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Data-driven regularization lowers the size 
barrier of cryo-EM structure determination

Dari Kimanius1,2  , Kiarash Jamali1, Max E. Wilkinson3,4,5, Sofia Lövestam1, 
Vaithish Velazhahan1,6, Takanori Nakane7 & Sjors H. W. Scheres    1 

Macromolecular structure determination by electron cryo-microscopy 
(cryo-EM) is limited by the alignment of noisy images of individual particles. 
Because smaller particles have weaker signals, alignment errors impose 
size limitations on its applicability. Here, we explore how image alignment 
is improved by the application of deep learning to exploit prior knowledge 
about biological macromolecular structures that would otherwise be 
difficult to express mathematically. We train a denoising convolutional 
neural network on pairs of half-set reconstructions from the electron 
microscopy data bank (EMDB) and use this denoiser as an alternative to a 
commonly used smoothness prior. We demonstrate that this approach, 
which we call Blush regularization, yields better reconstructions than do 
existing algorithms, in particular for data with low signal-to-noise ratios. The 
reconstruction of a protein–nucleic acid complex with a molecular weight 
of 40 kDa, which was previously intractable, illustrates that denoising neural 
networks will expand the applicability of cryo-EM structure determination 
for a wide range of biological macromolecules.

Despite rapid progress in cryo-EM technology in the past decade1, many 
biological macromolecules of interest are still too small to allow reli-
able structure determination. To limit the damage that electrons cause 
to biological structures of interest, cryo-EM images are taken using 
low doses of electron radiation, leading to high levels of experimental 
noise. The noise in the images impedes their alignment, resulting in an 
ill-posed optimization problem in which many reconstructions (which 
might be noisy or artifactual) are equally probable, given the data. The 
ill-posedness of the reconstruction imposes a minimum size barrier for 
cryo-EM structure determination, because smaller complexes yield 
images with lower signal-to-noise ratios. Although this barrier has 
been overcome in experiments involving the formation of complexes 
between small targets and other proteins2, the formation of sufficiently 
rigid complexes is often difficult. Here we explore a computational 
method that lowers the size barrier for existing cryo-EM datasets.

Even for ill-posed reconstruction problems, the correct solution 
can still be identified through the incorporation of prior knowledge. 

Most cryo-EM structures are calculated using explicit regularization of 
a likelihood function in Fourier space, which assumes cryo-EM recon-
structions are smooth in real space3–5. Although we know much more 
about the structures of biological macromolecules beyond just the 
fact that their density varies smoothly, it has been difficult to incorpo-
rate richer sources of prior knowledge into the optimization process. 
Denoising convolutional neural networks can incorporate complex 
prior knowledge into an iterative optimization process6. By training 
a denoising network on simulated pairs of noisy and ground-truth 
images, we have previously provided proof of principle that prior 
knowledge about protein structures can be exploited to improve 
cryo-EM structure determination7. However, we also observed prob-
lems with overfitting and the hallucination of protein-like features 
in the resulting reconstructions. Moreover, because experimental 
cryo-EM structures often comprise regions of well-ordered proteins 
and nucleic acid domains alongside less structured regions, includ-
ing, for example, membrane patches or flexible domains, it was not 
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confirmed by FSCs between both maps and the atomic model that was 
deposited for this dataset (Protein Data Bank (PDB): 6UKJ). Throughout 
this paper, FSCs between the map and atomic model were calculated 
using Servalcat13. We also assessed the relative quality of both maps by 
application of our automated model-building software ModelAngelo14, 
which generated a model with 84% completeness in the baseline map 
and 97% completeness in the Blush map. Model completeness is defined 
as the percentage of residues that match the reference model with a 
Cα distance of 3 Å or less.

To assess the potential for overfitting by the denoiser, we also 
performed a phase-randomization test15. We applied Blush regulariza-
tion without spectral trailing for refinement of the PfCRT dataset with 
phase randomization beyond 4-Å resolution. Although spectral trailing 
was not used, no overfitting was observed. Switching off spectral trail-
ing led to a marginal improvement in the quality of reconstruction, as 
quantified by the FSC between the map and the atomic model (Fig. 2d). 
These results indicate that the denoiser can prevent overfitting for 
this dataset, even without spectral trailing. In general, we still recom-
mend running Blush regularization with spectral trailing, because 
the benefits of switching it off are small and overfitting could be more 
prominent for other datasets. Consequently, in the following sections, 
we present results obtained only using spectral trailing.

Blush expands the applicability of cryo-EM reconstruction
We subsequently assessed the broader applicability of Blush regulariza-
tion by applying it to four types of structures and refinement methods.

First, we tested Blush regularization on a small membrane protein, 
Ste2, which is a dimeric G-protein-coupled receptor (GPCR)16 (Fig. 3 and 
Extended Data Table 1). Full-length monomeric Ste2 has a molecular 

clear how ground-truth pairs for experimental cryo-EM data could 
be generated.

Here, we demonstrate how a pre-trained denoising convolutional 
neural network, trained and deployed in an application-specific man-
ner inspired by the noise2noise approach8 (Fig. 1 and Methods), can 
improve cryo-EM structure determination using experimental data. 
Through this approach, which we call Blush regularization, we improve 
reconstructions across a variety of existing cryo-EM datasets, including 
one for a protein–nucleic acid complex that was too small for analysis 
using existing methods.

Results
Blush regularization improves reconstruction without 
overfitting
We first tested Blush regularization on a cryo-EM dataset 
(EMPIAR-10330)9 for the Plasmodium falciparum chloroquine resist-
ance transporter (PfCRT)10. This dataset has been used as a standard 
to demonstrate the performance of several approaches in reducing 
overfitting during cryo-EM refinement11,12. Standard refinement using 
regularized likelihood optimization in RELION, which we refer to as the 
baseline, yields an overall resolution of 3.8 Å for this data set.

Application of Blush regularization (Fig. 2) yielded an overall reso-
lution estimate of 3.4 Å. In the last iteration, spectral trailing, a heuristic 
method that prevents overfitting by limiting the spatial frequency at 
which information from the denoiser is used (Methods), was applied 
with a cut-off at 3.5 Å. Compared with the baseline reconstruction, 
local resolution improved for most regions of the map, with a corre-
sponding increase in visible side-chain densities. The improvement in 
resolution, as measured by half-map Fourier shell correlation (FSC), was 
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Fig. 1 | Schematic illustration of Blush regularization and slices of example 
volumes. a, Training procedure, showing two passes for both half-maps and 
recycling of the denoiser output (in pink), with calculation of a mean squared 
error (L2) loss. b, Iterative reconstruction with spectral trailing. Each half-map 
is reconstructed separately. At each iteration, the FSC is used to estimate a 
cut-off frequency (ρ), which is subsequently used to low-pass filter the denoiser 
output. The final output does not pass through the denoiser but is subjected to a 
Wiener filter, similar to baseline reconstruction. c, Denoiser U-net architecture, 

consisting of five consecutive encoder blocks and a convolution block, followed 
by five consecutive decoder blocks. SiLU stands for sigmoid linear unit; Norm 
for batch normalization. d,e, Slices through maps before (left) and after (right) 
a single application of the denoiser to the final iteration of the reconstruction 
for PfCRT (d) and the spliceosome (e). f,g, Slices through maps of baseline 
reconstruction (left) and after Blush regularization (right) of the FIA (f) and the 
Aca2–RNA complex (g). Scale bars, 30 Å.
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weight of 47.85 kDa, which includes a long disordered carboxy-terminal 
tail that comprises 125 amino acids. The total mass of the ordered 
dimeric Ste2 that contributes to alignment is roughly 67 kDa, most of 
which lies embedded in a detergent micelle.

The dataset used was acquired from a similar complex to that in 
PDB entry 7QB9, reported in ref. 16, but with different biochemical 
conditions affecting the stability of the structure. Alignment of images 
of Ste2 is difficult because few protein features extend from the smooth 
detergent micelle. Baseline reconstruction yielded a map with an over-
all resolution of 3.8 Å, with limited densities for side chains. Application 
of Blush regularization led to a structure with an overall resolution of 
3.4 Å. Spectral trailing ensured that no information from the denoiser 
was inserted beyond 3.7-Å resolution. Compared with the baseline 
reconstruction, the density of the transmembrane helices is improved. 
Loops at the top and bottom of the structure are still relatively poorly 
resolved, probably owing to molecular flexibility. In agreement with 
the visibility of improved side-chain densities and local resolution 
estimates, the completeness of models built by ModelAngelo in these 
maps improved from 19% to 43%.

Second, we evaluated the performance of Blush regularization 
in multi-body refinement17, in which partial signal subtraction is used 
to align independently moving domains within a larger complex. 

Reconstructions from subtracted images were included in the training 
set for the denoiser. Moreover, signal subtraction reduces the amount 
of signal in each image, placing stringent limitations on the minimal 
size of domains that can be aligned. We applied Blush regularization in 
multi-body refinement of a publicly available dataset (EMPIAR-10180) 
for the Saccharomyces cerevisiae pre-catalytic spliceosomal B com-
plex18 (Fig. 4). Using four bodies, one each for the core, the foot, the heli-
case and the SF3b regions, Blush regularization improved the quality 
of reconstructions of all domains compared with baseline multi-body 
refinement, as measured by local resolution, half-map FSCs and FSCs 
with the reference atomic model (PDB: 5NRL). The improvements in 
resolution were largest in the helicase and SF3b regions, which are the 
most flexible and thus the hardest to reconstruct. The improvements 
in resolution were reflected by automated model building in Model-
Angelo, which increased model completeness of the entire complex 
from 32% to 48%. In particular, the model completeness for the SF3b 
region was improved from 3% to 29%.

Third, we assessed the performance of Blush regularization for 
a biological assembly that was different than the types of structures 
that the denoiser was trained on: the first intermediate amyloid (FIA) 
that forms during the in vitro assembly of recombinant tau (residues 
297–391)19. This dataset is also publicly available (EMPIAR-11720). Unlike 
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any of the structures in the training set, the FIA has helical symmetry 
(Fig. 5). It is an amyloid filament, with parallel β-strands repeating every 
4.7 Å in the direction of the helical axis. Besides deviating from the 
types of structures in the training set, the FIA is also one of the small-
est amyloid structures solved to date, with only 15 ordered residues in 
each of two opposing β-sheets. Baseline helical refinement yielded a 
5.0-Å-resolution map, in which the density for β-strands along the heli-
cal axis was not separated, and no atomic model could be built. Blush 
regularization improved the resolution to 2.8 Å, and ModelAngelo built 
all 15 ordered residues in the resulting map.

Fourth, we applied Blush to the small anti-CRISPR associated 
protein 2 (Aca2) bound to RNA, which has a total molecular weight of 
40 kDa (Fig. 6 and Extended Data Table 1). Using different classification 
and refinement strategies in baseline RELION and CryoSPARC, we could 
not obtain a reliable reconstruction. Although an initial model gener-
ated using the standard VDAM algorithm in RELION20 suffered from 
anisotropy, the first three-dimensional (3D) classification using Blush 
regularization resulted in one class with recognizable protein features. 
Similar 3D classifications without Blush regularization did not yield 
recognizable protein features. Refinement of the corresponding class 
yielded a better initial model for a second 3D classification, from which 

a single class was selected for subsequent CTF refinement21 and particle 
polishing21. A 3D classification was performed without alignment, fol-
lowed by a final 3D refinement. Blush regularization was used for all 3D 
classifications with alignment and 3D refinements. The resolution of 
the final map was 2.5 Å, with ModelAngelo successfully building 97% 
of the protein sequence and 33 out of 42 nucleotides.

Discussion
In a previous approach using noise2noise, implemented in the M soft-
ware22, a new neural network is trained for each dataset that it is applied 
to, using only half-maps from the same dataset. As such, the neural 
network in the M software can learn only features that are specific to 
the dataset at hand. By contrast, we pre-train a single neural network 
on a diverse set of high-resolution half-maps from the EMDB. Our 
pre-trained network improves cryo-EM reconstructions for a wide vari-
ety of macromolecular complexes, suggesting that it has learned useful 
features about cryo-EM structures in general. In addition, although 
our approach was inspired by noise2noise, it blends the unsupervised 
elements from noise2noise training with new application-specific 
elements, such as recycling and supervised masks in Fourier space 
and in real space. An interesting avenue for future research could be 
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a combination of the two approaches, in which the pre-trained Blush 
network is fine tuned using the half-maps of the dataset at hand, using 
techniques similar to those implemented in M.

We previously attempted to incorporate prior knowledge 
about protein structures by training a denoiser on pairs of noisy and 
ground-truth maps that were calculated from atomic models, and 
observed problems with overfitting and hallucinations7. Similar prob-
lems could explain why the application of the DeepEMhancer neural 
network23 inside the iterative reconstruction algorithm of RELION had 
to be restricted to only a few iterations at the end of refinement24. The 
approach in this paper reduces the risk of hallucinations of protein-like 
features in reconstructions by using a neural network that is trained 
only on experimental cryo-EM half-maps, that is without the atomic 
models or the geometrical restraints that are used to describe them.

Instead of forcing the map to resemble densities derived from 
atomic models, our denoiser is trained to introduce more subtle modi-
fications to cryo-EM maps, such as smoothing out density in solvent 
regions or in detergent micelles. The network also removes artifacts 
that are commonly encountered in difficult cryo-EM refinements, for 
example anisotropic densities that result from uneven angular distribu-
tions, or radially extending, streaky features that are often observed 
in overfitted maps (Figs 1f,g). Our findings illustrate that, although 
the effect of a single application of the denoiser is relatively small, its 
cumulative impact over several iterations enhances the performance 
of cryo-EM structure determination across a diverse range of test cases. 
As the ability of machine-learning methods to extract knowledge from 
large datasets improves, it could be tempting to leverage more struc-
tural information about biological macromolecules in the reconstruc-
tion process. However, doing so could ultimately diminish one of the 
most powerful ways of assessing whether a reconstruction is correct: 
the presence of expected features in the map. We thus anticipate that 
the cryo-EM community will continue to explore the question of how 
much prior knowledge should inform the reconstruction process, and 
how much should be kept aside for validation.

In the framework of Blush regularization, the denoiser replaces the 
filter operation that constrains the power of Fourier-space components 
in the baseline algorithm. As a result, the FSC between independently 
refined subsets is no longer used to define a 3D Wiener filter that is 
applied to the intermediate reconstructions. Instead, this FSC is used 
to determine a resolution cut-off (ρ), beyond which the Fourier com-
ponents of the two denoised half-maps are set to zero. Because Fourier 
components near the resolution estimate of the final map will not have 
been affected by the denoiser, overestimation of resolution owing to 
the denoiser cannot happen directly.

Although spectral trailing represents the first attempt to prevent 
overestimation of resolution when using information-rich priors in 
cryo-EM reconstruction, it might not be the optimal solution. In fact, 
as exemplified by the PfCRT dataset (Fig. 2), spectral trailing can lead 
to underestimation of resolution. Future exploration of the damping 
effect of the network in Fourier space could lead to better approaches 
to safeguard against overestimation of resolution. Other research 
topics that might be worth exploring include the adaptation of the 
VDAM algorithm20 in Relion to also use Blush regularization, which 
may improve initial model generation. In fact, provided that they allow 
modification of real-space maps, a wide range of cryo-EM methods 
could be improved by Blush regularization, ranging from standard 
refinement approaches in alternative software packages to approaches 
for dealing specifically with structural heterogeneity, for example25–27.

In all our tests, the performance of Blush regularization sur-
passed or matched that of the baseline implementation in RELION. 
We observed the largest differences for cases in which the baseline 
approach tended to overfit the data. Consequently, Blush regu-
larization will be most useful for refinements of datasets with low 
signal-to-noise ratios, such as those of small complexes or complexes 
embedded in thick ice layers, multi-body refinements involving rela-
tively small bodies and refinements of maps exhibiting pronounced 
variations in local resolution. For example, Blush regularization allowed 
reconstruction of an amyloid with only 30 residues in its ordered core, 
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and of the Aca2–RNA complex with a molecular weight of 40 kDa. 
Although nucleic acids result in higher signal-to-noise ratios than do 
proteins, 40 kDa approaches predicted minimal sizes for a protein 
that is amenable to cryo-EM structure determination28,29. These results 
demonstrate that denoising convolutional neural networks expands 
the applicability of cryo-EM structure determination .
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Methods
Rationale
The noise2noise framework8 facilitates the training of a denoising 
convolutional neural network in the absence of explicit access to 
ground-truth images. Instead, it relies on pairs of noisy images to 
extract information about their shared signal. Here, we present an 
application-specific approach that incorporates this aspect from the 
noise2noise framework. We trained a denoiser on a set of 422 pairs of 
noisy half-maps that we downloaded from the EMDB30. We selected 
only entries with reported resolutions higher than 4 Å for which both 
unfiltered half-maps were deposited. Maps with obvious artifacts, for 
example those associated with overfitting, and maps of a structure 
that was already present in the training set were eliminated during 
manual curation.

We tailored data augmentation and training of the denoiser to 
integrate with the iterative expectation-maximization algorithm for 
cryo-EM reconstruction. All pairs of half-maps, x(k)i ∈ ℝN, with k ∈ {0,1}, 
were re-scaled to a uniform voxel size of 1.5 Å, and augmented by gen-
erating new pairs y k

i , ̄y k
i ∈ ℝN:

y(k)i = HC, A [x(1−k)i + e(1−k)] , (1)

̄y(k)i = HC̄, A [x(k)i ⊙Mi + h (x(k)i ) ⊙ (1 −Mi)] , (2)

where e ∈ ℝN  is random colored noise, Mi ∈ [0, 1]N is a smooth mask 
encapsulating the molecules of interest, ⊙ represents voxel-wise mul-
tiplication and h(.) is a low-pass filter to 15 Å. HC,A[.] applies an aniso-
tropic Gaussian filter with covariance matrix C, an affine transform  
A that includes rotation and translation, a crop to a patch of 643 voxels 
and a voxel-value standardization. Data augmentation was achieved 
through random assignments of C, C̄,A, e and r.

By using a range of resolution cut-offs for C and C̄, the denoiser 
explicitly learns to handle maps with varying resolutions. This is neces-
sary for its application inside the iterative expectation-maximization 
algorithm, which typically starts at relatively low resolutions and gradu-
ally progresses to higher resolutions. Although using a lower resolution 
cut-off for C than for C̄  could have produced a network that enhances 
the resolution of the half-maps, similar to deblurring networks31,  
we opted not to do so to minimize the risk of hallucinations in 
high-resolution features.

Using different degrees of anisotropy in C and C̄ , the denoiser 
learns to deal with the artifacts that arise from non-uniform orienta-
tional distributions, and random orientations and affine transforma-
tions in A lead to invariance with respect to rotations, translations and 
intensity scale. Although initial versions of our training protocol did 
not include masks, we observed that the resulting networks would 
learn to smoothen densities in disordered regions, such as the solvent 
or detergent micelles, which would improve image alignments.  
To amplify these effects, we then implemented the supervised masking 
approach with Mi and h(.). By filling disordered regions with a 
15-Å-resolution low-pass filtered version of the map, as opposed to a 
straightforward voxel-wise multiplication with the mask Mi, higher 
density values in regions with disordered molecules, such as detergent 
micelles, are maintained.

By re-scaling all maps to a common voxel size of 1.5 Å, and then 
cropping maps to patches of 643 voxels, the network can be trained 
on and applied to maps of any size. To apply the denoiser to maps 
that are larger than one patch, overlapping patches can be denoised 
independently.

Training the denoiser
Our denoiser (fθ) consists of a U-net with approximately 13 million 
trainable parameters (θ) (Fig. 1). It is trained using residual learning32 
and with a dropout rate of 50% (ref. 33). Instance normalization34 is 

used to handle small mini-batches (ℬ), with b = 8 samples from the 
training dataset, during training. We minimize the following loss:

ℒ = 1
2b

∑
i∈ℬ

∑
k∈{0,1}

‖
‖ ̄y(k)i − fθ (Rr [ fθ, y(k)i ])‖‖

2
, (3)

where Rr[fθ,y] returns the output of the denoiser fθ after recursively 
calling it r ∈ {0, …, 5} times with y k

i  as the initial input. This enables the 
denoiser to recognize and suppress artifacts brought about by its 
repeated usage, thereby limiting the amplification of artifacts in the 
reconstruction that are introduced by the denoiser during subsequent 
iterations of the expectation-maximization algorithm7.

Training for 950,000 steps took six days using a single Nvidia 
A100 GPU.

Iterative denoising with spectral trailing
We refer to the application of our pre-trained denoiser within the 
iterative expectation-maximization algorithm as Blush regulariza-
tion. In our original work, with simulated data, we incorporated the 
denoiser into the L2 regularization in the M-step, on the basis of the 
approximation that the prior function is ‘close’ to a Gaussian7. In this 
work, we do not make formal claims about the role of the denoiser 
within a Bayesian framework. Instead, our approach is motivated by 
empirical observations.

Although one effect of the denoiser is that it tends to dampen Fou-
rier components at higher spatial frequencies, the amount by which it 
does so is not well defined. Therefore, we use a heuristic method, here 
referred to as spectral trailing, to prevent overfitting in 3D autorefine-
ment and multi-body refinement. First, we calculate the FSC between 
two independently refined half-maps before the denoiser is applied, 
and determine the ρ value at which the solvent-corrected FSC drops 
below 0.143. We then apply the denoiser to both half-maps and subse-
quently apply a low-pass filter at a spatial frequency that is two Fourier 
shells (each shell is one Fourier voxel wide) lower than ρ. If ρ exceeds 
the Nyquist frequency of the denoiser, here set to 3 Å, the remaining 
Fourier shells at higher frequencies are populated with the reconstruc-
tion from the standard regularization in Fourier space. The resulting 
denoised, low-pass-filtered maps are then used as references for align-
ment in the next iteration. The denoiser is not applied to the output of 
the final refinement step.

Blush regularization has been implemented in the open-source 
software RELION-5, using a combination of C++ and PyTorch. It can be 
used for 3D classification, multi-body refinement and 3D autorefine-
ment jobs, including those for particles with point-group or helical sym-
metry. For 3D classification for data that are separated into independent 
half-sets, the filtered map from the regularized likelihood approach is 
used as input for the denoiser. No additional low-pass filtering is applied. 
In this job type, the denoiser is also applied in the last iteration.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The full list of EMDB entries that were used to train the denoiser, along 
with the manually curated masks, can be downloaded from https://
zenodo.org/records/10553452 (ref. 35). The Aca2–RNA dataset has 
been submitted to EMPIAR (EMPIAR-11918).

Code availability
Blush regularization has been implemented in the open-source soft-
ware RELION-5, which is distributed for free under the GPLv2 license and 
can be downloaded from https://github.com/3dem/relion. Addition-
ally, code used in the training procedure of the Blush denoiser model 
is available at https://github.com/dkimanius/blush-training.
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Extended Data Table 1 | Cryo-EM datasets of Ste2 and Aca2. Details on cryo-EM data collection and processing of the Ste2 
and Aca2 datasets are presented
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