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Abstract
Multilevel interventions (MLIs) hold promise for reducing health inequities by intervening at multiple types of social 
determinants of health consistent with the socioecological model of health. In spite of their potential, methodological chal-
lenges related to study design compounded by a lack of tools for sample size calculation inhibit their development. We help 
address this gap by proposing the Multilevel Intervention Stepped Wedge Design (MLI-SWD), a hybrid experimental design 
which combines cluster-level (CL) randomization using a Stepped Wedge design (SWD) with independent individual-level 
(IL) randomization. The MLI-SWD is suitable for MLIs where the IL intervention has a low risk of interference between 
individuals in the same cluster, and it enables estimation of the component IL and CL treatment effects, their interaction, 
and the combined intervention effect. The MLI-SWD accommodates cross-sectional and cohort designs as well as both 
incomplete (clusters are not observed in every study period) and complete observation patterns. We adapt recent work using 
generalized estimating equations for SWD sample size calculation to the multilevel setting and provide an R package for 
power and sample size calculation. Furthermore, motivated by our experiences with the ongoing NC Works 4 Health study, 
we consider how to apply the MLI-SWD when individuals join clusters over the course of the study. This situation arises 
when unemployment MLIs include IL interventions that are delivered while the individual is unemployed. This extension 
requires carefully considering whether the study interventions will satisfy additional causal assumptions but could permit 
randomization in new settings.

Keywords Experimental design · Multilevel interventions · Stepped wedge · Cluster randomized trials · Unemployment

The National Institute of Minority Health and Health Dispar-
ities (NIMHD) Research Framework highlights the web of 
influences including individual, interpersonal, community, 
and societal factors constructing and perpetuating health 
inequities. The Social Determinants of Health (SDOH), cen- 
tral to these inequities, encompass the broader conditions 
impacting individuals’ lives — where they grow, live, work, 
play, and age — and societal political and economic forces. 
Studies have consistently documented the impact of factors 

interacting across multiple levels, pointing to the poten-
tial for Multilevel Interventions (MLIs) to improve health 
equity-oriented outcomes (Alvidrez et al., 2019; Agurs-
Collins et al., 2019). Despite their promise, methodological 
challenges continue to limit the development of MLIs target-
ing multiple SDOH (Agurs-Collins et al., 2019).

This paper introduces the Multilevel Intervention Stepped 
Wedge Design (MLI-SWD), a hybrid randomized design for 
examining MLIs that involve both Individual Level (IL) and 
Cluster Level (CL) interventions. The MLI-SWD combines 
directly randomizing individual participants to IL treat-
ments with a Stepped Wedge Design (SWD) for assigning 
CL treatments. This design enables estimation of the both 
component and overall treatment effects. Building on recent 
work in sample size estimation for SWDs using Generalized  
Estimating Equations (GEE) (Liang & Zeger, 1986; Zhang 
et al., 2023), we extend this approach to the multilevel case 
and provide an R package for performing these calculations. 
We explore potential model parameterizations, including how  
they affect the substantive interpretation of the parameters, 

 * John Sperger 
 jsperger@live.unc.edu

1 Department of Biostatistics, Gillings School of Global 
Public Health, The University of North Carolina at Chapel 
Hill, Chapel Hill, USA

2 Department of Health Behavior, Gillings School of Global 
Public Health, The University of North Carolina at Chapel 
Hill, Chapel Hill, USA

3 School of Nursing, The University of North Carolina 
at Chapel Hill, Chapel Hill, USA

http://orcid.org/0000-0002-2273-5353
http://crossmark.crossref.org/dialog/?doi=10.1007/s11121-024-01657-y&domain=pdf


S372 Prevention Science (2024) 25 (Suppl 3):S371–S383

and present a detailed example of a sample size calculation 
for a hypothetical trial. We discuss the example study’s most 
salient design decisions and their rationale. Before closing, 
we discuss adapting the design for scenarios with incomplete 
observation patterns and when individuals join clusters dur-
ing the study.

Background

Guided by social-ecological models such as the NIMHD 
Research Framework, MLIs are increasingly recognized as 
holding promise for addressing SDOH. Developing MLIs 
requires additional consideration for how determinants  
(and interventions) at one level can modify the effects 
of determinants (and interventions) at another (Weiner 
et  al.,  2012). Intervening at multiple levels can remove  
barriers that would otherwise prevent an intervention from 
being effective, but it can also create frictions that make other 
components less effective. Yet MLIs are often developed by 
combining components that have been validated separately, 
and the resulting MLI evaluated in a randomized experiment  
with the entire intervention package as the treatment  
precluding evaluation of the individual components (Collins 
et al., 2005; Collins, 2018). Collins et al. (2005) proposed the  
Multiphase Optimization Strategy (MOST) framework as an 
alternative way to develop behavioral interventions, including 
MLIs, using multiple phases of experimentation. The first 
phase consists of screening a set of potential components to  
identify a promising subset using a design that can efficiently  
test numerous treatments such as a factorial design. The 
promising interventions are then experimentally refined in the  
spirit of dose-finding trials, and finally the MLI is assessed in 
a Randomized Controlled Trial (RCT) (Collins et al., 2007; 
Collins,  2018). While MOST emphasizes screening  
numerous potential intervention components, it does not 
address randomizing interventions at different hierarchical 
levels. Approaches to address preexisting clustering exist, but 
only consider completely cluster randomized or individually 
randomized designs (Dziak et al., 2012).

The North Carolina Works 4 Health Study

The North Carolina Works for Health (NCW4H) Shawn 
(2024) project aims to develop and evaluate an MLI for reduc- 
ing the negative health consequences stemming from unem-
ployment. In phase one, the study team worked with com-
munity partners and stakeholders (including people who are 
Socioeconomically Disadvantaged (SED) and unemployed) 
to adapt evidence-based interventions to reflect the experi-
ences of unemployed SED groups while maintaining core 

intervention components. At the IL, the Diabetes Prevention 
Program was modified to develop the Chronic Disease Pre-
vention Program (CDPP) — a lifestyle and behavior change 
intervention focusing on managing stress related to unem-
ployment, building problem-solving skills, and using coping 
styles that promote healthy behaviors. The CDPP includes 
online content modules, face-to-face sessions with a lifestyle 
coach for individualized goal-setting and activity planning, 
and a system of stepped care for monitoring goals. At the 
CL, the Supervising for Success (S4S) program was adapted 
from an implicit bias habit-breaking intervention, the Preju-
dice Habit Breaking Intervention (Cox & Devine, 2019), to  
focus on enhancing supervisor support for SED hires. Super-
visors take an interactive online training course on implicit 
bias and employment-related challenges associated with 
resource deprivation (e.g., potential lack of reliable trans- 
portation). The CL intervention also includes setting up weekly  
5-minute check-ins between them and their new hires for 8 
weeks and then bi-weekly thereafter.

The NCW4H was planned and launched as a 2 × 2 facto-
rial design with randomization to parallel groups at the IL 
and CL. The CL recruitment targets employers, and to incen- 
tivize enrollment the S4S program is offered to all of their 
supervisors. Recruitment began in September 2021, and 
employer recruitment proved exceedingly difficult. Dis-
cussions with local employers identified the time before 
receiving the intervention when in the control condition as 
the most significant barrier to participation. Initially, the CL 
component was scheduled to be given to all employers at 
the completion of the study, but employers reported viewing 
this as too distant while enrolling would require adminis-
trative effort up-front. While the NCW4H study inspired  
the current design, we defer discussing it until the "Exten-
sions" section because it required additional adaptations 
that aren't necessary for the MLI-SWD with a complete 
design.

Stepped Wedge Designs (SWDs)

A SWD is a type of crossover design characterized by 
unidirectional switching from control to intervention with 
random assignment of the switch timing. SWDs are fun-
damentally a pragmatic design because treatment effects 
are confounded with calendar time by design (Hussey &  
Hughes,  2007). Most commonly used in cluster- 
randomized trials (CRTs), SWDs have experienced an 
explosive growth in popularity over the past decade lead-
ing to the 2018 extension to the Consolidated Standards of  
Reporting Trials (CONSORT) guidelines specific to 
SWDs (Hemming et al., 2018). Their growth has also  
generated controversy because of their greater vulner- 



S373Prevention Science (2024) 25 (Suppl 3):S371–S383 

ability to time-based confounding (Murray et al., 2020). 
SWDs potentially permit randomization where it was pre-
viously implausible, namely in settings where delivering 
the intervention to all treated clusters simultaneously is 
logistically challenging. Logistical constraints may stem 
from relying on trained study personnel to physically 
deliver the intervention, such as with in-person training, 
or when the implementation is time-consuming as can 
occur with interventions that change operating procedures 
at institutions such as municipalities, hospitals, or schools 
— constraints commonly encountered in developing MLIs 
(Hemming et al., 2015; Agurs-Collins et al., 2019).

SWDs can be complete (all clusters are observed at 
every time point) or incomplete (clusters may have unob-
served periods), and may collect data from the individuals 
within the study clusters using a cohort (same individuals 
each time) or cross-section (new sample at each time). We 
introduce our design by considering closed cohort, com-
plete designs before detailing extensions for incomplete 
and open-cohort designs which carry additional design 
considerations. Incomplete SWDs have periods where dif-
ferent clusters will be unobserved by design by constraints 
including 1) staggered enrollment (and consequently 
study completion) and 2) the need for an implementation 
period when transitioning from the control condition to 
the intervention. Figure 1a shows examples of a four-
period complete SWD, and Fig. 1b presents an incomplete 
SWD with no implementation periods where study par-
ticipation ends after one time period on the intervention. 
We see that clusters may enter the study at different times 
(and end participation at different times), and that clusters 
may be followed for different lengths of time depending 
on the design. Incomplete designs may recruit all clusters 
before the study begins with randomization defining their 
observation schedule. Staggered enrollment (incomplete) 

SWDs are typically treated as distinct from continuous 
enrollment SWDs because of distinct design considera-
tions (Hooper & Copas, 2019), but this distinction can be 
blurry in practice. Our design and formulae accommodate 
complete and incomplete designs as well as cohort and 
cross-sectional samples.

Determining if a Stepped Wedge Design is Appropriate

SWDs have been an amazing development in experimental  
design due to enabling randomization in challenging  
contexts, but they are not a panacea. “The chosen  
design should be appropriate for the study’s context”  
is a truism, but SWDs require particularly careful  
consideration due to their inherent susceptibility to 
time-based confounded (Hemming et al., 2015; Zhang 
et al., 2023). Fortunately, detailed guidance is available  
to help researchers with these questions (Hemming 
et al., 2020a; Murray et al., 2020). Common rationales for 
choosing a SWD — logistical feasibility, improved power, 
recruitment benefits, and ethical or political constraints in  
withholding interventions — are the subject of ongoing 
debate (Beard et al., 2015; Hooper & Eldridge, 2021). 
There are undoubtedly situations where SWDs permit 
randomization where it would otherwise be impossible,  
but their purported benefits in other cases are situa-
tional. SWDs can sometimes create additional logistical 
challenges, power is contingent on study characteristics, 
recruitment differences have not been empirically tested, 
and parallel group designs can offer the intervention at the 
end of the study to satisfy concerns related to withholding 
the intervention (Murray et al., 2020). Power differences 
between parallel group designs and SWDs vary depending  
on the sampling design (cohort or cross-sectional) 
the structure of the crossover timings, the number and 

Fig. 1  Example four-period complete and incomplete stepped wedge designs
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variability of clusters and cluster sizes, and the estimand of  
interest among other factors (Baio et al., 2015; Hemming 
& Taljaard, 2020). Cohorts may be preferable for study- 
ing MLIs for statistical efficiency. When a SWD has 
higher power than a parallel groups design, a crossover 
design where some units also switch from treatment to 
control, not just control to treatment, may further improve 
power without the same susceptibility to time-related  
confounding (Hemming et al., 2020a, b).

The decision to use a SWD should primarily be guided 
by practical rather than statistical considerations because 
their vulnerability to time-varying confounders is not 
shared by other common CRT designs. The risk posed 
by time-varying confounders can be mitigated, though 
not eliminated, through appropriate analytic choices. Our 
experience with the NCW4H study illustrates this point. 
The decision to change mid-study to a SWD was driven by 
the need to substantially improve employer recruitment. 
Recruitment improved, but caution should be taken extrap-
olating from this experience. COVID-19 created numerous 
challenges for employers in 2021 that may have influenced 
recruitment regardless of study design. There is also the 
possibility that reducing the wait time for the intervention 
for control group employers might have sufficed to address 
recruitment issues.

Analyzing Stepped Wedge Trials

Stepped Wedge Trials (SWTs) require statistical methods  
that account for the correlation between units in the same  
cluster and, with cohort designs, between repeated obser-
vations on the same units over time. Analyzing longi-
tudinal, or panel, data requires careful attention to its 
temporal nature particularly when covariates can vary 
over time (Diggle, 2002; Hsiao, 2022). The two primary 
approaches to modeling SWTs are frequentist random 
effects models (mixed models), and frequentist marginal 
approaches estimated using GEE (Liang & Zeger, 1986). 
While uncommon, Bayesian Hierarchical Models (Gelman 
& Hill, 2006) are also appropriate for analyzing SWTs. 
We adapt an approach based on GEE for sample size cal-
culations (Li et al., 2018; Zhang et al., 2023) to MLIs. 
GEE is attractive in our setting because the parameters in 
marginal models have a straightforward interpretation in 
terms of how the population average individual response 
changes — each parameter corresponds to the increase in 
the expected value on the scale of the link function asso-
ciated with a one-unit change in the associated covariate 
assuming that all other covariates are held constant, and 
as such are closely aligned with policy-making goals. In 
contrast, the parameters in mixed effects models have an 

interpretation conditional on the (unobservable) random 
effects — e.g., “for a cluster with a random intercept value 
of x, each parameter corresponds to the increase in the 
expected value on the scale of the link function associated 
with a one-unit change in the associated covariate.” In 
nonlinear mixed models these conditional parameters are 
not generally equal to the marginal parameters.

Clear specification of the target estimand(s) is par-
ticularly important in CRTs with repeated measurements 
because there are choices between both marginal or 
conditional estimands, between participant- or cluster-
average estimands, and summaries of time-varying treat-
ment effects (Kahan et al., 2023). Kahan et al. (2023) 
demonstrate that the resulting estimates for different 
estimands can vary greatly and provide guidance for the 
choosing and reporting estimands. We estimate marginal 
participant-average treatment effects, i.e., marginal rather 
than conditional and participant-average rather than 
cluster-average. Different summaries of time-varying 
treatment effects can be targeted by the choice of mean 
model parameterization, which change the meaning of 
the estimated coefficients, and contrasts for hypothesis 
tests. However, there are potential time-varying-related 
estimands not covered by our approach, notably func-
tional estimands including the area under the curve; see 
Kenny et al. (2022) for a discussion of other potential 
time-related estimands. To fully specify the estimand one 
also needs to define the target comparison such as a risk 
difference or odds ratio, and the choice of target informs 
what link function should be used. For example, when 
the response is binary, choosing the identity link provides 
parameters that can be interpreted as risk differences, 
while choosing the logistic link results in parameters 
interpreted as odds ratios.

Finally, we wish to emphasize that the model we present  
for sample size calculations is simplified compared  
to what we would suggest for analyzing a completed  
study. The sample size formula we provide can be used 
with categorical, linear, and general polynomial time 
trends, but in the actual analysis combining GEE with 
smoothing splines or kernel regression for the time trend 
may be desirable. Splines and kernels are more robust  
than linear or polynomial models to misspecification,  
and they typically require fewer parameters (and cannot 
possibly use more than) than treating time as categorical  
(Welsh et al., 2002; Wang et al., 2005). While splines and  
kernels are difficult to directly interpret, the global time 
trend is typically a nuisance rather than of independent 
interest, and analysts can retain the benefits of having 
a parametric model for the intervention effects, such as 
interpretability, by only using the flexible model for the 
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time trend. Similarly, when cluster size might be inform-
ative, an independence working correlation structure 
can be used as the working correlation model and the 
dependence corrected for with robust “sandwich” stand-
ard errors (Hemming & Taljaard, 2020; Sullivan Pepe & 
Anderson, 1994). There have also been recent develop-
ments in inferential methods (distinct from GEE) that are 
robust to confounding by time (Hughes et al., 2020; Wang 
et al., 2023) which can serve as the primary analysis or a 
sanity check on model-based estimates. If serving as the 
primary analysis, a simulation study should be conducted 
to confirm the desired power is reached.

The Multilevel Intervention Stepped Wedge 
Design (MLI‑SWD)

We propose combining unit-level randomization at the 
individual level with a stepped wedge design at the clus- 
ter level. The IL assignment and the CL assignment to a 
transition time can be conducted using existing methods 
such as permuted block randomization. The SWD compo-
nent permits complete and incomplete observation patterns 
and cross-sectional or cohort samples. Figure 2 shows the 
high-level process flow for the design’s randomization when 
individuals are nested within clusters at the start of the 
study. A cohort or cross-sectional sample can be formed by 
randomly sampling individuals within the enrolled clusters. 
At the start of the study, all clusters are randomized to a 
treatment sequence determining when they begin the CL 
intervention, and individuals are concurrently randomized 
to an IL condition.

Randomizing the IL intervention individually can bring 
substantial efficiency benefits over randomizing it at the CL 
(so that everyone in the same cluster has the same IL inter-
vention). This benefit manifests in reducing the variance of 
not only the IL treatment effect estimate, but estimates of the 
interaction effect and the overall intervention effect as well. 
However, if the combined intervention effect is solely of 
interest, a design that only randomizes clusters between no 

intervention and receiving both the IL and CL may be more 
powerful than the MLI-SWD depending on the correlation 
structure, and it will be simpler.

When Individual‑Level Randomization Should Not 
Be Used

Researchers should weigh the severity of the risk of spillover 
effects or contamination at the IL when choosing whether 
to randomize at both the IL and CL. Randomizing at the 
CL only avoids the issue of spillover at the IL because all 
individuals in the same cluster would receive the same IL 
intervention. CL contamination is a threat to both randomi-
zation schemes. The plausibility of the no spillover assump-
tion depends on the specifics of the interventions, individu-
als, and clusters. For example, an IL training intervention 
may be at low risk of spillover when clusters are cities but 
high risk if the clusters are families. If this assumption is 
implausible, then the IL intervention should be cluster ran-
domized. However, some level of spillover is likely toler-
able — with low-to-moderate spillover and large samples, 
standard estimators are consistent for the expected average 
treatment effect (Sävje et al., 2021; Hemming et al., 2021).

Data Generating and Analysis Models

Let i = 1,… , I index clusters, k = 1,… ,K index individu-
als, and j = 1,… , J index the discrete time periods at which 
outcomes are measured. The calendar time period corre-
sponding to the jth observation on individual k in cluster i is 
denoted by Tijk . Let AIL

ijk
 denote the number of time periods 

that individual k has been on the IL intervention, and let ACL
ijk

 
denote the number of time periods cluster i containing indi-
vidual k has been on the CL intervention including period j. 
Individual k ’s outcome in period j is denoted by Yijk.

We first define the mean model in its general form to 
highlight the level of choice available to the researcher 
before showing concrete examples of common definitions. 
Denote the sample space by X  , and let f ∶ X ↦ ℝ

d be a fixed  

Fig. 2  Randomization flow with 
existing nesting

Table 1  Common mean model 
intervention effect definitions
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and known function which creates the design matrix which 
specifies the covariates in the model. The model for the 
expected response � for individual k in cluster i at observa-
tion time j is given in its general form in Eq. 1 on the scale 
of the link function g.

The researcher can decompose the function f  into a set 
of component functions that define particular aspects of the 
design matrix. For example, the decomposition 
f =

(

fT (Tijk), fIL(A
IL
ijk
), fCL(A

CL
ijk
), fInt(A

IL
ijk
, ACL

ijk
),…

)

 includes 
functions defining the elements associated with the calendar 
time, the IL, CL, and interaction ( Int ) effects respectively; 
the ellipses represent the potential for the design function to 
include other covariates. The functions fT , fIL, fCL, fInt can 
specify different models with distinct interpretations of the 
associated treatment effect parameters. Let 1 be the indicator 
function which is equal to one when its condition is satisfied 
and zero otherwise. The expected intervention effects can be 
specified to not vary with the time on treatment, sometimes 
called the “average intervention effects model” (AIM), or a 
linear relationship between the time on treatment and the 
response could be used (the “incremental intervention 
effects” (IIM) model) (Ouyang et al., 2022). Table 1 defines 
the IL, CL, and interaction term functions fIL, fCL, fInt for 
both of these models.

In the incremental model cIL, cCL, cInt are constants cho-
sen to scale the intervention effect to give the interpretation 
of the treatment effect parameter meaning at a scientifically 
relevant time point. For example, when cCL = 3 , �CL is the 
CL intervention effect on the scale of the link function after 
3 time periods on the CL intervention. Here fInt is chosen so 
that it is linear in the number of time periods on both IL and 
CL interventions; using the product AIL

ijk
ACL
ijk

 would be quad-
ratic rather than linear in calendar time. Other choices of f  
are possible such as quadratic models but not discussed here. 
Similarly, the choice of fT can specify different effects of 
calendar time. Common choices include a linear time trend 
and treating the time periods as categorical so that every 
period has an associated indicator variable (depending on 
the parameterization the first period may be included in an 
intercept term). Equation 2 contains an example parameteri-
zation of the AIM with categorical time periods.

Equation 3 is an example of the IIM with a linear time 
trend ( AInt

ijk
 is as defined in Table 1).

(1)g(�ijk) = f
(

Tijk, A
IL
ijk
, ACL

ijk
, (AIL

ijk
,ACL

ijk
)
)

�

(2)
g(�ijk) = Tij�t + 1

{

AIL

ijk
≥ 1

}

�IL + 1

{

ACL

ijk
≥ 1

}

�CL

+ 1

{

AIL

ijk
≥ 1

}

1

{

ACL

ijk
≥ 1

}

�Int

There is a bias-variance trade-off to consider when 
specifying time trends. Categorical period effects allow 
maximum flexibility at the cost of requiring as many 
parameters as time periods. A single-parameter linear  
specification is almost certainly misspecified, but it 
may be a reasonable approximation if large changes  
in the trend are unlikely during the study window. A  
misspecified linear model can have a lower mean squared 
error than the correctly specified nonlinear model if the 
region of function being estimated is approximately  
linear because the increased variance from estimating 
more parameters can outweigh the reduction in bias  
(Gelman, 2000). It is worth reiterating here that a more 
complex model can be used for analysis after using a  
simplified model for sample size calculation.

Variance Specification

In addition to specifying an outcome model, GEE also 
requires specifying the variance and the working cor-
relation structure between observations within a cluster 
over time. The variance is modeled by V(Yijk) = �vijk(�ijk) 
where vijk(�ijk) is the variance as a function of the mean 
and � is a dispersion parameter. The mean model dictates 
the variance model; for a normal model the dispersion 
parameter is the variance � = �2 and the variance function 
vijk(�ijk) = 1 because the variance of a Gaussian random 
variable is not a function of the mean. For the standard 
logistic regression model, it is assumed that there is no 
overdispersion so � = 1 , while the variance is a function of 
the mean namely vijk = �ijk(1 − �ijk) . The working correla-
tion matrix Ri is parameterized by a vector � that defines 
the relationship between observations in a cluster; the 
meaning of these parameters depends on the correlation 
structure that is specified. The results of Li et al. (2018), 
Zhang et al. (2023) and our modifications apply to both 
block exchangeable and autoregressive correlation struc-
tures. The block exchangeable structure includes param-
eters for the within-period correlation (different people, 
same time), inter-period correlation (different people, 
different times), and within-individual correlation (same 
person, different times).

Small Numbers of Clusters

SWDs are often employed in studies with a small number 
of clusters. GEE is asymptotically unbiased, but confi-
dence intervals based on asymptotic approximations can 

(3)g(�ijk) = �0 + Tij�1 + AIL
ijk
�IL + ACL

ijk
�CL + AInt

ijk
�Int
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have poor coverage with small samples. The t-distribution,  
with heavier tails than the normal, can help reflect this 
greater uncertainty in sample size calculations. The 
degrees of freedom can be set by the number of clusters I 
minus the dimension of the mean model parameter vector 
� (five in our example parameterization); other estimators  
may improve performance but are more complex (Fay  
& Graubard, 2001). Correction factors (Kauermann &  
Carroll,  2001) and model building for the correlation 
parameters (Preisser et al., 2008) may aid analysis; inter-
ested readers can consult Thompson et al. (2021) for simu-
lation studies of finite-sample adjustments.

Power and Sample Size Calculations

Our power and sample size calculations are based on the 
Wald test following Rochon (1998) and Zhang et  al. 
(2023). Let L be a q × d matrix where d = dim(�) and q 
is the number of constraints imposed by the hypothesis 
we wish to test. For example, a test of the null hypoth-
esis that the IL effect is zero, �IL = 0 , imposes one con-
straint namely �IL = 0 and so q = 1 . We will specify all 
of our hypotheses in terms of H0 ∶ L� = � vs H1 ∶ L� ≠ � 
where � is a q-dimensional vector of constants corre-
sponding to the parameter values under the null. The null 
values � are typically zero or a zero vector, but any con-
stants could be specified provided there is a scien- 
tific justification for their choice. Asymptotically 
√

I(�̂ − �)→
d
Nd(0,Σ) (Balan & Schiopu-Kratina, 2005; Li 

et al., 2018). The Wald test statistic WI is then given by 
(L�̂ − �)T[LΣ̂−1

1
∕IL]−1(L�̂ − �) where Σ̂1 is the model-

based variance estimator and I  is the number of clusters 
(not an identity matrix). The Wald test statistic under the 
null asymptotically has a �2

q
 distribution and under the 

alternative it has a non-central �2
q, �

 with noncentrality 
parameter � . The characteristics of the study that are 
needed to perform the sample size calculation are 
detailed in Table 2, and the algorithm for computing the 
power for complete designs with closed cohorts or cross-
sectional samples is detailed in Algorithm 1. The calcu-
lation for incomplete designs is the same except the 
design and working correlation matrices are replaced 
with incomplete versions that account for the missing-
ness patterns; these modifications are discussed in the 
"Extensions" section.

Potential sample sizes can be determined for a given 
power by searching over potential values of the number 
of clusters and number of individuals per cluster as inputs 
to the power calculation. There will be multiple combina-
tions of the number of individuals and the number of clus-
ters that can achieve a desired power. We have developed 
an R package for performing both power and sample size 
calculations https:// github. com/ jsper ger/ swtge epower. 
The package can be used to perform all of the calculations 
detailed in this paper for continuous, binary, and count 
outcomes with identity, log, and logistic link functions. 
The package is still under active development to add fea-
tures and improve its accessibility to nonstatisticians.

Table 2  Study characteristics — complete design

Parameter Name Description

T = J Time periods Total number of study time periods
S, ms Sequences Number of unique sequences S, and the number of clusters in each sequence ms . The total number of 

clusters is I =
∑

s ms

NiaIL Individuals Number of individuals with IL treatment aIL in cluster i . The total number of observations in cluster i is 
Ni0 + Ni1

Xi =

[

Xi(aIL=0)

Xi(aIL=1)

]

Design matrices Cluster-level design matrices for each cluster where there is one row per observation per individual

� Mean model Coefficient values of the parameter vector for the mean model, i.e., the time and treatment effects
g Link function Link function for the mean model. It is determined by the primary outcome and the estimand of interest, 

e.g., logit link for the odds ratio of a binary response
vijk(�ijk) , � Variance Variance components: the variance as a function of the mean (expected response), and the dispersion 

parameter �
� Working Correlation Parameter vector for the working correlation matrix
L , � Contrasts Null hypotheses defined in terms of contrasts between parameters. Determined by scientific questions 

and estimand

https://github.com/jsperger/swtgeepower
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Algorithm 1 GEE power calculation for multilevel stepped 
wedge design

Example Parameterization and Power Calculation

We will now walk through an example to demonstrate speci-
fying a data generating model, choosing an estimand, and 
performing a power calculation. Suppose a state is interested 
in a potential public health intervention to improve diabetes-
related outcomes in small towns and rural areas with a multi-
level intervention that includes education and coaching for 
individuals while providing towns with funding to give ride 
vouchers to community members with diabetes. The individu-
als are already nested within clusters and all clusters and indi-
viduals will be recruited before the study begins. The planned 
design will be a complete, closed-cohort design. The coaching 
one individual receives is unlikely to have a great effect on 
other people in the same town or city (cluster), and providing 
ride vouchers could address a significant barrier to accessing 
care which is potentially synergistic with individual coaching 
and education. The primary outcome is the average HbA1c 
level in the past week measured by a study provided continu-
ous glucose monitor. The study’s primary aim is to evaluate 
the effectiveness of the overall intervention package, and its 
secondary aim is to evaluate the effectiveness of each com-
ponent intervention.

The investigators decide based on logistical considerations 
that they can take measurements and roll the cluster-level inter-
vention out to a new wave every two months, and they can run 
the study for one year. The number of time periods is T = 6 
and the number of unique sequences S = 5 because everyone 
clusters only begin to cross over in period two. The schematic 

for such a design is given in Fig. 3. A linear time trend may be a 
reasonable approximation of any potential temporal trends here 
because the time periods are short and the primary outcome at 
the population level is generally stable. Similarly, utilization 
and allowing time for changing habits to take effect suggest 
a time-varying treatment effect, and a linear approximation is 
thought to be reasonable given the time frame of the study. If 
the study ran for longer periods of time this would be unlikely. 
Thus the study planners decide that the incremental interven-
tion effects model with linear effects of calendar time and time 
on treatment for both IL and CL are appropriate. They are inter-
ested in the individual-level population average difference in 
HbA1c after six months on the combined intervention so they 
scale the treatment time covariates in the design matrices by 
1/3, the number of study periods corresponding to six months, 
for the parameters to have the desired interpretation. The pri-
mary outcome Yijk can be treated as approximately continuous, 
and with the target estimand implies choosing the identity link 
function g(x) = x.The mean model parameters based on these 
decisions are (�0, �1, �IL, �CL, �Int) = �.

Fig. 3  Six-period complete stepped wedge design
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The investigators want to ensure power for both 
their primary and secondary aims after adjusting for 
multiple comparisons with the Bonferroni correc-
tion. The primary aim corresponds to testing the com-
bined intervention effect  H0 ∶ �IL + �CL + �Int = 0 vs. 
H1 ∶ �IL + �CL + �Int ≠ 0 which is given by contrast vector 
L =

[

0 0 1 1 1
]

 . The secondary aim corresponds to two 
hypothesis tests with the null hypotheses H0 ∶ �IL = 0 and 
H0 ∶ �CL = 0 .: They desire 80% power for all tests with 
� = .05 for the primary aim and � = .1 for the secondary 
aim’s tests. Reviewing the literature, their best guess of 
the standardized effect size of each component is �IL = 0.1 
for the IL intervention and �CL = 0.15 for the CL interven-
tion. There were no studies of their combined effect to 
guide specifying the interaction term, so they decided to 
set the interaction term based on the minimum effect size 
for the combined intervention that they considered to be 
meaningful. Given the high health impacts of diabetes, 
they decide that a standardized effect size of at least 0.15 
would be meaningful; combining this with the component 
effect estimates they calculate �Int = −0.1.

After specifying the mean model, they next define the 
correlation structure. Because the study follows a closed 
cohort, the investigators decide between using a block 
exchangeable correlation structure or a corresponding 
autoregressive structure. The investigators believe that 
while the correlation between repeated HbA1c measure-
ments likely decays over time and has an autoregressive 
correlation structure on a minute-by-minute basis, when 
measurements are taken every two months over the course 
of one year they are likely to be equally correlated. Thus 
they choose to use a block exchangeable correlation struc-
ture, and find published estimates of � = (.05, .025, .5) for 
the within-period, between-individual-and-period, and 
individual-between-period correlations respectively.

When planning a study there may be practical constraints 
on the number of clusters or the number of individuals per 
cluster. If there are not these constraints, investigators can  
calculate a frontier of possible combinations of cluster and 
individual sample sizes to achieve the desired power and 
choose based on some other criteria. Here the investiga-
tors consider I = 65 towns overall, ms = 13 per sequence, 
as a reasonable limit on the number of clusters, while they 
can enroll as many individuals per cluster as needed within 
reason. To achieve at least 80% power after adjusting for 

multiple comparisons for all three hypothesis tests that com-
prise the primary and secondary aims, the study would need 
to enroll Ni = 15 individuals per cluster for a total of 975 
people. With this sample size, the anticipated power for the 
test of the intervention overall is approximately 81%, the test 
of �IL 95%, and the test of �CL 80%; there would only be 40% 
power to test �Int at the same level as the �IL and �CL.

This example was simplified for exposition. Loss to fol-
low up was ignored, and, at a minimum, the investigators 
should perform sensitivity analyses with unequal cluster 
sizes and different correlation values. The assumption 
about the correlation between observations on the same 
individual is often especially influential with cohorts.

Extensions

Incomplete Designs

In transitioning to incomplete designs, we now need to 
distinguish between observation time j and calendar time 
t. Observation time j refers to the periods a cluster i is 
observed, starting at 1 for each cluster regardless of when 
they enter the study. The number of observations on a clus-
ter, Ji , may vary if clusters are observed for different lengths 
of time. In contrast, the calendar time t indexes the entire 
study periods, ranging from 1 to T.

Specifying an incomplete design begins with creating  
the complete design and then defining the patterns of planned  
missingness for each sequence. Note that the missingness 
in an incomplete design is planned, and the procedure here 
should not be used to analyze a study with missing clus-
ter observations. An incidence matrix Ki is created for each 
cluster i to represent the observation pattern. Ki maps obser-
vations to calendar time periods, with the columns of Ki 
corresponding to calendar time periods, and each row of 
Ki corresponding to a single observation within the cluster. 
Each row of Ki contains a single ‘1’ to designate that the 
observation was observed in that calendar time period with 
zeros in all other positions. The incidence matrix is used to 
transform the complete design matrix Xi into its incomplete 
counterpart Xinc

i
= KiXi , as well as the working correlation 

matrix Ri(�)
inc = KiRi . In a complete design with a closed 

cohort, Ki would have NiJ rows reflecting that all Ni indi-
viduals are observed for all J = T  time periods.

Fig. 4  Randomization flows 
when individuals begin outside 
of clusters
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The process to construct Ki differs based on the type 
of cohort. In cross-sectional and closed-cohort designs, 
constructing a representative incidence matrix Ks for a 
single individual in the cluster is sufficient. The cluster 
incidence matrix Ki is obtained by Ki = Ks ⊗ 1Ni

 where Ni 
is the number of individuals in the cluster and 1 a column 
vector of ones. In an open cohort, the sub-component for 
each individual must be defined and concatenated to form 
the cluster-level incidence matrix in order to allow indi-
viduals to belong to a cluster for different lengths of time. 
Algorithm 1 can be used to calculate power for an incom-
plete design by substituting the incomplete design matrices 
X

inc
i

= KiX
comp

i
 and correlation matrices Rinc

i
= KiR

comp

i
 for 

their complete counterparts.

Allowing Individuals to Begin Outside of Clusters

The design could be applied in settings individuals do not 
start nested within clusters but join them during the course 
of the study though additional resumptions are required; the 
high-level process for this case is shown in Fig. 4. The 
NCW4H inspired this use case because the IL component 
is delivered while an individual is unemployed, whereas the 
CL would only be given after a study individual was hired. 
The panel of clusters can be formed and randomized as 
before in Fig. 2, but individuals must be recruited separately 
rather than sampled from the clusters. Challenges in this 
setting that are not present when individuals begin in clus-
ters include that individuals may join clusters based on the 
CL assignment, individuals will belong to clusters for vary-
ing amounts of time, and defining the time on a CL inter-
vention is murkier because a cluster’s time on the CL treat-
ment will not necessarily match the time that an individual 
has belonged to a treated cluster as it did in the complete 
design. These issues exist in the background of CRTS when 
it’s possible for individuals to join a cluster mid-study, but 
they are central when all individuals need to join a cluster 
by design. With respect to modeling, fCL(ACL

ijk
) could define 

covariates for both the number of time periods that the clus-
ter has been on the CL intervention and the number of time 
periods that the individual has belonged to a cluster on the 
CL. If the data is rich enough these will both be estimable, 
but they may be difficult to disentangle in small samples. 
For observations before an individual belongs to a study 
cluster, pseudo-clusters can be defined with their own work-
ing correlation structure and parameters. Pseudo-clusters 
can be meaningful, e.g., counties in NCW4H, or an analyti-
cal fiction, and the correlation structure should reflect this 
choice.

Estimating the causal effect of a time-varying exposure 
or intervention requires that the potential outcomes for all 
future time periods j + 1,… , J be conditionally independent 

of the current observed exposure at time j given the observed 
past history including covariates, treatment assignments, and 
responses up through and including time j. Proposition 7 in 
Robins et al. (1999) establishes a sufficient condition for 
GEE estimates to be causally valid in this setting, namely 
that the conditional assignment probability at both the IL 
and CL given the observed history and any time-varying 
covariates must be equal to the conditional assignment prob-
ability given the observed history excluding time-varying 
covariates. So long as this holds having individuals belong to 
clusters for different lengths of time does not bias treatment 
effect estimates. This condition holds for both interven-
tions by virtue of randomization regardless of any potential 
unmeasured confounders when individuals begin in clusters 
and clusters are recruited before the study is launched, but 
it is an assumption when individuals begin outside of clus-
ters. To see this, note that when all clusters and individu-
als are randomized to a treatment sequence concurrently at 
the start of the study the treatments at all time points are 
a deterministic function of the assigned sequence. Con- 
sequently the treatment values at all time points are con-
ditionally independent from all other covariates given the 
assigned sequence. For this condition to hold in open cohort 
designs or when individuals do not initially start in a cluster 
the process by which an individual joins a cluster must be 
conditionally independent of its CL treatment assignment 
given the rest of the observed history. If this condition does 
not hold GEE is not appropriate, but alternative analysis 
methods may still be causally valid. For example, g-com-
putation (Robins, 1986) could be used to model the condi-
tional probability of joining a cluster, though requiring a 
model for the treatment assignment reflects the loss of a key 
benefit of randomization.

Summary and Implications  
for Prevention Science

Research on designing MLIs is still in its infancy, and addi-
tional research on sample size calculation for time-varying  
treatment effects is an important future direction for  
both MLIs and SWDs generally (Kenny et al., 2022). Our 
approach can currently consider linear transformations of 
time-varying treatments parameterized as polynomial func-
tions of the time on treatment, but not functional summaries 
like the AUC. Permitting an arbitrary number of levels and 
interventions at each level would expand the applicability 
of the MLI-SWD, and it may be possible to improve the 
efficiency of CL parameter estimation by incorporating 
cluster-total estimators (Su & Ding, 2021). We also did not 
address the issue of noncompliance which can be a common 
issue in CRTs, and are investigating if and how the causal 
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assumptions related to individuals joining clusters could be 
loosened and tested.

Researchers working in prevention science understand 
the imperative to intervene on SDOH if we are to make 
any real progress in mitigating health inequities. In addi-
tion to taking a public health perspective and including 
cross-sector partnerships, developing and testing interven-
tions across multiple levels is fundamental to these efforts 
(Hacker et al., 2021). While there have been conceptual 
advances in designing MLI that produce synergistic effects 
(Weiner et al., 2012), approaches to address the methodo-
logical challenges inherent in MLI designs remain (Agurs-
Collins et al., 2019). As noted in the NCW4H study dis-
cussion, intervening on SDOH related to employment is 
inherently complex and dependent on the engagement of 
multiple actors across different sectors, settings, and time. 
MLI studies must adapt to these complexities, and we hope 
that introducing the MLI-SWD and providing software  
for sample size determination will enable more research-
ers to plan studies investigating MLIS that can disentangle 
the contribution of both the IL and CL components and 
investigate whether they are synergistic. The MLI-SWD 
offers more precise estimation of the IL intervention effect 
compared than an equivalent design where the IL interven-
tion is also randomized at the cluster level by increasing the 
effective sample size for the IL intervention. If the effects of  
the IL and CL components are not of interest on their own, 
a simpler design may be more appropriate. The MLI-SWD 
has the potential to allow studies where individuals can be 
randomized before they are nested within a cluster though 
additional assumptions not typically needed in a rand-
omized trial is necessary. When deciding whether to use 
the MLI-SWD researchers should pay particular attention to 
potential spillover effects at the IL because the MLI-SWD 
is vulnerable to bias in a way that is not a concern when all 
the individuals in a cluster receive the same IL intervention, 
and, like all SWDs, they should consider the plausibility of 
confounding by time (a risk that can be mitigated but not 
eliminated).
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