnanolone levels during these episodes, which is

beyond the aim of this study. However, the model can be tested for FM gender prevalence. By

assuming a total of about 460 cycles for each woman (37 years with 13 cycles/years and two

pregnancies, on average), the probability of having an episode of allopregnanolone withdrawal

on a certain day is pwoman = 0.037. In men, data about neurosteroid withdrawal can be inferred

from the seasonal variation of testosterone, showing two minima at spring and late summer

[132]. Hence, for a man the probability of having an episode of neurosteroid withdrawal (nota-

bly androstanediol) on a certain day is pman = 0.005. By multiplying these probabilities with

the probability of having an excessively high cholesterol level on a certain day, the probability

that the combination high-HPA/low-HPG activities will occur on that day would be obtained.

With regard to stress, women develop psychosocial stress more often than men, but men

respond to stress with higher cortisol rise [133]. Hence, as a first approximation it can be

assumed that the frequency of episodes of excessively high cortisol potentially triggering FM is

similar in both sexes. Therefore, the gender prevalence of FM predicted by our model would

be G ¼ pwoman
pman
¼ 6:8, corresponding to 87.2% women among FM patients. This value is close to

the average of the range of female prevalence reported for FM (about 80–90%) [11], thus being

a satisfactory prediction of our model.

Discussion

We have described a theoretical model of FM pathogenesis based on literature data. This new

model includes elements from our previous hypothesis of a pain-processing thalamocortical

loop [18], and our previous review of FM in pregnancy [21]. The model is supported by litera-

ture data as follows. First, it is consistent with the new concept of nociplastic pain [134,135], in

which peripheral immune-endocrine signaling, combined with genetic predisposition and

cognitive–emotional mechanisms, are thought to lead to structural and functional neuroplas-

ticity in pain processing circuitry. Second, it fits data about the presence of GABA-glutamate

unbalance [136–138], and the finding of glutamic acid decarboxylase decrease in FM patients

[139]. Third, it is in tune with a bulk of data suggesting a role of HPA and HPG axes in FM

pathogenesis [10–17], and with the influences exerted by these endocrine systems on brain

networks (see above the sections: “Influence of the HPG axis on the thalamocortical loop” and

“Influence of the HPA axis on the thalamocortical loop”). Fourth, it is compliant with the gener-

ally poor efficacies of drugs currently used in FM therapy, but also with the relatively higher

efficacy of gabapentinoids [7,140]. Fifth, progesterone and testosterone, but not estradiol,

seem to have a protective role in FM pain severity [33]. Finally, the model is a complete one, as

it connects environmental stimuli and predisposing or constitutive conditions, such as sex,

with a brain network that is thought to give rise to chronic pain, i.e. the main FM symptom.

Such a connection is realized by a combined action of the HPG and HPA axes on the GABA/

glutamate balance in the pain-processing loop. For a disease like FM, having puzzling etiology,

unknown primary anatomical site, and lacking biological markers, the formulation of a com-

plete model of pathogenesis is extremely relevant, because if the model holds, it also points to

the most convenient targets to be addressed by therapeutic approaches.

The model predicts that the onset of FM is more likely during periods of low HPG axis

activity (even though such activity does not necessarily remain low after the onset of the dis-

ease), consistent with epidemiological data showing a significantly higher incidence in women

with suspected or proven infertility due to gynecological diseases. Some of these conditions,
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including menstrual disturbances, uterine disorders, ovarian dystrophy, ovarian cysts, miscar-

riage, and stillbirth, have been attributed, at least in some cases, to a depression of HPG func-

tioning caused by excessive HPA activation [141].

Besides providing a possible explanation for FM pathogenesis, our model also provides a

suitable prediction of female prevalence (see above the section: “Predictivity and limitation of
the model”). This is consistent with premenstrual and prepartum allopregnanolone withdrawal

in women caused by a significant scaling down of progesterone. In men, neurosteroid levels

are also variable, but fluctuations are lower than in females [69]. Another possible cause of

female prevalence resides in the reported estradiol positive modulation of NMDAR activity

[142], thus acting opposite to progestin positive GABAA modulation. In addition, an increase

in the efficacy of ACTH as an HPA activator in women, and conversely a decrease in men,

have been reported to occur from 30 to 60 years of age [143], coincident with the period of

maximum FM incidence.

By providing indications about FM pathogenesis, our model also suggests therapeutic tar-

gets. Neurosteroids are expected to be the agents that mediate the effects of HPG and HPA

axes on the central nervous system. Such a prediction is consistent with reported correlations

between neurosteroids and a series of neurological disorders, including migraine, postpartum-

depression, epilepsy, anxiety, cognitive and psychiatric disorders [56,144,145]. In this context,

one of the most investigated condition is catamenial epilepsy, characterized by perimenstrual

seizure exacerbation, involving altered levels of anticonvulsant THDOC, proconvulsant

DHEA-S and cortisol [146], and premenstrual allopregnanolone withdrawal [147]. As another

example, is PMDD is thought to derive from increased sensitivity to stress at the late luteal

phase due to poor allopregnanolone-dependent GABA control of the HPA axis [148].

Even though the pathogenic mechanisms of these diseases are still unknown, a positive

effect of neurosteroids in their treatment seems unquestionable, and accordingly, endocrine

therapies have been considered [145]. Preclinical studies in a rat model of catamenial epilepsy

have shown anticonvulsant effects of different neurosteroids acting as GABAA PAM [149],

while clinical trials have also been conducted with progesterone, the synthetic progestin nor-

ethisterone, and the gonadotropin antagonist goserelin [54,147]. GABAA PAM neurosteroids

have also anxiolytic and antidepressants properties, while their targets include a wider complex

of GABAA receptors (both γ-type and δ-type) with respect to benzodiazepines (γ-type only),

possibly explaining the absence of antidepressant effects of these latter [150]. These neuroster-

oids are thought to be effective across a range of psychiatric disorders, including essential

tremor and insomnia [150].

Among the most advanced neurosteroid-based treatments for central disorders, the syn-

thetic analogue of allopregnanolone, brexanolone has been approved by the FDA for post-par-

tum depression [151]. The analogous compound zuranolone (SAGE-217), also approved by

FDA for the same disorder [152], has an increased oral bioavailability and limited side effects

[153,154]. Its mechanism of action is presumed to involve an allopregnanolone-mimicking

GABAergic modulation with regulatory effects on HPA, representing an intriguing conver-

gence with our model.

For what concerns FM, both pharmacological and nonpharmacological therapies are gener-

ally disappointing, providing very limited benefit to FM patients [4,140,155,156]. Neuroster-

oids have never been considered for FM treatment, their closest use being the management of

neuropathic pain [157]. Our model suggests a role for neurosteroids in FM pathogenesis, thus

establishing a link between FM and several other central disorders with female prevalence.

Therefore, our model indicates the use of natural or synthetic GABAA-active neurosteroids as

a possible new therapeutic approach to FM. Considering the nonequivalent action of neuro-

steroids on GABA with respect to the effect of benzodiazepines, their therapeutic use deserves
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to be considered in future FM clinical trials. Although pain is the most characteristic FM

marker, patients are affected by a cluster of symptoms that could be induced by the combined

action of the HPG and HPA axes on other brain networks through parallel or cascade pro-

cesses. In this view, the effectiveness of neurosteroids on migraine, anxiety, cognitive and psy-

chiatric disorders, that very often accompany FM pain, is promising to improve patients’

quality of life.

Our model pertains to the problem of disease management, i.e. it is intended to fill the

knowledge gap in FM investigations by proposing a unifying mechanism of pathogenesis.

However, at present the model is a hypothesis that must be tested in future research. The lack

of knowledge about FM pathogenesis hinders the development of molecular and cellular mod-

els, but a few symptomatic animal models have been realized in rodents. The most studied

ones include stress-based methods, acid saline muscle application, and biogenic amine deple-

tion by subcutaneous reserpine injection [158]. These models respond to pharmacological

treatments having some effect on FM patients, like pregabalin and SNRIs [158], but the

adopted mechanisms disregard brain networks, the role of HPG axis, and the interaction

between HPA and HPG axes, thus being unsuitable as validating test of our model. Neverthe-

less, if combined with ovariectomy (low gonadal hormones), the stress-based models (presum-

ably inducing high HPA axis activity) could become a possible experimental test for our

theoretical model as a next investigation step.

The power of our FM model based on loop dynamics resides in the possibility of identifying

putative therapeutic targets in biological correspondents of bifurcation parameters (see Box 1).

This leaves room, at least in principle, for the possibility of going directly to clinical studies.

Therefore, the use of the above-mentioned neurosteroid drugs in FM clinical trials could be a

resolutive test of our model. This raises the problem of patient management, which in contrast

to disease management must consider patient intervariability. Hence, while our disease-man-

agement model suggests neurosteroids as a promising pharmacological therapy, these drugs

could be used in combination with non-pharmacological treatments. Such a strategy might

help reduce the doses and the side effects of drugs, while being considered effective and appre-

ciated by patients [4]. Evidence is increasing regarding the beneficial effects in FM of physical

exercise, hyperbaric oxygen therapy (HBOT), and non-invasive brain stimulation (NIBS)

[155,159,160]. Combining these therapies with neurosteroids could boost both structural and

functional neuroplasticity and allow the recovery of dysregulated pain circuitry whilst improv-

ing the cluster of FM symptoms.
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