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ABSTRACT: The development of luminescent materials via
mechanochemistry embodies a compelling yet intricate frontier
within materials science. Herein, we delineate a methodology for
the synthesis of brightly luminescent polymers, achieved by the
mechanochemical coupling of aggregation-induced emission (AIE)
prefluorophores with generic polymers. An array of AIE moieties
tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)
radical are synthesized as prefluorophores, which initially exhibit
weak fluorescence due to intramolecular quenching. Remarkably,
the mechanical coupling of these prefluorophores with macro-
molecular radicals, engendered through ball milling of generic
polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable
emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study
elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays.
By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a
paradigm to the field of AIE-based polymers with implications for advanced technological applications.

■ INTRODUCTION
Mechanoradicals, engendered by mechanical stimuli, such as
grinding, milling, or stretching, offer a distinctive pathway to
mechanoradical coupling, facilitating the construction of
elaborate molecular architectures.1−5 The imposition of
mechanical stress upon polymer chains is a well-documented
stimulus for the cleavage of covalent bonds, leading to the
formation of reactive macromolecular radicals.4,6−10 These
macromolecular radicals can partake in subsequent reactions
with diverse molecules, paving the way for the creation of
novel material entities or the initiation of polymerization
processes.11−17 This burgeoning interest is attributable to the
simplicity, cost efficiency, and versatility of the mechanoradical
coupling process, coupled with the distinctive properties and
wide-ranging applications of the resultant materials.18−20

Among these, the synthesis of luminescent polymer materials
through mechanoradical coupling represents an especially
fascinating domain of exploration.21−23 This innovative
strategy entails the fusion of nonemissive radical species to
forge new compounds that are capable of exhibiting
luminescence as a response to mechanical agitation, thus
offering a streamlined avenue for the development of
functional materials.22,24,25

Notwithstanding, the realm of functional luminescent
polymer construction through mechanoradical force remains

a largely untapped domain.26 The primary challenge involves
incorporating functional groups into nonspecialized polymers
to produce materials with intense emission characteristics,
especially in the solid state.27,28 Overcoming this obstacle
could herald new avenues in the design of advanced polymer
materials, bridging the divide between mechanoradical
methodologies and functional luminescent applica-
tions.23,25,29,30 Yet, the process of endowing polymers with
fluorescence by utilizing mechanophores is met with several
challenges, including complex polymerization demands and the
widespread issue of aggregation-caused quenching
(ACQ),31−33 which markedly dampens emission efficiency
when the material is in aggregated or solid states.34 The advent
of aggregation-induced emission (AIE) luminogens has
emerged as a beacon of hope, offering a compelling counter
to ACQ ones.35−38 AIE luminogens are distinct in that they
exhibit intensified emission in the aggregated state, a
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consequence of restricted intramolecular motions (RIM),39,40

which mitigates nonradiative decay pathways.41,42 Despite the
strides made in embedding AIE luminogens into polymer
matrices through blending,43−46 copolymerization,47−49 or
grafting techniques,50−52 the exploration of their direct
integration via mechanoradical coupling for enhanced
luminescence remains in its infancy. This can be attributed
to the scarcity of appropriately engineered prefluorophores
designed for such processes, as well as the absence of effective
and optimized coupling strategies.
In this study, we introduce a material tactic for fabricating

luminescent polymers with comprehensive fluorescence by
mechanochemically coupling AIE prefluorophores with generic
polymers. We synthesized a series of AIE-active moieties linked
to the radical compound 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO), which initially demonstrated very weak fluores-
cence due to intramolecular quenching by the existence of
radical moieties. However, when embedded in polymer chains
through mechanical milling, they are coupled to macro-
molecular radicals, resulting in significantly enhanced fluo-
rescence. We evaluated the effects of different AIEgens and

polymers, finding tunable absorption and emission across the
visible-to-near-infrared spectrum. The AIE-modified polymers
suggest applications in stimuli-responsive information storage
and encryption display. This methodology circumvents
complex chemical synthesis, enabling the direct fabrication of
highly emissive fluorescent polymers from readily available
polymers and AIE prefluorophores. This research furnishes
new perspectives on the design of luminescent polymers and
applications in information storage, anticounterfeiting, data
encryption, and other advanced technologies, heralding
substantial implications for the development of polymer
material science.

■ RESULTS AND DISCUSSION
To achieve materials with emission spanning the entire visible
region, a series of AIE prefluorophores with donor−acceptor-π
(D-A-π) characteristics were designed (Figure 1a and Scheme
S1). The intramolecular charge transfer (ICT) effects of these
AIE prefluorophores were carefully modulated by selecting
specific donor, acceptor, and π-bridge moieties. The electron-
donating groups, such as triphenylamine (TPA) and

Figure 1. (a) Synthetic route to B-tp, G-tp, Y-tp, O-tp, and R-tp. (b) ESR signal of B-tp, G-tp, Y-tp, O-tp, and R-tp in THF solution, g = 1.97. (c)
The ESR signal of B-tp, G-tp, Y-tp, O-tp, and R-tp in solid state, g = 1.92. (d) Normalized absorbance spectra of B-tp, G-tp, Y-tp, O-tp, and R-tp in
the solid state. (e) PL spectra of B-tp, G-tp, Y-tp, O-tp, and R-tp in the solid state. Inset: Corresponding photographs taken under daylight and UV
light. (f) LUMOs, SOMOs, and HOMOs of optimized ground-state geometries of B-tp, G-tp, Y-tp, O-tp, and R-tp determined by the M062X/6-
31G* level of theory.
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tetraphenylethylene (TPE) derivatives, were incorporated to
confer AIE properties and strong solid-state emission to the
molecules. Typical electron-withdrawing building blocks,
namely, benzothiadiazole (BT) and naphthothiadiazole
(NT), were employed for their established use in organic
electronics. The AIE prefluorophores were functionalized with
4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO−
OH) through Suzuki coupling, hydrolysis, and Stieglich
esterification reactions, aiming to achieve blue (B-tp), green
(G-tp), yellow (Y-tp), orange (O-tp), and red (R-tp)
emissions. All of the intermediates were confirmed by 1H
NMR and 13C NMR (Figures S1−S10). The final products
were determined by matrix-assisted laser desorption ionization-
time-of-flight (MALDI-TOF) mass spectrometry, and their
purity was examined by high-performance liquid chromatog-

raphy (HPLC) (Figures S11−S16). The radical signals of the
obtained AIE prefluorophores are confirmed by electron spin
resonance (ESR) spectroscopy. All of the AIE prefluorophores
exhibit strong ESR signals, whether in THF solution (Figure
1b) or in the solid state (Figure 1c), which match well with the
signals from TEMPO in the literature.53,54 Subsequently, we
measured the absorption spectra of the AIE prefluorophores in
the solid state. As the ICT increases, the absorption maximum
exhibits a gradual red shift, i.e., B-tp, G-tp, Y-tp, O-tp, and R-tp
at 386, 413, 427, 484, and 546 nm, respectively (Figure 1d).
Interestingly, although all of these AIE prefluorophores have
typical AIE moieties, the emissions were very weak, as
observed by the naked eye and in the photoluminescence
(PL) spectra (Figure 1e).

Figure 2. (a) Schematic illustration of the reduction process of B-tp to B-tp-H. (b) PL spectra of B-tp in a THF/water mixture (1:9 vol %) and the
turn-on fluorescence after adding ascorbic acid in the same water fraction. (Inset: photos shot before and after adding ascorbic acid to B-tp.) (c)
Molecular orbitals for the corresponding electronic transitions at the adsorption D0 → D2 (2CT2,FC) and nonradiative emission D1 (2ET1,min) → D0
processes of B-tp. (d) Calculated energy levels and proposed mechanisms for the luminescent behavior of B-tp. (e) Molecular orbitals for the
corresponding electronic transitions at the adsorption S0 → S1 (1CT1,FC) and nonradiative emission S1 (1CT1,min) → S0 processes of B-tp-H. (f)
Calculated energy levels and proposed mechanisms for the luminescent behavior of B-tp-H. Blue arrows correspond to absorption, red arrows
correspond to emission, and black dash arrows correspond to the nonradiative processes.
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The molecular configurations and energy levels of the AIE
prefluorophores were calculated using density functional
theory (DFT) at the M062X/6-31G* level (Figure 1f). It is
shown that all of the molecules exhibit twisted molecular
geometries with large torsion angles among the donor,
acceptor, and π-bridges. Additionally, the highest occupied
molecular orbitals (HOMOs), the lowest unoccupied molec-
ular orbitals (LUMOs), and the singly occupied molecular
orbital (SOMOs) of these molecules are mainly located at the
donor, acceptor, and TEMPO parts, respectively. Therefore,
the results confirmed the evident HOMO−LUMO separation
with gradually decreasing energy gaps, indicating red-shifted
absorptions and emissions.
To corroborate the molecular architecture and elucidate the

luminescent properties of the AIE prefluorophores, we
employed ascorbic acid (or vitamin C) as a chemical agent
to quench the radical sites. Illustratively, with B-tp serving as a
prototype, the nitroxide radical moiety (N−O·) was reduced to
a hydroxylamine group (N−OH) in the presence of ascorbic
acid, resulting in its reductive form, B-tp-H (Figure 2a). Due to
the absence of radicals, B-tp-H demonstrated clear 1H NMR
signals, with spectral peaks and integrations corroborating the
molecular structure of B-tp (Figure S17). Additionally, as
depicted in Figure 2b, the B-tp solution, which initially
exhibited negligible fluorescence under UV excitation, under-
went a dramatic enhancement in luminescence upon treatment
with ascorbic acid at room temperature. This manifests a
pronounced blue fluorescence and indicates the prompt
responsiveness of B-tp to the radical quenching effect of

ascorbic acid. Analogously, other members of the AIE
prefluorophore series, when treated with ascorbic acid,
exhibited significantly enhanced emissions, a testament to the
effective quenching of radicals in these systems as well (Figures
S18−S21).
To elucidate the underlying causes of the marked differences

in fluorescence between B-tp and B-tp-H, we embarked on a
computational analysis of their emission mechanisms via time-
dependent density functional theory (TD-DFT) at the
B3LYP/6-31G* level (Figure 2c). As illustrated in Figure 2d,
the predicted optical gap for B-tp is 2.97 eV ( f = 0.73), which
can be ascribed to the D0−D2 transition, rather than the D0−
D1 transition with a negligible oscillator strength ( f ∼ 0).
Moreover, calculations reveal that B-tp readily undergoes a
nonradiative transition from D2 to the D1 state near the
Franck−Condon (FC) conformation right after the absorption
process. The transition results in the formation of a D1 state
with local excitation (LE) characteristics, henceforth denoted
as 2LE1,FC, where the superscript indicates the state multi-
plicity. A subsequent excited state structural relaxation (ESSR)
process occurs, leading to the energy minimum conformation
of the D1 state, labeled as 2ET1,min. This involves an electron
transition from the p orbital of the O atom in the TEMPO
fragment (pO) to the π orbital of the TPA fragment (πTPA)
(Figures S22−S25), indicative of a photoinduced electron
transfer (PET) pathway. The 2ET1,min state, generated through
ESSR, manifests an oscillator strength approaching 0 to the D0
state. This transition, from 2LE1,FC to 2ET1,min via ESSR,
effectively quenches radiative decay, thereby accounting for the

Figure 3. (a) Schematic illustration of the generation of AIE polymers from generic polymers via mechanoradical coupling with AIE
prefluorophores, inset: photographs of the mixtures of PS and B-tp before and after ball milling under daylight and UV irradiation. (b) GPC profiles
of the original PS and the modified PS (B-PS, G-PS, Y-Ps, O-PS, and R-PS). The ESR signal of B-tp, G-tp, Y-tp, O-tp, R-tp, PS, and the modified PS
in (c) solid state (g = 1.92) and (d) THF solutions (g = 1.97).
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attenuated fluorescence observed in B-tp. Contrastingly, our
computations for B-tp-H reveal a pronounced S0-S1 absorption
at 3.04 eV ( f = 0.74, Figure 2e,f). Notably, during ESSR, the
electronic state remains invariant, with only geometric
alterations occurring, as illustrated in Figures S26 and S27.
The S1-S0 radiative transition is reasonably strong and fast
(2.24 eV, f = 0.07), and the intersystem crossing (ISC)
quenching pathway from S1 to T1 is deemed to be inefficient,
given the comparatively insubstantial spin−orbit coupling
(SOC) constant of 0.05 cm−1. Consequently, B-tp-H
molecules are predisposed to fluorescence from the S1 state.
In summary, it is postulated that the diminished fluorescence
in B-tp is primarily due to a significant PET effect stemming
from the TEMPO radical moiety. Upon annihilation of the
radical character via reduction, oxidation, or quenching by
another radical, the resultant species should demonstrate
considerable “turn-on” fluorescence.
Motivated by the viable strategy of mechanochemical

coupling, we explored the application of AIE prefluorophores
in conjunction with a selection of commercially procured
polymers, aiming to validate the practicality of this method-
ology. Herein, polystyrene (PS), poly(methyl methacrylate)
(PMMA), and polyphenylene sulfide (PPS), acquired from
Sigma-Aldrich Corp., were utilized as received without any
additional purification steps. Upon the exertion of a
mechanical stimulus, such as ball milling, scission of the
polymer backbones occurs, yielding macromolecular radical
intermediates. These emergent radical species from the
polymer can engage in covalent interactions with the radical

sites of the AIE prefluorophores, leading to the formation of
new covalent linkages. This coupling results in the mitigation
of the fluorescence quenching effect associated with the free
radicals, culminating in the manifestation of intense
fluorescence (Figure 3a).
For illustrative purposes, PS with a number-average

molecular weight (Mn) of 86.3 kDa and a polydispersity
index (PDI) of 1.05 served as a prototype. In the presence of
the AIE prefluorophores, B-tp, the PS polymer was subjected
to ball milling at a rotational speed of 750 rpm for a duration of
30 min. The resulting mixture, as shown in Figure 3a, displayed
a pronounced blue fluorescence upon UV excitation. The
reaction products were subsequently subjected to purification
procedures involving dialysis and recycling preparative gel
permeation chromatography (GPC) to remove any unreacted
radicals and other low-molecular-weight residuals, yielding the
blue-emissive polymer, denoted B-PS. The synthesis of the
additional modified polymers was conducted using analogous
protocols. Notably, mechanochemical reactions involving PS
derived from various synthetic techniques, such as free-radical
polymerization using initiators, have also proven to be
successful, highlighting the versatility of this approach (Figure
S30). Furthermore, the modified polymers demonstrated
excellent photostability and no leakage of the fluorescent
dyes, underscoring their robustness for related applications
(Figures S31 and S32).
To assess the molecular characteristics of the fluorescently

modified PS samples, analytical GPC was performed. As
delineated in Figure 3b and detailed in Table S1, a uniform

Figure 4. PL spectra of (a) PS, B-tp, and B-PS; (b) PS, G-tp, and G-PS; (c) PS, Y-tp, and Y-PS; (d) PS, O-tp, and O-PS; and (e) PS, R-tp, and R-
PS. The PL lifetime profiles of (f) B-tp and B-PS; (g) G-tp and G-PS; (h) Y-tp and Y-PS; (i) O-tp and O-PS; (j) R-tp and R-PS in the solid state.
Excitation wavelength: 375 nm. (k) Normalized absorption spectra of PS, B-PS, G-PS, Y-PS, O-PS, and R-PS in the solid state. (l) PL spectra of B-
PS, G-PS, Y-PS, O-PS, and R-PS in the solid state. (m) PL spectra of B-PMMA, G-PMMA, Y-PMMA, O-PMMA, and R-PMMA in the solid state.
(n) PL spectra of B-PPS, G-PPS, Y-PPS, O-PPS, and R-PPS in the solid state. (o) PLQY of the AIE prefluorophores and the modified polymers.
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trend was observed across the modified PS samples (B-PS, G-
PS, Y-PS, O-PS, and R-PS), where a decrease in the Mn (10−
17 kDa) was accompanied by an increase in the PDI value
(1.24−1.25), indicative of the mechanoradical cleavage of
homolytic covalent bonds within the PS matrix. The
concentration of dyes incorporated into the PS was quantified
by constructing calibration curves for the PL intensity of the
reduced form of the TEMPO derivatives, plotted against their
concentration in dilute solvents (Figure S31).22 The results
indicated that the dye/PS ratios ranged from 0.020 to 0.032
μmol/mg, corresponding to an incorporation rate of 1.5−1.9%
by weight (Table S2). Furthermore, ESR spectroscopy was
employed to evaluate the fluorescent polymers. In the solid
state (Figure 3c) and in the solution state (Figure 3d), the
absence of discernible signals in the ESR spectra signifies the
successful neutralization of free radical moieties in the purified
fluorescent products after the mechanochemical process. In
stark contrast, the original AIE prefluorophores (B-tp, G-tp, Y-
tp, O-tp, and R-tp) exhibited distinct ESR signals. Through
these observations, we substantiate the transformative
mechanochemical coupling as a potent approach for generating
luminescent polymers, thereby expanding the potential for
innovative applications of AIE materials within the domain of
polymer science.
Subsequent to fabrication of the AIE polymers, an exhaustive

assessment of their photophysical properties was performed.
First, PL spectra were recorded to elucidate the luminescent

properties of the materials (Figure 4a−e). Pure PS was
observed to be nonfluorescent, while the AIE prefluorophores
alone manifested negligible emissions. However, the modified
PS displayed intense fluorescence spanning the entire visible
spectrum from blue (G-PS), green (G-PS), yellow (Y-PS), and
orange (O-PS) to red (R-PS) emissions. Notably, the emission
of the R-PS can extend to the near-infrared (NIR) region.
Furthermore, photoluminescence quantum yields (PLQYs)
were comprehensively tabulated (Table S3). The data reveal
that the AIE prefluorophores exhibited very low PLQYs of
<1%. In stark contrast, the modified PS displayed significantly
enhanced PLQYs of up to 53.0%, underscoring the efficacious
nature of the coupling process in generating highly fluorescent
polymers.
The dynamics of the emission for both the AIE

prefluorophores and the modified PS were meticulously
characterized, with the relevant data depicted in Figure 4f−j.
The fluorescence lifetimes (τF) of the AIE prefluorophores
were consistently observed to be short, as shown by the
comparable signal with the instrument response function
(IRF). Significantly, the modified PS exhibited markedly
elongated lifetimes in comparison to their AIE prefluorophore
counterparts, with recorded lifetimes as follows: τF(B‑PS) = 0.72
ns, τF(G‑PS) = 1.66 ns, τF(Y‑PS) = 2.60 ns, τF(O‑PS) = 6.84 ns,
τF(R‑PS) = 12.98 ns, an indication of their intense fluorescence.
Moreover, the data reveal a trend, wherein the τF values of the
modified PS were found to extend with the intensification of

Figure 5. Demonstration of 3D printing and pattern generation for information encryption. (a) Illustration of the 3D printing process and the
generation of the fluorescent word “AGGREGATE”. (b) Changes upon methanol-vapor treatment of the fluorescent PS films on silicon wafers. (c)
Schematic illustration of fabrication, assembly, writing, and reading of the patterns for dual-mode information encryption.
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D−A interactions. This prolongation of τF is suggestive of
more complex excited-state dynamics, possibly involving the
transition between the singlet and triplet states. The absorption
and emission spectra of the modified PS are summarized in
Figure 4k,l, respectively.
To evaluate the adaptability of the synthetic strategy, the

AIE prefluorophores were subjected to mechanoradical
coupling with PMMA and PPS. The fluorescence profiles of
the resultant modified PMMA and PPS were thoroughly
investigated, demonstrating desirable absorption and emission
characteristics that span the UV to the NIR region, as detailed
in Figures 4m,n and S32−S37. Intriguingly, the modified PPS,
attributed to their intrinsically richer electronic interactions
(i.e., more polar microenvironment) from phenyl rings and
sulfur atoms, exhibited emission maxima that were red-shifted
relative to their PS and PMMA counterparts when paired with
identical AIE prefluorophores. This observation concurs with
the anticipated twisted intramolecular charge transfer (TICT)
phenomena associated with the AIE chromophores (Figures
S38−S42). The PLQYs of these modified PMMA and PPS are
also summarized in Figure 4o and Table S2. Similar to the PS
cases, the modified PMMA and PPS polymers showcased
significantly enhanced PLQYs of up to 54.1% compared with
the AIE prefluorophores.
The fluorescent polymers synthesized herein demonstrate

remarkable potential for innovative applications in additive
manufacturing, particularly in three-dimensional (3D) printing
technologies. To substantiate this assertion, we employed a
state-of-the-art digital light processing (DLP) 3D printing
apparatus to fabricate a series of individual characters�G, R,
E, A, and T, collectively forming the acronym “GREAT.″ As
delineated in Figure 5a, each character was engineered to emit
a distinct and vibrant color, specifically green, blue, yellow,
orange, and red, by using the modified PS materials. The
concerted assembly of these characters into the word
“AGGREGATE” yielded an intricate display, where the
characters appeared homogeneously colored under ambient
daylight, yet they revealed their unique fluorescent identities at
discrete wavelengths under UV irradiation. This dichotomy of
appearances under varying illumination conditions robustly
demonstrates the suitability of these fluorescent polymers for
3D printing applications.
Further underscoring the functional versatility of these

materials, the polymers exhibited pronounced polarity-
responsive fluorescence, a property that can be attributed to
the TICT effect inherent to the presenting AIE moieties. As
evidenced in Figures S43−S47, this phenomenon manifested
as a red shift in emission wavelengths when exposed to polar
solvents or vapors. Notably, the magnitude of the observed
redshift in emission wavelength was found to be directly
correlated with the D−A strength within the AIE moieties.
Specifically, it was discerned that an augmentation in the D−A
strength elicited a more pronounced red shift in the emission
of the polymers. Then, we crafted a series of polymer films on
silicon wafers utilizing the spin-coating technique, each
designed to display distinct fluorescence. Figure 5b showcases
the transformation of these films upon exposure to methanol
vapor, the setup of which can be found in Figure S48. The film
incorporating Y-PS, initially characterized by bright yellow
fluorescence, underwent a shift to orange−yellow fluorescence,
while the O-PS film transitioned from orange to red. Most
strikingly, the R-PS film, originally emitting in red, experienced
a shift extending into the NIR region, thus eluding visual

detection. In contrast, the emission of the G-PS film
underwent a minor shift from green to yellowish green,
whereas the emission of the B-PS film remained unaltered.
This compelling demonstration of tunable fluorescence
underscores the potential of these AIE polymers to serve as
responsive materials for advanced photonic and optoelectronic
applications.
Motivated by the dynamic and controllable changes in

fluorescence of the modified polymers, we embarked on an
endeavor to harness these properties for applications in
information encoding and anticounterfeiting measures, as
illustrated in Figure 5c. We began by fabricating polymer
films and organizing them into a 5 × 5 grid to construct a 3D
fluorescent code, designated as pattern I. In its initial state,
pattern I did not present any discernible features under
ambient daylight and showed only the encoded information
when subjected to UV light. The pivotal transformation
occurred when pattern I was exposed to methanol vapors. This
treatment prompted specific red shifts in the emission
wavelength, resulting in the emergence of pattern II. It was
at this juncture that the previously concealed data could be
decrypted. This hidden information was made legible by
scanning the altered pattern with a mobile phone’s camera
under UV light exposure. Conversely, any attempts to decipher
pattern II using the same scanning process but under natural
daylight conditions were unsuccessful, as the embedded
information remained obscured. This experimental verification
establishes the practicality and effectiveness of a dual-mode
fluorescent 3D pattern encrypted through the synergistic
application of UV light and solvent vapor interactions. The
methodology for crafting such patterns is efficient, drawing on
the intrinsic advantages of the modified polymers. These
advantages include high PLQYs and outstanding film-forming
abilities, which conveniently negate the necessity for external
doping agents or the risk of dye leaching. The successful
execution underscores the versatility and adaptability of AIE-
active materials in security technology, offering a promising
avenue for developing sophisticated, customizable encryption
systems.

■ CONCLUSIONS
In this study, we meticulously engineered and synthesized a
series of AIE prefluorophores bearing TEMPO radicals as the
precursors for mechanoradical coupling. The photophysical
properties of these compounds were thoroughly characterized,
revealing negligible fluorescence in the solid state. Remarkably,
upon radical annihilation, these molecules exhibited a
pronounced fluorescence. Experimental and theoretical anal-
yses corroborated the suppression of light emission in the
radical state due to the PET effect from the TEMPO moiety.
Advancing our methodology, we employed ball milling as a
physical strategy for in situ mechanoradical coupling of
polymers with AIE prefluorophores, thus covalently embed-
ding AIEgens into the polymer backbone. This approach
enabled the facile transformation of nonluminescent polymers,
including PS, PMMA, and PPS, into brightly luminescent
materials. The resultant modified polymers, benefiting from
the inherent AIEgens, demonstrated a long fluorescence
lifetime and high PLQYs. Leveraging these advancements, we
successfully utilized the resulting polymers in 3D printing
applications, achieving high fluorescence intensity with
minimal material incorporation. Additionally, the superior
film-forming capabilities of the polymers facilitate the creation
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of films for information storage and encryption. The AIE
moieties’ sensitivity to polarity, coupled with UV-exclusive
visibility, enabled the formation of dual-mode encrypted 3D
fluorescent patterns.
In essence, the intrinsic high PLQYs of AIE materials in the

solid state facilitated the efficient “turn-on” fluorescence of the
prefluorophores. The mechanoradical coupling technique,
requiring no intricate chemical synthesis, demonstrated broad
applicability across various prefluorophores and polymers.
Consequently, the findings of this research hold substantial
promise for the advancement of stimuli-responsive materials
and the proliferation of optoelectronic applications. These
developments underscore the potential for achieving a
comprehensive spectrum of color emissions through strategic
structural modification of AIE prefluorophores, with profound
implications for both the academic exploration of photo-
physical mechanisms and the practical development of
materials with customized luminescent functionalities.
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