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Plasma galectin-9 relates to cognitive performance
and inflammation among adolescents with vertically

acquired HIV
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Objective: Adolescents with perinatally acquiredHIV (AWH) are at an increased risk of
poor cognitive development yet the underlying mechanisms remain unclear. Circulat-
ing galectin-9 (Gal-9) has been associated with increased inflammation and multi-
morbidity in adults with HIV despite antiretroviral therapy (ART); however, the
relationship between Gal-9 in AWH and cognition remain unexplored.

Design: A cross-sectional study of two independent age-matched cohorts from India
[AWH on ART (n¼15), ART-naive (n¼15), and adolescents without HIV (AWOH;
n¼10)] and Myanmar [AWH on ART (n¼54) and AWOH (n¼22)] were studied.
Adolescents from Myanmar underwent standardized cognitive tests.

Methods: Plasma Gal-9 and soluble mediators were measured by immunoassays and
cellular immune markers by flow cytometry. We used Mann–Whitney U tests to
determine group-wise differences, Spearman’s correlation for associations andmachine
learning to identify a classifier of cognitive status (impaired vs. unimpaired) built from
clinical (age, sex, HIV status) and immunological markers.

Results: Gal-9 levels were elevated in ART-treated AWH compared with AWOH in
both cohorts (all P<0.05). Higher Gal-9 in AWH correlated with increased levels of
inflammatory mediators (sCD14, TNFa, MCP-1, IP-10, IL-10) and activated CD8þ T
cells (all P<0.05). Irrespective of HIV status, higher Gal-9 levels correlated with lower
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cognitive test scores in multiple domains [verbal learning, visuospatial learning,
memory, motor skills (all P<0.05)]. ML classification identified Gal-9, CTLA-4, HVEM,
and TIM-3 as significant predictors of cognitive deficits in adolescents [mean area under
the curve (AUC)¼0.837].

Conclusion: Our results highlight a potential role of Gal-9 as a biomarker of inflam-
mation and cognitive health among adolescents with perinatally acquired HIV.

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction

Early diagnosis and initiation of antiretroviral therapy
(ART) are essential to suppress viral replication and reduce
HIV-related mortality but often fails to resolve systemic
inflammation and immune activation [1–5]. While
persistent inflammation and comorbidities, such as
cognitive deficits, are prevalent among adults with HIV
on ART [6–8], the risk of chronic multisystem
comorbidities is magnified in adolescents living with
HIV (AWH), particularly in resource-limited settings
where early diagnosis and treatment are not always available
[9]. Moreover, AWH have an increased risk of variable
degrees of developmental delay and cognitive deficits
[10,11] comparedwith adolescentswithoutHIV (AWOH)
[12–15], as they are exposed to HIV during a period of
rapid brain development. However, the underlying cause
of central nervous system (CNS) injury and neurodevelop-
mental deficits among AWH is proposed to be multifacto-
rial [16]. Soluble immune mediators, such as IL-6 and
sCD14, are shown to associate with poor cognitive
performance in AWH [17–26]. Further understanding the
involvement of immunoproteins in the context of CNS
injury and neurodevelopmental deficits could provide key
insights into the intricate molecular processes influencing
cognitive outcomes.

Galectin-9 (Gal-9), a b-galactosidase binding mammalian
lectin, is involved in several immunological processes,
including cytokine production and leukocyte activation,
and a component of the first wave of the cytokine storm
in acute HIV [27]. Gal-9 plasma levels remain elevated in
adults with HIV despite ART and associates with the
extent of viremia, multimorbidity, and transcriptionally
active HIV reservoirs [27–31]. Interestingly, recent
findings demonstrating elevated levels of Gal-9 in
cerebrospinal fluid (CSF) and brain tissues suggest that
Gal-9 and its related pathways may be involved in HIV-
associated CNS pathogenesis in adults [32]. We
previously reported higher expression of Tim-3, a
receptor of Gal-9, correlated directly with viral burden
in adolescents with vertically acquiredHIV [33]. Based on
these results, Gal-9 may play a vital role in HIV-associated
comorbid outcomes at an earlier age in children or
adolescents living with HIV. Utilizing cohorts of AWH
on suppressive ARTand age-matched AWOH from India
and Myanmar, we investigated the relationship between
Gal-9, HIV status, and cognition in this population.
Methods

Participants were recruited in two independent cohorts in
Asia. Cohort I at St. John’s Medical College & Hospital,
Bengaluru, India included AWH on suppressive ART,
ART-naive AWH, and AWOH (Table S1, http://links.
lww.com/QAD/D182). Cohort II at Yangon Children’s
Hospital, Yangon, Myanmar included AWH on ARTand
AWOH (Table S1, http://links.lww.com/QAD/D182).
Ethics permissions were obtained from the Institutional
Review Board of Weill Cornell Medicine, New York,
USA (WCM- 20-07022376 and 20-07022375), Yangon
Children’s Hospital, Yangon, Myanmar (Ethics/DMR/
2019/027), St. Johns Medical College & Hospital at
Bangalore, India (IEC Study Ref No. 254/2016) and
Jawaharlal Nehru University at New Delhi, India (IERB
Ref. No. 2015/Faculty/102), and all procedures were
carried out in accordance with the approved guidelines.
Informed written consent was obtained from parents/
guardian of all participants including adolescents without
HIV. Whole blood was obtained from the participants in
both cohorts, plasma and peripheral blood mononuclear
cells (PBMCs) were isolated and stored at �80 8C and
liquid nitrogen, respectively, until analysis.

Soluble biomarkers were measured in the plasma using
immunoassays, per manufacturer’s instructions (Table S2,
http://links.lww.com/QAD/D182). All samples were
analyzed in duplicate. Additional immunophenotyping
was performed on cryopreserved PBMCs from 13 ART-
naive and 13 ART-suppressed AWH in Cohort I using a
BD FACSAria Fusion flow cytometer. Flow cytometry
data were analyzed using FlowJo v.10 software. Biomarker
data was analyzed using GraphPad Prism v.10. Significant
changes were determined using nonparametric one-way
analysis of variance (ANOVA) (Kruskal–Wallis test) and
two-tailed Mann–Whitney U-test. The strength and
direction of association between paired variables were
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assessed by Spearman’s rank correlation coefficient (r)
[34]. Asterisk signs (�) represent P values: �P less than
0.05; ��P less than 0.01; ���P less than 0.001; ����P less
than 0.0001.

Participants in Cohort II additionally underwent stan-
dardized neuropsychological assessments adapted for
cultural relevance. Cognitive tests (15 total) examined
multiple domains, including executive function, psycho-
motor/processing speed, memory, gross motor, visuo-
spatial, and learning skills (Table S3, http://links.lww.
com/QAD/D182). Z scores were calculated as [(indi-
vidual raw score)� (AWOH mean)]/(AWOH standard
deviation (SD)). Participants were considered ‘impaired’
if they performed at least 1SD below the norm on more
than five assessments. Supervised machine learning
decision tree (Sklearn v.1.2.0; DecisionTreeClassifier
function) was implemented to identify biological and
demographic factors that discriminated cognitive status (i.
e. impaired vs. not impaired). Group imbalance was
adjusted by setting class_weight parameter to ‘balanced’.
Soluble biomarkers were removed if 40% of the
observations were missing or below the lower limit of
detection. Spearmen correlations assessed multicollinear-
ity between features and for each highly correlated pair
(correlation coefficient �0.65), one feature (the first
alphabetically) was removed. SelectKBest (Sklearn
v.1.2.0) retains k number of features based upon scoring
criteria (ANOVA F-value by default) and was employed
to reduce model complexity. To determine optimum k,
models were fitted, plotted the receiver-operating
characteristic (ROC), and calculated the area under the
curve (AUC) to assess performance for each k number of
features. Given the small sample size, models were trained
in triplicate with newly generated training and test sets
used for each replicate, with the average AUC serving as
the final measure of model performance.
Results

Circulating levels of galectin-9 remain elevated
in adolescents with perinatally acquired HIV
despite antiretroviral therapy and associate with
inflammation and T-cell activation
We examined plasma Gal-9 levels in two independent
cohorts from Asia. Cohort I from India included AWH
on suppressive ART (n¼ 15; median duration of
ART¼ 5.25 years, range 0.83–8.25 years), ART-naive
(n¼ 15), and AWOH (n¼ 10), with median age of
10 years (6–15 years). ART-suppressed AWH had unde-
tectable plasma viral load (<50 copies/ml) but CD4þ

counts were variable (median¼ 1157 cells/ml, range 86–
2406 cells/ml). Cohort II included AWH on ART (total
n¼ 54; ART duration available for n¼ 16; med-
ian¼ 4.42 years, range 0.83–13 years), and AWOH
(n¼ 22), with median age 12 years (11–13 years).
AWH on ART in this cohort had undetectable plasma
viral load in 88.46% of the individuals and variable CD4þ

count (median¼ 814 cells/ml, range 290–1480 cells/ml)
[Table S1, http://links.lww.com/QAD/D182].

ART-naiveAWHin cohort I had significantly higher levels
of Gal-9 (n¼ 15; median 13.64 ng/ml), compared with
AWOH (n¼ 10; median 6.72 ng/ml) (Fig. 1a,
P< 0.0001). Although Gal-9 levels in ART-suppressed
AWH (n¼ 15; median 10.81 ng/ml) were lower than
ART-naive AWH, levels still remained significantly higher
comparedwith AWOH (P¼ 0.0143). Similarly, in Cohort
II, plasma levels of Gal-9 were elevated in AWH on ART
(n¼ 54; median 2.53 ng/ml) compared with AWOH
(n¼ 22; median 1.53 ng/ml) (Fig. 1c, P¼ 0.0027).

We next evaluated for associations between Gal-9 and
markers of inflammation and immune activation. Among
the AWH from Cohort I (ART-naive and ART-treated,
n¼ 30), circulatingGal-9 positively correlatedwith plasma
levels of sCD14 (r¼ 0.39 P¼ 0.03), TNFa (r¼ 0.58
P¼ 0.005), MCP-1 (r¼ 0.50 P¼ 0.02), IP-10 (r¼ 0.65
P¼ 0.001), and IL-10 (r¼ 0.47P¼ 0.03; Fig. 1b). Further,
immunophenotyping revealed that plasma Gal-9 levels
correlated positively with the frequency of activated
(HLA-DRþ CD38þ) CD8þ T cells (n¼ 26; r¼ 0.52
P¼ 0.005). Among the virally suppressed adolescents in
cohort II, Gal-9 positively correlated with sCD14
(r¼ 0.25; P¼ 0.06), TNFa (r¼ 0.37; P¼ 0.005), and
MCP-1 (r¼ 0.36; P¼ 0.008; Fig. 1d). Correlations with
other markers of inflammation and immune activation
were not significant (data not shown).

Higher Galectin-9 levels were associated with
poor cognitive performance in adolescents
Plasma Gal-9 levels exhibited modest inverse correlations
with performances in the domains of learning (HVLT-R
learning total, r¼�0.31; P¼ 0.0163; BVMT-R total,
r¼�0.26; P¼ 0.0439), psychomotor speed (Digit
Symbol, r¼�0.31; P¼ 0.0176) and visuospatial (Block
Design, r¼�0.30; P¼ 0.0225) (Fig. 2a). These associa-
tions were not significant when Gal-9 levels and cognitive
performances were examined among AWH (data not
shown). Among the 59 individuals who underwent
cognitive testing in cohort II (AWH n¼ 44; AWOH
n¼ 15), 23 were defined as cognitively impaired. Among
these, 21 (91.3%) were AWHonARTrepresenting 47.7%
(21/44) of AWH on ART. The participants defined as
cognitively impaired had higher Gal-9 levels (n¼ 23;
median 2.47 ng/ml) compared with those who were
nonimpaired (n¼ 36; median 1.767 ng/ml; Fig. 2b,
P¼ 0.0423). None of the other soluble markers evaluated
were significantly different based on cognitive status (data
not shown).

Machine learning reveals Galectin-9 is important
to estimate cognitive dysfunction
We next implemented a decision tree machine learn-
ing algorithm to classify individuals with cognitive
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Fig. 1. Circulating galectin-9 levels in adolescents with perinatally acquired HIV and markers of inflammation and immune
activation. (a) Comparison of galectin-9 (Gal-9) levels among AWOH (n¼10), ART-naive AWH (n¼15), and AWH on ART
(n¼15) in India. (b) Correlations of Gal-9 levels in AWHwith sCD14, TNFa, MCP-1, IP-10, IL-10, and HLA-DRþ CD38þ CD8þ T
cell% in the India cohort. (c) Comparison of Gal-9 levels among AWOH (n¼ 22) and AWH on ART (n¼54) in Myanmar. (d)
Correlations of Gal-9 levels in AWH with sCD14, TNFa, and MCP-1 in the Myanmar cohort. Statistical significance was
determined using nonparametric Kruskal–Wallis andMann–WhitneyU tests. Asterisk signs (�) represent P values in the following
manner: �P less than 0.05; ��P less than 0.01; ���P less than 0.001; ����P less than 0.0001. Correlations were determined by
Spearman’s r value.
impairment using a total of 36 features, including 33
available biomarker measures, age, sex, and HIV status. To
determine the optimum number of features to include,
models were repeatedly trained to include increasingly
more features until all features were included. When
models containing k features were plotted against mean
AUC, models containing themost significant eight or four
features stood out as the most accurate (Fig. 2c). The 8
featuremodel consisting of Gal-9, the immune checkpoint
proteins CTLA-4, Tim-3, LAG-3, and HVEM, lympho-
cyte activation receptor CD40þ, and myeloid-associated
biomarkers CD163 and MCP-1 resulted in a mean
AUC¼ 0.874 (Fig. 2d). Further reducing the complexity
ofmodel to the top four features (Gal-9,CTLA-4,HVEM,
and TIM-3) resulted in the mean model performance
remaining high (AUC¼ 0.837) when classifying adoles-
cents by cognitive status (Fig. 2d). Besides Gal-9, among
markers included in the eight-feature and four-feature
models, only CD163 was significantly different between
AWOH and AWH on ART [Figure S1, http://links.lww.
com/QAD/D182].
Discussion

According to UNAIDS, globally in 2021, 1.7 million
adolescents are currently living with HIV as a result of
perinatal transmission. Studies conducted in the global
north and south reveal persistent cognitive symptoms
among AWH receiving ART [35–39]. Abnormal levels
of several soluble immune mediators persist in AWH
despite suppressive ART [40–42]. Given the emerging
literature on the immunomodulatory effects of Gal-9
particularly in the CNS, the degree to which galectins are
perturbed in this population remain unexplored. Consis-
tent with our previous reports in adults with HIVon ART
[27,29], in two independent cohorts from Asia, we found
that plasma Gal-9 levels were elevated in AWH despite
long-term viral suppression by ART, suggesting mecha-
nisms similar to that in adults may be driving increased
Gal-9 in AWH.We have also shown previously that Gal-9
is associated with worse cognition in adults with HIV
[29,32], and we expand here demonstrating similar
findings with cognitive status among AWH.
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Fig. 2. Plasma levels of galectin-9 correlate with neurocognitive impairment and classifies cognitive status in adolescents,
independent of HIV status. (a) Correlations of Gal-9 levels with HVLTR learning, BVMTR, Digital Symbol and Block Design test
scores determined by Spearman’s r value (n¼ 59). Raw scores from each cognitive test were used for correlation analysis. (b)
Comparison of Gal-9 levels among individuals defined as neurocognitively impaired (n¼23) vs. nonimpaired (n¼36). (c)
Decision tree models comprised of immune proteins were repeatedly trained to include increasingly more features to classify
adolescents by cognitive status. Models including eight and four features were chosen for best performance with the least
components. (d) ROC curves to evaluate the performance of eight-feature and four-feature decision tree models. AUC measuring
the model performance for training and test sets are detailed in legend. Bar graph represents feature importance (FI) of biomarkers
included in models.
Circulating immune markers have been associated with
cognitive function inAWH[17–26]; however, associations
between Gal-9 and cognition remain poorly defined. Gal-
9 elicits multifactorial immune responses through inter-
actions with various cognate ligands, like Tim-3, PDI, and
CD44 [43–46]. Gal-9 levels are perturbed in many disease
conditions, including viral infections [47–49], which may
lead to increased immune activation and exhaustion, cell
death, monocyte turnover rates, perturbation of lympho-
cyte effector functions, and altered cytokine production
[50–58]. Our results demonstrating Gal-9 associations
with multiple soluble mediators, indicate that Gal-9 may
play a central role in immune mechanisms driving HIV-
associated comorbidities in adolescents. Notably, the
association of Gal-9 levels with sCD14 is interesting.
CD14þ in the plasma represents ongoing microbial
translocation and compromised gut integrity, which is a
hallmark of HIV infection in adults; however, studies in
children with vertically acquired HIV are limited. It was
recently reported that immune activation and inflamma-
tionwere not linked to alterations in thegut in the settingof
perinatal HIV [59]. In our study, the association of Gal-9
with sCD14 was only statistically significant in the Indian
cohort (Fig. 1b and d). Further, we did not find any
association of Gal-9 levels with I-FABP (Figure S2, http://
links.lww.com/QAD/D182), which is also a marker of
intestinal barrier dysfunction [60]. Decision tree ML
algorithm revealed Gal-9 and its receptor, Tim-3, as
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contributors in the classification of AWH with cognitive
impairment, suggestingGal-9 and related pathwaysmay be
potential drivers of cognitive dysfunction.

Study limitations include a small sample size, which
restricted adjustments for correlation analysis. Gal-9
values differed between India and Myanmar cohorts
because of assay variability; however, the values were
comparable within assay. Such inter-assay variation is
common [61] and does not affect our study findings. As
cognitive test scores were not available for adolescents in
India, it is unclear if findings in Myanmar AWH will
generalize to those residing in India given potential
differences in viral clade, treatment histories, and social
determinants of health. Moreover, as our cohorts only
included adolescents with vertically acquired HIV, it
would be interesting to see if these associations persist in
individuals with nonvertically acquired HIV from similar
demographic background. As Gal-9, directly or via pro-
inflammatory cytokines, can modulate CNS function
[29,62], further studies to evaluate potential mechanisms
of how peripheral Gal-9 may affect the brain are
warranted. Monitoring changes of circulating Gal-9
levels may be beneficial in clinical practice to inform
treatment decisions. Future research may explore the
underlying mechanisms linking Gal-9, inflammation,
and cognitive performance, paving the way for targeted
interventions and therapeutic strategies to improve
cognitive outcomes in adolescents.
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