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Abstract
Cancer is one of the leading causes of death worldwide, with over 10 million fatalities annually. While tumors can be sur-
gically removed and treated with chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or combined therapies, 
current treatments often result in toxic side effects in normal tissue. Therefore, researchers are actively seeking ways to selec-
tively eliminate cancerous cells, minimizing the toxic side effects in normal tissue. Caseins and its derivatives have shown 
promising anti-cancer potential, demonstrating antitumor and cytotoxic effects on cells from various tumor types without 
causing harm to normal cells. Collectively, these data reveals advancements in the study of caseins and their derivative pep-
tides, particularly providing a comprehensive understanding of the molecular mechanism of action in cancer therapy. These 
mechanisms occur through various signaling pathways, including (i) the increase of interferon-associated STAT1 signaling, 
(ii) the suppression of stemness-related markers such as CD44, (iii) the attenuation of the STAT3/HIF1-α signaling, (iv) the 
down-expression of uPAR and PAI-1, (v) the loss of mitochondrial membrane potential and reduced intracellular ATP pro-
duction, (vi) the increase of caspase-3 activity, and (vii) the suppression of TLR4/NF-кB signaling. Therefore, we conclude 
that casein could be an effective adjuvant for cancer treatment.
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Introduction

In 2020, the World Health Organization (WHO) reported 
18.1 million cancer cases, and 9.6 million cancer deaths in 
2018, with a projected increase to 29.4 million cases in 2040. 
The highest incidence among males was observed for lung 
cancer (14.3%), prostate cancer (14.1%), and colorectal can-
cer (10.6%). For females, breast cancer (24.5%), colorectal 

cancer (9.4%), and lung cancer (8.4%) were most frequently 
affected being a global health problem. In both sexes, lung, 
breast, and colorectal cancer are the leading causes of death 
worldwide by cancer [1]. Although tumors can be surgi-
cally removed and treated with chemotherapy, radiotherapy, 
immunotherapy, hormonal therapy, or combined therapies, 
current treatments often result in toxic side effects in normal 
tissue. Despite knowledge of the genetic basis and molecular 
mechanisms of this disease, cancer remains a highly aggres-
sive pathology with a high mortality rate. This is primarily 
due to chemoresistance developed by tumor cells, metastasis 
formation, and the highly cytotoxic side effects in normal 
tissues [2–4]. Therefore, there is an urgent need to study 
new therapeutic molecules that can eradicate cancer cells 
while minimizing toxic side effects on healthy organs. In this 
regard, bioactive peptides obtained from milk show promise 
as antitumor agents, limiting the growth of cancer cells and, 
at the same time, positively influencing immune system acti-
vation [5–9]. Bovine milk has been a fundamental dietary 
for numerous human populations worldwide. National and 
international dietary guidelines recommend regular intake 

 * Edelmiro Santiago-Osorio 
 edelmiro@unam.mx

1 Hematopoiesis and Leukemia Laboratory, Research Unit 
on Cell Differentiation and Cancer, Faculty of High Studies 
Zaragoza, National Autonomous University of Mexico, 
09230 Mexico City, Mexico

2 Department of Biomedical Sciences, School of Medicine, 
Faculty of High Studies Zaragoza, National Autonomous 
University of Mexico, 56410 Mexico City, Mexico

3 Department of Physiology, Biophysics, and Neurosciences, 
Center for Research and Advanced Studies of the National 
Polytechnic Institute, 07360 Mexico City, DF, Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s12032-024-02403-8&domain=pdf


 Medical Oncology (2024) 41:200200 Page 2 of 13

of milk and dairy products as part of a healthy diet [10]. 
The dairy group supplies many nutrients, including calcium, 
phosphorus, vitamin A, vitamin B12, vitamin D, riboflavin, 
proteins, essential amino acids, potassium, magnesium, sele-
nium, and zinc [11].

Milk acts as the exclusive nutritional source until wean-
ing, providing all the necessary components for develop-
ment, including proteins, enzymes, carbohydrates, vitamins, 
and minerals, and ensuring a functional immune response 
[12]. Milk proteins can exert a wide range of positive effects 
on the body, such as boosting the immune system, protecting 
against harmful bacteria, viruses, and yeasts, and supporting 
the growth and proper functioning of the digestive system 
[13]. Interestingly, milk itself possesses tumor suppressor 
properties in many types of cancer [14–18]. This review 
provides a current summary of milk proteins, mainly caseins 
and peptides derived from casein, and explores their poten-
tial biomedical relevance in defending against the develop-
ment of cancer.

Milk composition

Bovine milk is an emulsion composed of proteins (3–4%), 
lipid (3–6%), carbohydrates (5%), minerals (0.7%), vita-
mins (0.5%), water (86–88%), and various additional ele-
ments, whereas human milk contains 1% protein, 4% lipid, 
7% carbohydrates, 1% minerals (Calcium, Phosphorus, 

Magnesium, Potassium, Sodium), vitamins, and 87% water, 
as shown in Fig. 1. The composition of each one reflects the 
nutritional requirements for the growth and development of 
each species [19–22].

Bovine milk has been an essential dietary component for 
numerous human populations worldwide, constituting an 
almost universal element of human nutrition, regardless of 
consumer age [23–25]. In this context, bovine milk stands 
out as the most extensively studied among all mammals due 
to its high consumption and wide range of positive effects 
on the body. Thus, our emphasis is directed toward bovine 
milk, specifically the protein fraction.

Proteins in milk can be categorized into two main groups 
based on their solubility at pH 4.6 (isoelectric point of 
casein): (1) Caseins and (2) Whey proteins. Caseins are the 
most abundant proteins in milk, constituting approximately 
78–80% of milk proteins with a milk content of 24–28 g/L 
[26–29]. The different casein fractions in bovine milk are 
diversified into four families based on the homology of their 
primary amino acid sequences, namely αs1 (39–46% of total 
casein), αs2 (8–11%), β (25–35%), κ (8–15%), and γ (3%) 
casein which is a natural degradation product of β-casein [22, 
30–34]. In milk, caseins interact with calcium phosphate, 
forming large stable colloidal particles termed micelles with 
a size ranging from 30 to 300 nm. These micelles make pos-
sible the maintenance of a supersaturated concentration of 
calcium phosphate in milk, providing newborns with suffi-
cient calcium phosphate for the mineralization of calcifying 

Fig. 1  Approximate composition of bovine and human milk. Proteins are divided into insoluble casein proteins and soluble whey proteins
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tissues [35]. On the other hand, the whey protein fraction 
constitutes < 20% of whole milk protein and is composed of 
α-lactalbumin (5%), β-lactoglobulin (10%), bovine serum 
albumin (1%), immunoglobulins (3%), and minor proteins 
such as lactoperoxidase, lysozyme, lactoferrin, and transfer-
rin [22] as shown in Fig. 2. Whey proteins possess antiviral, 
bactericidal, antifungal, anti-inflammatory, and anti-oxidant 
properties [36–39].

Caseins and casomorphins

The caseins, main milk proteins, are encoded by a gene 
family covering a genomic region of 250 kb, located on 
chromosome 6 (6q31) in bovine cattle [34]. The genes 
CSN1S1, CSN2, CSN1S2, and CSN3 encode for αs1-, β-, 

αs2-, and κ-casein, respectively, as shown in Fig. 3. The 
first three genes are located in a locus that covers a region 
of 140 kb, whereas the κ-casein gene is located in a region 
of 95–120 kb.

Bovine caseins are synthetized and regulated in the mam-
mary gland under hormonal control. All casein families have 
multiple genetic variants with different amino acid substitu-
tions [19], resulting in a multitude of active protein frag-
ments after hydrolysis during gastrointestinal digestion or 
food processing [25, 40, 41]. In milk, for example, β-casein 
is a protein encoded by the CSN2 gene, composed of 209 
amino acids [42], and constitutes up to 37% of the caseins 
in bovine milk. The gene CSN2 is the most polymorphic 
among the genes encoding for caseins, with 13 genetic vari-
ants (A1, A2, A3, A4, B, C, D, E, F, G, H1, H2, I). The sub-
stitution of a single amino acid at the 67 position (histidine 

Fig. 2  Overview of the caseins 
and whey proteins, and their 
share in the total protein frac-
tion

Fig. 3  Genomic organization 
of the locus of bovine/goat 
αs1-, β-, αs2-, and κ-casein 
genes located on chromosome 
6. The single arrow represents 
the direction of transcrip-
tion of each gene. The double 
arrow indicates the distance in 
kilobases of casein genes. The 
number of amino acid residues 
and genetic variants from the 
corresponding genes are given 
under each gene
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in A1 β-casein and proline in A2 β-casein) allows the dis-
tinction between two types of milk [43].

Several clinical trials have showed a relationship between 
the consumption of dairy products and a reduced risk of 
heart diseases. This association has been linked to the 
angiotensin-converting enzyme (ACE) inhibitory activity 
of whey and casein proteins, as well as their peptide deriva-
tives released during digestion [44, 45]. Caseins and whey 
proteins have also been shown to exhibit anti-inflammatory 
properties, reducing T-cell activation markers in low-grade 
inflammation associated with obese human subjects [46]. 
In the context of antitumoral activity, in vitro studies have 
shown that three casein family members (αs1-, β-, and 
κ-casein) can all significantly inhibit the proliferation of 
human and mouse leukemic cells and murine mammary 
tumor cells in a concentration-dependent manner. Further-
more, Ramos et al. showed that sodium caseinate, a salt of 
casein, also inhibits the proliferation of mouse leukemic 
cells in vitro and in vivo [47, 48]. Additionally, different 
active protein fragments of β- and κ-casein have demon-
strated antitumor effects against different types of tumors, 
including breast, melanoma, and ovarian cancer, which will 
be further studied later [22, 49–51].

On the other hand, casomorphins are a group of exog-
enous opioid-like peptides derived by the enzymatic action 
of α- and β-caseins. β-casomorphins are peptides of 4 
to 11 amino acids encrypted in an inactive form and are 
released during digestion in vitro and in vivo. The first caso-
morphin isolated from an enzymatic casein digest was the 
β-casomorphin-7 following of βb-casomorphins-4, -5, and -6 
[52], whereas opioid peptides isolated from α- and κ-casein 
digestion are named α-casomorphin (exorphins) and casox-
ins, respectively [53, 54]. In the context of antitumoral activ-
ity, various peptides derived from the digestion of casein 
have demonstrated antimutagenic properties against several 
types of cancer. Hatzoglou et al. reported that five differ-
ent casomorphins (α-casein fragments 90–95 and 90–96, 
β-casomorphins-7 fragment 60–66, β-casomorphins-5 
fragment 60–64, and the morphiceptin, the amide of 
β-casomorphins-4) have anti-proliferative activity on T47D 
breast cancer cells. These peptides increase the number of 
cells in G0/G1 phase and significantly diminish the percent-
age of cells at S and G2/M phases, indicating cell cycle inhi-
bition [55].

Additional findings indicated a dose-dependent reduc-
tion in cell proliferation by various casomorphin peptides 
on human prostatic cancer cell lines (PC-3, DU 145, and 
LNCaP), through partial interaction with opioid receptor 
binding sites [56]. Furthermore, β-casomorphins-7 and 
the phosphopeptide β-casein induced apoptosis in HL-60 
leukemia cells [57]. The interaction between casomorphins 
and tumor cells takes place via δ- and κ-opioid receptors, 
with exception of morphiceptin, whose action is mediated 

by type II somatostatin receptor. In this case, the casomor-
phins exhibited different receptor affinities [22].

Casein against breast cancer

Breast cancer represents the first incidence and cause of 
death in woman worldwide [58]. Risk factors such as early 
menarche, late first pregnancy (after 30), and late meno-
pause are all associated with an increase in developing breast 
cancer [59–61]. In contrast, early first pregnancy, multiple 
pregnancies, and extended periods of lactation reduce risk 
of developing breast cancer [62]. Sotgia et al. showed that 
the implantation of mammary tumor cells within the mam-
mary gland of a constitutively lactating mouse model (Cav-3 
(-/-) mice) inhibited tumor growth by over 1000-fold. Fur-
thermore, in vitro studies show that the addition of human 
milk at low concentrations to cultured mammary tumor 
cells reduces their capacity for migration [63]. There are 
several potential explanations for why extended lactation 
might offer a protective effect. For example, it may limit the 
exposure of the breast to the inflammatory environment of 
involution or prevent potentially transformation from nor-
mal to pre-cancerous cells, as well as the progression from 
pre-cancerous to tumor cell [64]. These results suggest that 
milk has a protective effect against breast cancer, benefit-
ing both the mother and infants by providing a source of 
macro- and micronutrients during breastfeeding. It confers 
protection against infections and childhood cancer [65, 66]. 
Furthermore, exclusive breastfeeding provides more benefi-
cial immunological effects compared with that supplemented 
by alternative feeding [66].

One novel hypothesis against breast cancer is that milk 
itself contains, as yet, undiscovered components that func-
tion as tumor suppressors. Bonuccelli et al. showed that three 
members of the casein gene family (α-, β-, and κ-casein) can 
all significantly reduce the migration of murine mammary 
tumor cells (Met-1), as well as two human breast cancer 
cells (MCF10 and MDA-MB-231 cells), with α-casein being 
the most effective. Furthermore, recombinant expression of 
α-casein in mammary tumor cells remarkably attenuates 
both in vivo tumor growth (> fivefold) and experimental 
lung metastasis (> ninefold) in athymic nude mice by reduc-
ing the “stemness” and conferring a more “differentiated” 
mammary cell phenotype. This increases their sensitivity to 
apoptosis by STAT1 signaling [48]. In direct support of this 
notion, Garner et al. assessed the effect of α-casein on Breast 
Cancer Stem Cell (BCSC) activity in vitro and found that 
α-casein to significantly reduce BCSC in the triple-negative 
MDA-MB-231 cell line. This reduction is mediated by HIF-
1alpha, a hypoxia-inducible transcription factor closely asso-
ciated with the induction and maintenance of a BCSC phe-
notype [67–69], which reduces the “stemness” and confers 
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more differentiated phenotype, increasing their sensitivity to 
apoptosis [48]. On the other hand, Richter et al. showed that 
recombinant expression of a fragment of human κ-casein 
(RL2) induces loss of mitochondrial membrane potential 
and reduces ATP levels in MCF-7 and MDA-MB-231 breast 
cancer cells, leading to cell death. Interestingly, there is 
strong evidence that fragment of human κ-casein specifically 
affects cancer cells and does not exert any suppressive action 
on normal cells or non-malignant mesenchymal stem cells 
[70]. In this regard, casein or peptides derived from casein 
are promising antitumor therapeutics for the treatment of 
breast cancer minimizing toxic side effects in healthy organs.

Casein against melanoma

Melanoma is a highly metastatic malignant neoplasm that 
shows limited responsiveness to systemic treatments in 
patients with advanced stage. In 2020, there were 324,635 
new cases of this disease, resulting in 57,043 deaths world-
wide. Although new systemic treatments have been used for 
patients in stages III and IV, only 20% of patients have an 
effective response with maintenance of long‐term survival 
[71]. Thus, the high cost of treatment and the low effec-
tiveness of available therapies highlight the urgent need for 
development of new therapeutic strategies.

The use of natural products in cancer therapy is an active 
area of research, and few studies have been conducted to 
evaluate the anti-cancer effects of milk proteins in mela-
noma. In direct support of this notion, Alexandre et al. 
demonstrated the antineoplastic effect of INKKI, a cationic 
peptide isolated from hydrolysis of bovine β-casein, in mela-
noma. They showed that INKKI peptide inhibits cell prolif-
eration and has cytotoxic and apoptotic effects on B16F10 
cells in vitro. Additionally, a 72.62% inhibition in tumor 
growth and a decreased number of metastases were observed 
in tumor-bearing mice treated with INKKI [51]. However, 
the exact cell-specific receptor and signal transduction path-
ways involved in INKKI’s action have not been fully inves-
tigated yet and require further research. Although evidence 
from the literature has indicated that β-casein protein and 
its derivate peptides are interesting compounds of milk with 
antineoplastic effects, few studies have attempted to under-
stand their effects on melanoma. These findings suggest that 
components of milk as β-casein could be promising candi-
dates for the development of new therapeutic agents against 
melanoma. However, stronger scientific evidence is needed 
to validate the effect of β-casein on melanoma cancer.

Casein against ovarian cancer

Ovarian cancer is one of the most lethal gynecological 
malignancies, posing a significant threat to women’s health 
worldwide. Although ovarian cancer can be removed by 

surgical resection and treated with chemotherapy, problems 
continue to arise particularly with respect to chemotherapy 
due to side effects, drug resistance, and low specificity of 
currently available drugs [72]. Therefore, new therapeu-
tic strategies need to be employed as anti-cancer agents to 
minimizing toxic side effects in healthy organs. Milk casein 
protein has been reported to have suppressor tumor activ-
ity toward other cancer types such as acute myeloid leuke-
mia, melanoma, and breast cancer. However, little is known 
about the effect of milk casein on ovarian cancer. Wang et al. 
reported that PGPIPN, a hexapeptide derived from bovine 
β-casein, inhibited the proliferation of SKOV3 human ovar-
ian cancer cell line, as well as primary ovarian cancer cells, 
in vitro. Consistently, they demonstrated that PGPIPIN also 
inhibits the primary tumor growth rate in xenograft ovar-
ian cancer model mice in a dose-dependent manner by pro-
moting cell apoptosis through inhibition of BCL2 pathway 
and caspase-3 activation. Interestingly, they also discovered 
that peptide derived from β-casein protein had no effects on 
the inhibition of proliferation in the human normal hepatic 
cell line LO2 and murine embryo fibroblast cells (MEFs), 
as compared with the traditional anti-cancer drugs (5-FU) 
[50]. These results are consistent with those reported in the 
literature [47, 73, 74], demonstrating that casein or peptides 
derived from casein do not have toxic effect on the prolif-
eration of normal cells. This suggests that casein might be a 
potent therapeutic agent for the treatment of other types of 
cancer, such as ovarian cancer. However, more studies must 
be conducted for its use in ovarian cancer therapy.

Casein against leukemia

Acute myeloid leukemia (AML) is a heterogeneous and 
aggressive form of blood cancer characterized by the 
uncontrolled proliferation of myeloid hematopoietic cells 
(myeloblasts) in the bone marrow, the spongy tissue inside 
bones where blood cells are made. It can quickly infiltrate in 
blood and tissues such as the spleen, liver, gums, and central 
nervous system [75] leading to the formation of metasta-
ses, the main cause of death by cancer [76]. The number 
of new cases among men and women per year is about 4.2 
per 100,000 population, with an incidence of over 20,000 
cases per year in the United States. Generally, older adults 
(> 80 years) are more likely to develop AML than younger 
adults or children. Approximately, 15–20% of pediatric acute 
leukemia cases and 80% of acute leukemia cases in adults 
are AML cases [75, 77–79].

For decades, the conventional treatment of AML has 
involved initial induction therapy and post-remission ther-
apy. However, induction therapy is highly toxic to bone mar-
row, leading to pancytopenia, bleeding complications, gas-
trointestinal system issues, kidney failure due to tumor lysis 
syndrome, and electrolyte disturbances [75]. Although the 
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goal of post-remission therapy is to prevent disease relapse 
by employing highly cytotoxic chemotherapies (such as 
high-dose cytarabine) or allogenic hematopoietic stem cell 
transplantation, many tumor cells can develop drug resist-
ance during or after treatment, causing toxic side effects in 
normal hematopoietic cells.

Nowadays, the use of natural products in cancer therapy 
is an active area of research, and several studies have been 
conducted to evaluate the anti-cancer effects of leukemia 
in vitro and in vivo using milk proteins [80–83], which con-
tain as-yet-undiscovered components that might function as 
tumor suppressors. In support of this idea, Ramos-Mandu-
jando et al. showed that three casein family members (α-, β-, 
and κ-casein) can all significantly inhibit the proliferation 
of different leukemic cell lines (WEHI-3, J774, P388 and 
32D cl3), with α-casein being the only one able to induce 
the differentiation of 32D cl3 (no malignant cells) into the 
monocyte-macrophage linage. They have also demonstrated 
that sodium caseinate (a salt of casein), the main milk pro-
tein, inhibits the proliferation of these leukemic cells in vitro 
[47] and leads to increased survival in vivo in J774 tumor-
bearing mice [81]. Furthermore, Ledesma et al. reported 
that sodium caseinate inhibits the proliferation of tumor 
cells and enhances apoptosis in WEHI-3 cells through DNA 
fragmentation. Additionally, it promotes the proliferation of 
mononuclear normal cells from BALB/c mice bone mar-
row. Interestingly, they also showed that casein prolonged 
the survival of WEHI-3 tumor-bearing mice for more than 
40 days, suggesting that this molecule is capable of reducing 
tumor growth of WEHI-3 cells in vivo [73].

The combined therapy has been considered to enhance 
its toxic effect toward cancer cells, reducing drug resist-
ance and treatment duration compared to monotherapy [9, 
83]. In this context, Aguiñiga et al. showed that combina-
tion of the IC25 of sodium caseinate-cytarabine or sodium 
caseinate-daunorubicin enhances the activity of the treat-
ments achieving a 70% inhibition and death rate in WEHI-3 
leukemic cells through activation of caspase 3. Additionally, 

combined therapy prolonged the survival of WEHI-3 tumor-
bearing mice for more than 70 days compared to individual 
treatments. Interestingly, the authors also reported that the 
combination of sodium caseinate-cytarabine or sodium 
caseinate-daunorubicin enhances the proliferation of mono-
nuclear normal cells from BALB/c mice bone marrow com-
pared with control groups [74]. Theses result are consistent 
with those reported in the literature [47, 50, 73] demon-
strating that casein or peptides derived from casein have an 
inhibitory effect on the proliferation of tumor cells without 
damage normal cells. These findings are very relevant and 
promising because several conventional therapies generate 
cytotoxic effects in both tumor and normal cells, harming 
normal tissues. However, further scientific studies should 
explore the effect of casein in other types of leukemias.

Potential mechanism of action of caseins 
and its derivatives on tumor cells

Casein, the major protein found in milk, and its derived pep-
tides have been demonstrated to possess numerous therapeu-
tic effects in several experimental models of cancer diseases 
[73, 74, 84–86]. A schematic summarized of the antitumor 
effects of caseins and their peptide derivatives is shown in 
Fig. 4. Previous studies have suggested that casein treat-
ment might attenuate tumor progression. This beneficial 
effect occurs through (i) the suppression of stem cell mark-
ers (CD44) [48, 87] and cell adhesion molecules such as 
uPAR/PAI-1, which plays an important role in tumor pro-
gression and metastasis [88], (ii) the cell cycle inhibition 
[89], and (iii) the increase of cell death by apoptosis [70, 73, 
74, 90, 91] and the anti-proliferative effect on tumor cells is 
partly attributed to the promotion of cell differentiation [48]. 
Therefore, the exploration of the antitumoral activity exhib-
ited by caseins and their derivatives has prompted several 
experimental and theoretical studies to further understand 
its molecular mechanism of action.

Fig. 4  Mechanism of action of 
the casein and its derivatives on 
tumor suppression, differentia-
tion, apoptosis, tumor growth, 
and metastasis in tumor cells
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Additionally, Bonuccelli et al. reported that the treat-
ment with α-casein on murine mammary tumor cell lines 
and human breast cancer cell lines induced an increase of 
interferon-associated STAT1 signaling [48]. In general, 
STAT1 is recognized as a tumor suppressor. It is established 
that the downregulation of STAT1 activation and the reduc-
tion in its expression are prevalent in various tumoral cells 
[92, 93]. Additionally, a correlation of STAT1 expression 
in cancer patients tends to have a better clinical prognosis, 
including colon-rectal cancer, soft tissue sarcoma, metastatic 
melanoma, hepatocellular carcinoma, and pancreatic cancer 
[94–97]. Interestingly, the caseins (α, β, and κ) share a simi-
lar number of amino acid as the interferons (α, β, and γ). 
This suggests that caseins might also function as cytokines 
and play a role in the same molecular signaling cascade [48].

In canonical mechanisms of STAT1, its protein gener-
ally exists as an inactive form in the cytoplasm; STAT1 
is initially phosphorylated and activated by the receptor-
activated kinases such as JAK, in response to IFN stimu-
lation. The active form of STAT1 then translocates to the 
nucleus, where it acts as a transcription factor regulating 
various aspects of tumor suppression, including cell grown 
arrest, apoptosis, and inhibition of angiogenesis [98, 99]. 
Thus, it is possible that casein family members could be 
used as novel biological molecules for cancer treatment by 
the activation of interferon signaling via upregulation and 
hyperactivation of STAT1. Furthermore, Wang et al. [100] 
demonstrated for first time that overexpression of STAT1 
results in the suppression of stemness-related markers such 
as CD44, CD133, NANOG, and OCT4 in chemoresistant 
epithelial ovarian cancer cells and decreases tumorigenesis 
capacity. Importantly, α-casein overexpression in the triple-
negative MDA-MB-231 breast cancer cell line resulted in 
the reduction of proportion of CD44 + cells [48]. CD44 is a 
cell surface marker, which is overexpressed on cancer stem 
cells, because it is an extracellular matrix adhesion protein. 
It plays a role in metastasis, cell adhesion, and migration 
[87, 101].

On the other hand, STAT3 plays an important role 
in tumor development and aberrant phosphorylation of 
STAT3 accumulates in nearly 70% of cancers and is associ-
ated with disease progression and poor prognosis. STAT3 
acts as an oncogene, regulating various fundamental cel-
lular processes, including proliferation, differentiation, 
angiogenesis, invasion, and metastasis. It can be activated 
by multiple proinflammatory factors and growth factors 
[102–104]. The inhibiting STAT3 activity is considered a 
viable strategy for cancer treatment [105–107]. Addition-
ally, STAT3 can induce the expression of two prominent 
transcriptional targets, such as hypoxia-inducible factor-1α 
(HIF-1α) and vascular endothelial growth factor (VEGF) 
[108]. It has been reported that the STAT3/HIF-1α path-
way is closely associated with the progression of various 

tumors, including prostate cancer, hepatocarcinoma, breast 
cancer, and ovarian cancer [109–111]. Garner et al. have 
reported that α-casein inhibits HIF-1α signaling in breast 
cancer cells. Moreover, α-casein conditioned media reduces 
STAT3 reporter activity, indicating that STAT3 is a crucial 
transcription factor in regulating HIF-1α in breast cancer 
stem cells [64]. Therefore, these data may be associated with 
the mechanisms by which α-casein reduces stem cell activity 
in vitro, and STAT3 was identified as a regulator of pro-
tumorigenic HIF-1α signaling.

Previous studies have reported that members of the cell-
associated fibrinolytic system (urokinase plasminogen acti-
vator and its receptor, uPA/uPAR) as well as plasminogen 
activator inhibitor type-1 (PAI-1) act as prognostic/predic-
tive biomarkers of malignancy [112–114]. The literature has 
reported that HIF-1α activation promotes the transcriptional 
activation of uPAR in cancer cells [115–117]. On the con-
trary, it has been described in triple-negative MDA-MB-231 
breast cancer cells that the overexpression of casein induces 
a low or undetectable uPAR and PAI-1 protein expression 
[48].

Caseins and their peptides derived from caseins are multi-
functional, exerting effects such as anti-microbial, immu-
nomodulatory, anti-oxidant, anti-metastasis, and apoptotic. 
Azevedo et al. reported that the peptide INKKI, correspond-
ing to bovine β-casein residues 41–45, induced apoptosis in 
B16F10 cells in a caspase-dependent manner by increasing 
caspase-3 activity and suggested that this process occurs 
through the mitochondrial pathway [51]. Additionally, 
INKKI significantly reduced tumor growth in a model of 
melanoma. Likewise, MCF-7 human breast adenocarcinoma 
cells treated with the peptide INKK showed cell arrest in the 
G0/G1 phase and decreased expression of cyclin D1 [118]. 
On the other hand, PGPIPN, a hexapeptide derivate from 
bovine β-casein residues 63–68, inhibited the proliferation 
of human ovarian cancer cells as well as the primary tumor 
growth via downregulation of BCL-2 signaling [50].

The recombinant Lactaptin 2 (RL2) is comprised of the 
amino acids 23–134 of human κ-casein. RL2 was shown to 
induce cell death in MDA-MB-231 and MCF-7 breast cancer 
cells, suppress tumor growth, and metastasis in mice [119, 
120]. Richter et al. reported that the interaction of RL2 with 
the TOM70 protein induces a loss of mitochondrial mem-
brane potential, downregulates intracellular ATP production, 
reduces cell viability, and increases cell death in breast can-
cer cells [70]. Wohlfromm et al. have described that RL2 
peptide enhances cell death in combinatorial treatments with 
drugs such as doxorubicin, inducing the intrinsic apoptosis 
pathway in triple-negative breast cancer cells [90]. There-
fore, this evidence suggests that caseins and their derivatives 
are considerably antitumor candidates.

On the other hand, several studies have shown that the 
inflammation could play a dual role in cancer. Some studies 
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suggest that chronic inflammation in tumor cells promotes 
the release of cytokines leading to an inflammatory microen-
vironment and facilitating the occurrence and progression of 
tumors. However, other reports described that the induction 
of acute inflammation is a potential strategy for the treatment 
of cancer [121]. The Toll-like Receptor 4 (TLR4) signaling 
pathway results in the activation of nuclear factor-kappa B 
(NF-κB) and the subsequent initiation of the inflammatory 
responses [122–124]. Recently, TLR4 has been described 
to be highly expressed in diverse types of cancer, including 
colon cancer, hepatocarcinoma, ovarian cancer, lung can-
cer, and breast cancer [122, 125, 126], promoting inflam-
mation, tumor growth, invasion, and metastasis of cancer 
cells [127]. However, Ahmed et al. reported that silencing of 
TLR4 promote tumor progression and metastasis in murine 
model of breast cancer [128]. In this context, it has been 
documented that human αs1-casein activates the secretion of 
proinflammatory cytokines, such as GM-CSF (granulocyte 
macrophage colony-stimulating factor), IL1-β (interleukin 
1β), IL-6 (interleukin 6), and chemokine IL-8 (interleukin 
8) in human monocytes TLR4 signaling pathway [129, 130]. 
On the other hand, Liu et al. have reported that β-casein 
and its peptide QEPVL have an anti-inflammatory effect and 
attenuated inflammation through NF-κB/NLRP3 signaling 
pathway in mice with ulcerative colitis [131]. Therefore, it is 
possible that the caseins and its derivatives have the ability 
to regulate inflammatory response in cancer cells and the 
tumoral microenvironment.

This review focuses on advances in the study of caseins 
and their peptides and particularly provides a comprehensive 
understanding of molecular mechanism of action in cancer 
therapy. These mechanisms occur through various signaling 
pathways, including (i) the increase of interferon-associated 
STAT1 signaling, (ii) the suppression of stemness-related 
markers such as CD44, (iii) the attenuation of the STAT3/
HIF1-α signaling, (iv) the down-expression of uPAR and 
PAI-1, (v) the loss of mitochondrial membrane potential and 
reduced intracellular ATP production, (vi) the increase of 
caspase-3 activity, and (vii) the suppression of TLR4/NF-кB 
signaling. An integrative scheme of these mechanisms is 
shown in Fig. 5. Therefore, the information presented in 
this paper identifies caseins and its derivatives as a possible 
potential therapeutic agent for cancer treatments.

Conclusions

Diverse research highlights the antitumoral potential of 
casein and its derivatives in preclinical trials. Their ther-
apeutic effects are thought to be partly mediated through 
the regulation of cell signaling pathways, as summarized 
in this article. This includes increase in STAT1 signaling, 
the promotion of apoptosis (caspase-3 activity and loss of 
mitochondrial function), the suppression of STAT3, HIF-1α, 
TLR4/NF-κB signaling, and the downregulation of CD44, 
uPAR, and PAI-1. These actions result in the modulation of 

Fig. 5  Signaling pathways by which caseins induce biological activi-
ties in tumor cells. Caseins and peptides derived from casein bind to 
several cell surface binding sites to activate the JAK/STAT1 pathway 
and induce the arrest of cell cycle and apoptosis. On the other hands, 

peptides derived from casein also downregulate JAK/STAT3, HIF1α, 
CD44, and NF-κB activation; it reduces cell proliferation, angiogen-
esis, tumor growth, inflammation, metastasis, and the mitochondrial 
membrane potential inducing ATP loss and apoptosis in cancer cells
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key cancer hallmarks such as cell proliferation, angiogen-
esis, migration, stem cell markers, apoptosis, inflammation, 
and metastasis.

Future research will delve deeper into the signaling path-
ways mediated by caseins and their peptides, thereby elu-
cidating the comprehensive mechanism of action of these 
compounds across various types of cancer. Also, further 
research is needed to determine the optimal dose, bioavail-
ability, and bioefficacy of caseins or their peptides. However, 
clinical studies are required to fully understand the effects 
of caseins or its peptides in humans. The future perspec-
tives of caseins and its peptides in cancer and human health 
revolve around advancing its precision through personalized 
medicine, exploring synergies with other treatments, under-
standing resistance mechanisms, and conducting rigorous 
clinical research for evidence-based integration into medical 
practice.
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