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Abstract: Huntington’s disease (HD) is a rare but progressive and devastating neurodegenerative
disease characterized by involuntary movements, cognitive decline, executive dysfunction, and
neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant
inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a
50% chance of developing the disease. Since the HTT protein is involved in many critical cellular
processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation,
synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to
the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are
vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting
glial–neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM),
both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in
detail the interactions of iron, manganese, and copper with glial–neuron communication and GM
and indicate how this knowledge may pave the way for the development of a new generation of
disease-modifying therapies in HD.

Keywords: Huntington’s disease; heavy metals; iron; manganese; copper; glial cells; gut microbiota;
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1. Introduction

Huntington’s disease (HD) is a relentlessly progressive and debilitating adult-onset
neurodegenerative disorder characterized by a well-defined clinical triad: motor dysfunc-
tion including choreoathetosis (involuntary twitching, twisting or squirming movements),
where severe cases can cause permanent disability, cognitive decline including memory
impairment and executive dysfunction, and psychiatric disturbances including anxiety and
depression [1,2]. Pneumonia, followed by cardiovascular diseases, are the common causes
of death [1,3]. Suicide is also more prevalent in patients with HD compared to the general
population [1].

HD is an autosomal dominant disease with characteristic cytosine, adenine, and gua-
nine (CAG) trinucleotide repeats on the short arm of chromosome 4p16.3 within the hunt-
ingtin (HTT) gene, leading to the production of a mutant huntingtin protein (mHTT) [2,4].
HTT is involved in many critical cellular processes including neurogenesis and brain devel-
opment, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking,
cell signaling, and autophagy [2,4]. It is not surprising, therefore, that aberrant aggregates
of this protein lead to the disruption of numerous cellular pathways, triggering a cascade
of neurodegeneration [1,2,4].

HD is a rare neurodegenerative disorder (about 4 per 10,000 worldwide) with lower
prevalence in Asia and higher prevalence in Europe, North America, and Australia, possibly
due to the HTT gene haplotypes [2,5,6]. It typically manifests in mid-life, between the ages
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of 30 and 50 years, but can occur even before the age of 20, where it is termed juvenile
HD. Diagnosis is made based on motor, cognitive, and behavioral tests and is confirmed
via genetic testing using DNA analysis. Since no cure is available, treatment is aimed at
improving the quality of life and decreasing complications.

Recent advances in molecular biology, focusing not only on the cellular pathways
dysregulated by mHTT but also exploring the potential influence of external factors such as
heavy metal exposure and gut microbiota (GM), have paved the way for the development
of a new generation of disease-modifying therapies (DMTs) for HD [7,8]. In this review,
following a brief description of HD pathology, we explore the roles of heavy metals in its
etiology and focus on the potential manipulation of the GM as a novel therapeutic strategy.

2. HD Pathophysiology

Three significant categories of risk factors associated with CAG repeats have been
identified in HD. The first and foremost is the length of the repeat, as the longer the repeats
(>35), the earlier the onset of symptoms. Indeed, abnormal CAG triplet repeats lead to an
abnormally elongated polyglutamine (polyQ) tract, which results in neurodegenerative
diseases including HD [9]. CAG length is also a significant factor for the progression
of the disease, especially in cognitive, motor, and neurological disturbances. The CAG
repeats not only provide information on the age of clinical onset but also predict the age
of death, as the course of the disease commonly lasts 15 to 20 years [1]. Second is the
instability of CAG, and the third are the genetic modifiers that play an essential role in
the progression of the disease [1]. The primary pathophysiological features of HD are
the degeneration of neurons in the caudate, putamen, and cerebral cortex. The brain,
particularly in the striatum, atrophies, showing extensive neuronal loss. It is believed that
the choreiform movements and the development of dystonia and akinesia are due to the
degeneration and loss of substance-P in the medium spiny neurons of the basal ganglia,
and cognitive and behavioral dysfunctions are due to cortical atrophy [1]. Several theories
have been suggested as reasons for pathogenesis. These include the accumulation of mHTT
aggregates, leading to an impairment of the ubiquitin–proteosome pathway, transcriptional
dysregulation, excitotoxicity due to increased release of glutamate and glutamate agonist
from the cortical afferents, mitochondrial dysfunction and altered energy metabolism,
changes in axonal transport, and synaptic dysfunction [1,10]. These contentions are because
HTT is essential not only for the embryonic brain development but also for the adult brain
function. Furthermore, mHTT may cause a gain of function or toxicity, or loss of function,
either of which can contribute to the HD pathology [11].

mHTT is also a strong activator of glial cells, the brain’s immune cells, leading to
chronic neuroinflammation [12]. While the initial activation of the glia is for neuroprotec-
tion, the overstimulation of these cells results in a neuroinflammatory response, which can
cause neuronal damage and/or cell death, hence contributing to disease progression [12,13].
Recent research suggests the potential contributions of environmental factors like heavy
metals such as iron (Fe), manganese (Mn), and copper (Cu) to HD pathology [12–14].
Heavy metal exposure further disrupts post-transcriptional mechanisms, exacerbating the
problems caused by mHTT and decreasing the clearance rate of misfolded proteins, hence
creating a vicious cycle that accelerates the neurodegeneration process [15]. Heavy metals
may also indirectly influence neuroinflammation and/or mHTT clearance, causing further
damage via their interaction with the GM, as discussed in more detail below.

The characteristic involuntary movements are progressive as they initially begin in
the distal extremities and gradually move to proximal and axial muscles with greater
amplitude and could extend to facial muscles. Whereas in the early stages, the symptoms
manifest as hyperkinetic with involuntary chorea, in later stages, hypokinesia and dystonia
predominate. In the later stages of the disease, the patient becomes bedridden due to severe
rigidity and contractures in the extremities. Dysarthria and dysphagia and trouble in speak-
ing and swallowing, respectively, develop during the course of the disease, which could
lead to aspiration and pneumonia, the main cause of death in HD. Dystonia, characterized



Cells 2024, 13, 1144 3 of 15

by increased muscle tone with slower movements, leads to abnormal posturing such as
torticollis (stiff neck) and is usually one of the early signs of motor involvement in HD. Tics
and ataxia may also develop. The progression of motor disturbances over time can lead to
difficulties in walking and standing and frequent falls [1].

In addition to the motor symptoms, behavioral and cognitive disturbances manifest
early on. Thus, initially, patients may present with impulsivity, poor attention, and irri-
tability, leading to outbursts of anger and aggression. Later, emotional blandness with
prominent apathy, loss of intuition, and creativity ensues. These are likely due to degenera-
tion in the fronto-striatal pathway. Apathy, which is also progressive, is the most common
feature of the disease. Mood disorders including depression are also common, which can
lead to suicide in HD. Psychosis and cognitive decline to the point of unawareness appear
later. Cognitive decline usually manifests before the onset of motor disturbances. The
prominent cognitive changes include difficulty in planning, organizing, and multitasking,
which may progress to dementia. Interestingly, it is believed that memory loss in HD is due
to an inefficient search of memory (subcortical in nature) rather than a deficient in memory
formation. In addition, more common features of cortical dementia such as apraxia and
aphasia (speech disorders) are avoided in HD. Nonetheless, there is severe slowness in the
psychomotor processes [1].

3. Current and Prospective Treatments

Beyond symptom management with dopaminergic and other medications [1,16,17],
evolving therapeutics for HD target the molecular aspects with the intention of developing
disease-modifying drugs [2,18]. These techniques include direct DNA/gene therapies to
manipulate the HTT gene and correct the CAG repeat [19]. Thus, the potential of genome
editing such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and the CRISPR/Cas9 system have been suggested [20]. RNA modulation may
also be a promising approach, and antisense oligonucleotide (ASO) therapies and RNA
interference (RNAi) therapies are currently undergoing clinical trials [16,20]. However,
using ASOs to lower HTT by targeting transcripts has not been successful in human clinical
trials [21]. Although gene therapy might be a promising future intervention, treatments
addressing the functional aspects of HTT could be incorporated into current HD therapies.
Attempts at enhancing neurogenesis are also being considered [2]. This is because HTT
promotes BDNF expression and enhances BDNF vesicular trafficking along microtubules,
and mHTT dysregulates these functions by suppressing BDNF transcription, resulting in
lower central BDNF levels [22–24]. Indeed, it has been suggested that BDNF may serve as
a gauge in detecting the severity of HD [25]. Thus, BDNF provides an attractive target for
pharmacotherapeutial developments in HD [24]. In addition, targeting mHTT, therapies
using potent small molecules, ubiquitin proteasome, or the autophagy-lysosomal systems
are also under consideration [26,27].

Other disease-modifying therapies target aberrant downstream pathways such as
excitotoxicity, mitochondrial dysfunction, and neuroinflammation [1].

Excitotoxicity, due to an imbalance between excitatory and inhibitory neurotransmit-
ters, has been a subject of intense studies for more than two decades [28,29]. Excessive
stimulation by glutamate, the excitatory neurotransmitter, can result in cell death via
calcium-mediated mitochondrial dysfunction. The increased cytoplasmic calcium directly
targets the mitochondria and alters its membrane potential. This compromises the electron
transport chain, a vital pathway for energy production within mitochondria. Consequently,
the cell experiences reduced ATP synthesis, hindering its ability to maintain essential
cellular functions. Furthermore, the mitochondrial dysfunction compromises the antiox-
idative processes and leads to the overproduction of reactive oxygen species (ROS) [16,20].
Calcium dysregulation also activates apoptotic cell death pathways involving caspase-9
and caspase-3, accelerating programmed cell death [30].

Therefore, targeting the Glutamate/GABA imbalance may be a viable option in ad-
dressing some HD symptoms. This contention is further supported by the presence of
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aberrant NMDA receptor distribution in HD pathogenesis. Specifically, a reduction in
palmitoylation, a post-translational modification, was observed in striatal NR2B-containing
NMDA receptors of YAC128 mice, a model of HD. This decrease in palmitoylation corre-
lated with an increase in extrasynaptic NMDA receptors, signifying a potential mislocal-
ization of these receptors away from their typical synaptic sites, hence contributing to the
vulnerability of striatal neurons in HD. These findings highlight the potential of targeting
NMDA receptor palmitoylation as a therapeutic strategy for HD [29]. Medications like
memantine and amantadine, both NMDA receptor antagonists, have shown effectiveness
in at least the motor symptoms in HD [16,31,32].

As mentioned above, glial cells in general, and micro- and astroglia in particular, are
major contributory cells to neuroinflammation, which is one of the aberrant pathways
involved in the pathophysiology of HD [33,34]. Hence, below, we briefly discuss the
potential role of glial cells in HD pathology.

4. Glial Cells—HD

Glial cells, outnumbering the neurons by 10 to 1, were once considered only to be
structural support for the neurons. However, they are involved in numerous critical
brain functions, including myelination, the formation of the blood–brain barrier (BBB), the
development and remodeling of synapses, energetic support for neurons, the control of
metabolism, the regulation of neurotransmitters and neuroendocrine function, the control
of the fluid/electrolyte homeostasis, detoxification, and immune response [35]. Their
dysregulation has been associated with neuropsychiatric and neurodegenerative diseases
including HD [2,13,36,37]. Recently, we proposed that glial nAChRs may be a suitable
target for intervention in Parkinson’s disease (PD) [38]. It would be of interest to determine
if this hypothesis can extend to HD.

Four major glial cells (microglia, astrocytes, oligodendrocytes and synantocytes or
NG2 cells) have been identified to date. We briefly discuss each with their relevance to
neurodegenerative diseases in general, and HD in particular. Moreover, heavy metal
interactions with these cells directly or indirectly via GM are also touched upon.

4.1. Microglia—HD

Microglia, constituting 10–15% of all central nervous system (CNS) cells, are considered
the resident immune cells, as they constantly survey the environment and react quickly
to any kind of insult. They play a vital role in maintaining homeostasis in the brain;
however, their overactivation leads to neuroinflammation, which, as alluded to above,
may be responsible for the manifestation of neuropsychiatric and/or neurodegenerative
diseases [35]. Microglia also regulate the number of neuronal precursor cells, neurogenesis,
and the formation and elimination of neuronal synapse and mediate infiltration of T cells
into the brain [39].

Depending on the status of their activity, microglia are referred to as resting, activated,
or phagocytic. Whereas at the resting or inactive state, they are highly ramified, when
activated, they contract, assume an enlarged cell body, and proliferate. This happens in
response to injury or insult, allowing them to carry their phagocytic activity, whereby
debris is eliminated, and repair and recovery can ensue. This essential function can
become detrimental if microglia are overactivated, causing neuroinflammation, followed
by neurological anomalies [40–43].

Microglia express various receptors such as the calcium-sensing receptor (CASR),
low-density lipoprotein receptor-related protein 1 (LRP1), triggering receptor expressed on
myeloid cells-2 (TREM2), nicotinic cholinergic receptors (nAChRs), and toll-like receptors
2 and 4 (TLR2 and TLR4) [43]. TLRs are the subject of intense investigation as potential
targets for neuropsychiatric/neurodegenerative diseases as they facilitate the removal of
debris or pathogens by initiating the innate immune response [39,44–46].

Importantly, heavy metals (discussed in detail below) can activate microglia and
trigger neuroinflammation and neuronal death [47].
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4.2. Astroglia (Astrocytes)—HD

Astroglia, or astrocytes, have a wide distribution in the brain and may constitute
up to 60% of the total cells in certain areas of the brain. They provide nutrients for the
neurons, remove waste, monitor and regulate pH homeostasis, and are key components of
the BBB. Moreover, they have extensive synaptic connections with the neurons and help to
maintain neuronal integrity [39,48–50]. They are also key mediators of excitotoxic glutamate
reuptake [51,52]. More recently, it was reported that astrocytes are the necessary source of
TNF-α for the mediation of homeostatic synaptic plasticity [53]. Astrocytes contain their
own neurotrophic factor, referred to as glial cell line-derived neurotrophic factor (GDNF), a
protein that, like brain-derived neurotrophic factor (BDNF), provides trophic support for
the growth and differentiation of synapses and promotes cell survival [49,53]. Astrocytes
also express high levels of glial fibrillary astrocytic protein (GFAP), which is important for
astrocyte–neuron communication, and helps to maintain the mechanical strength, shape,
and movement of the cell and is commonly used as a marker for their identification [53,54].

Interestingly, astrocytes can become reactive by polarized microglia to help with
defense mechanisms and the removal of pathogens [39]. However, also in this case, the
overstimulation of these cells will result in the production of pro-inflammatory cytokines
and contribute synergistically to neuronal dysregulation and/or death [55–57]. In this
regard, heavy metals can cause astrocyte dysfunction, triggering neuronal, as well as
oligodendrocyte, malfunction [58–60]. Moreover, as the BBB controls the transport of
nutrients and metabolites into the brain and limits the access of harmful substances, its
disruption is associated with the pathophysiology of major neurological disorders. For
example, lead-induced damage of the BBB has been implicated in autism spectrum disorder
(ASD), whereas Cu, Mn, and Fe disruption of the BBB have been linked to HD [14,61,62].
Finally, the GM, which, via short-chain fatty acids (SCFAs), maintains the integrity of the
BBB, may be highly impacted by gut dysbiosis (discussed below).

4.3. Oligodendrocytes—HD

Oligodendrocytes (OLs), constituting 75% of all glial cells, are well recognized as
the primary source of myelination in the CNS [63]. They control extracellular potassium
concentration, modulate axonal growth, provide metabolic and trophic supply to myelin,
secrete GDNF and BDNF, and, like microglia and astrocytes, express TLRs, which are
also necessary for myelin formation [64–66]. Myelinated axons, which comprise the white
matter, connect various gray matter areas (consisting of neuronal bodies, axon terminals,
and dendrites) of the brain to each other and carry nerve impulses between neurons. Abnor-
mality in white matter has been considered as an early indicator in HD [67]. Importantly,
heavy metals can cause dysfunction in these cells as well [58,59,68].

4.4. Synantocytes (NG2 Cells)—HD

The fourth subset of major glial cells in CNS, synantocytes, are OL-precursor cells that
are almost uniformly distributed in both white and gray matter areas, associate closely
with neuronal cell bodies and dendrites, and maintain the ability to keep proliferating in
the adult brain [63,69,70]. These cells can also give rise to astrocytes and neurons [63,69,70],
and their potential involvement in neurodegenerative diseases is suspected [71,72]. For
example, neuroinflammation and increased BBB permeability in experimental autoimmune
encephalomyelitis (EAE) have been attributed to NG2 cells in [73], where it was postulated
that NG2 cells, via the stimulation of reactive T cells, control IL-12 expression [73]. NG2
cells have been implicated in neuroinflammation [74] and neurovascular unit formation
during development [75]. Following acute ischemic stroke, NG2 cells play a key role
in angiogenesis and the generation of OLs [75]. Because of their influence on neuronal
plasticity and communication with neurons, OLs may provide a novel target for therapeutic
interventions in a variety of neurological diseases [75–77]. Whether heavy metals interact
with NG2 cells is yet to be determined.
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5. Gut Microbiota

GM is a complex and dynamic population of trillions of bacteria, fungi, archaea,
and eukarya found in the gastrointestinal tract (GI). Microbiome refers to the genetic
composition of these cells, which is now estimated to be slightly higher than the human
genome [78–80]. GM exhibits remarkable diversity that changes over a person’s lifespan
following a symbiotic relationship with the host. It plays a vital role in brain development,
digestion, nutrient absorption, the fermentation of undigested carbohydrates, the produc-
tion of essential vitamins and metabolites like SCFAs, the regulation of the immune system,
the maintenance of BBB integrity, and overall health [81,82]. Dysbiosis, referring to an
imbalance in the composition and function of the GM, has been implicated in a wide range
of pathological processes, including digestive, metabolic, autoimmune, and neurological
disorders [62,83,84].

The immune system plays a major role in the perpetuation and maintenance of the
symbiotic relationship between the host and the beneficial commensal bacterial strains.
Due to its substantial influence on physiological processes, as well as its wide implication
in various pathological states, the GM is considered to be a new ‘metabolic organ’, having
a major influence not only on the digestive system but also on other organs, notably the
CNS [8,83,85].

6. Gut–Brain Axis

A bidirectional communication pathway, termed the gut–brain axis (GBA), that links
the GM to the CNS is well recognized [86]. This axis facilitates communication through
the vagus nerve, the immune system, and microbial metabolites. Dysbiosis has been
increasingly implicated in the pathogenesis of various neurological disorders through
several mechanisms, the most prominent being the neuroinflammation. In dysbiosis, there
is the release of pro-inflammatory mediators such as cytokines (e.g., interleukin-1β, tumor
necrosis factor-α) and chemokines from the immune cells, which can then migrate to the
CNS via the bloodstream or lymphatic system and exacerbate neuroinflammation, affecting
brain development and behavior [84,87–89].

Some of the metabolites produced by the GM, such as the SCFA butyrate, contribute
to epithelial defense and have antioxidant and anti-inflammatory properties [90,91]. Some
other metabolites such as lipopolysaccharides (LPSs) are pro-inflammatory and used to
mimic inflammatory diseases [92,93]. An imbalance in the GM may also weaken the
intestinal barrier, allowing bacterial products and toxins to translocate into the bloodstream.
This phenomenon, known as the leaky gut, highlights the significance of maintaining the
integrity of the GM [93,94]. Of direct relevance to the topic of our discussion are the recent
reports implicating dysbiosis in HD, which is elaborated below [84,95].

7. Heavy Metals

Heavy metals are essential for a variety of biological functions [38,96–98]. For example,
iron (Fe) is a critical component of many vital enzymes or coenzymes such as catalases and
cytochromes, which mediate cellular processes and drug metabolism. Indeed, catalases,
by neutralizing hydrogen peroxide, are critical in providing protection against oxidative
stress [38]. Fe is also an essential component of hemoglobin, where its deficiency leads
to Fe-deficiency anemia [99]. Similarly, Mn acts as an activator or cofactor for a variety
of metalloenzymes that are essential for normal cell growth and development [100–104].
Moreover, the enzymes or coenzymes utilizing Mn play key roles in functions such as
gluconeogenesis, the suppression of oxidative stress (Mn superoxide dismutase, SOD)
and conversion of glutamate into glutamine (glutamine synthetase) [105,106], all of which
have critical biological functions. Copper (Cu) is another metal essential for the synthesis
of red blood cells, collagen, bone, and connective tissue and maintenance of nerve cells
and the immune system. It is required for adequate growth, cardiovascular integrity,
lung elasticity, neovascularization, neuroendocrine function, and Fe metabolism [98,106].
However, at higher concentrations, it can contribute to HD pathology. Below, we discuss
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the relevance of each essential heavy metal to HD vis-à-vis their interaction with GM and
inflammatory processes.

7.1. Iron (Fe)—HD

Ferroptosis is a newly discovered form of programmed cell death distinct from apopto-
sis and necrosis. It is considered a key contributor to the pathogenesis of neurodegenerative
diseases [107,108]. This section focuses on evidence linking it to neurodegeneration, partic-
ularly to HD [109].

Ferroptosis, an Fe-dependent form of regulated cell death, is characterized by the
excessive peroxidation of polyunsaturated fatty acids (PUFAs) found within cell mem-
branes. Enzymes like acyl-CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) are key in the catalyzation of these
reactions [110]. Mitochondrial dysfunction is a hallmark of ferroptosis and a necessary
condition for the perpetuation of these reactions. In fact, increased Fe uptake promotes the
generation of destructive hydroxyl radicals through the Fenton reaction, thus perpetuating
the chain reaction of lipid peroxidation, ultimately compromising membrane integrity [111],
which leads to cell membrane disruption and cell death. Unlike apoptosis and necrosis,
ferroptosis presents with its own cellular pathways. While mitochondria are central to the
execution of ferroptosis, other organelles contribute through stress-related pathways. The
endoplasmic reticulum, Golgi apparatus, and lysosomes can be involved in amplifying the
cell death program [112,113].

Ferroptosis is an oxidative process that needs to be controlled via counter regulatory
mechanisms. In this context, glutathione, a major antioxidant system in conjunction with
its key enzyme glutathione peroxidase 4 (GPX4), plays a major role in protecting cells from
uncontrolled ferroptosis by suppressing lipid peroxidation [114]. Fe metabolism, cysteine
availability, and lipid homeostasis are tightly intertwined and serve as key regulatory points
for ferroptosis induction or inhibition. Unregulated ferroptosis is a major determinant of
neuroinflammation and neurodegenerative diseases [109].

Regarding HD, it has been shown that the aggregation and accumulation of mHTT
increases the susceptibility of basal ganglia neurons to ferroptotic cell death [115]. Fe
overload not only disrupts mitochondrial functions, leading to impaired energy production
and increased oxidative stress, but also generates highly reactive free radicals that damage
lipids, proteins, and DNA and disrupt the redox balance making neurons more susceptible
to ferroptotic cell death, thus exacerbating HD [14,116–118]. Indeed, elevated levels of
lipid peroxidation products have been detected in both cellular HD models and HD
patients [119].

A direct interaction between Fe and mHTT is also evident whereby Fe enhances
mHTT aggregation and its neurotoxic effect. This creates a vicious cycle that accelerates
neurodegeneration [27,120]. In the same way, mHTT might interfere with System Xc-, an
antiporter that exchanges glutamate (excitatory neurotransmitter) for cystine (precursor for
glutathione synthesis), leading to decreased glutathione (GSH) levels, a crucial antioxidant
that protects cells from ferroptosis [27,120].

It is worth noting that alterations in the GM composition and/or function could im-
pact the absorption and metabolism of dietary Fe in the GI tract. Moreover, changes in Fe
metabolism may, in turn, affect Fe levels in the brain and contribute to the neurodegenera-
tive process in HD [121–123].

Based on these findings, several therapeutic perspectives have been explored. Among
them are the ferroptosis inhibitors and Fe chelators, which have shown promising neuro-
protective effects in HD models [16,124–126].

7.2. Manganese (Mn)—HD

Another essential heavy metal implicated in HD pathophysiology is Mn. As alluded
to earlier, Mn is a crucial cofactor for many enzymes and is necessary for amino acid,
cholesterol, glucose, and carbohydrate metabolism; reactive oxygen species scavenging;
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bone formation; reproduction; and the immune response [127,128]. Mn deficiency can lead
to weakness, seizures, infertility, and bone malformation. Mn overload, on the other hand,
concentrates in the brain, especially in the basal ganglia, resulting in Parkinsonism [129].
Early life exposure to high levels of Mn is thought to impact neurodevelopment, especially
cognitive behavior in children [130]. Importantly, high Mn exposure and alteration in the
GM has been linked to oxidative stress and neuroinflammation, which are implicated in
HD [131,132].

The potential link between Mn, insulin/IGF signaling, and HD, whereby Mn defi-
ciency was shown to share cellular consequences such as increased oxidative stress and
mitochondrial dysfunction with HD, was reviewed recently [133]. It was concluded that
Mn can mimic some actions of insulin/IGF signaling in HD models, thereby providing
protection in instances where HD symptoms might be precipitated by Mn deficiency [133].

7.3. Copper (Cu)—HD

Cu toxicity has also been linked to HD [134]. Cu, as mentioned earlier, is an essential
metal that plays a critical role in various neurochemical processes, where its dysregulation
is detrimental [135]. Studies highlight its potential contribution to neurodegeneration in
HD via the enhancement of mHTT toxicity [15]. Cu may also disrupt proteostasis, the pro-
cess of protein folding and degradation, further contributing to cellular dysfunction [136].
It is noteworthy that Wilson’s disease also involves the disruption of Cu metabolism and
its deposition in the basal ganglia. People suffering from this genetic disorder present with
extrapyramidal signs and symptoms ranging from movement disorders (tremor, dystonia,
parkinsonism) to cognitive and speech impairment and psychiatric symptoms, similar to
what is observed in HD [137]. Thus, like Fe, Cu may promote mHTT aggregation and toxic-
ity. Cu also modulates the interaction between huntingtin inclusions and the autophagy
adaptor protein, which is responsible for the clearance of the toxic aggregate [15,138–140]. A
study using the drosophila model of HD showed that D-penicillamine, a Cu chelator, signif-
icantly reduced the formation of amyloid-like huntingtin aggregates, suggesting a potential
therapeutic avenue for mitigating the toxicity associated with huntingtin aggregation [15].

In summary, epidemiological and clinical studies have shown a strong correlation
between aberrant metal exposure and several neurological diseases, including HD [141].
For example, toxic effects of long-term exposure to copper, zinc, and their mixture, in a C.
elegans-based HD model, was recently reported [134]. Similarly, cadmium, Fe, Mn, and
Cu have been implicated [141–143]. Thus, it would be of significant clinical relevance to
investigate whether the prevalence of HD correlates with exposure to high levels of heavy
metals in select populations.

8. Heavy Metals and GM—HD

Building upon the intriguing link between heavy metal dysregulation and HD, recent
research is exploring the potential influence of the GM in HD pathophysiology. The GM
is in fact increasingly recognized for its role in brain health and disease [93,95]. The GM
can both influence and be influenced by heavy metal exposure. Certain gut bacteria can
facilitate the absorption and accumulation of heavy metals like Fe, lead (Pb), and Cu in the
body [62]. Conversely, heavy metal exposure can disrupt the composition and function of
the GM, triggering inflammatory responses that can indirectly impact the basal ganglia and
exacerbate HD pathology [144]. The basal ganglia, a control center for movement, cognition,
and emotional regulation, is critically affected in HD and is particularly susceptible to GM-
derived neuroinflammation [144]. Thus, by promoting a healthy GM composition through
dietary interventions or prebiotics/probiotics, the absorption of heavy metals like Fe and
Cu may be curtailed, thereby mitigating their potential contribution to HD pathology.

The intricate relationship between the GM and HD pathophysiology is a burgeoning
area of research with significant therapeutic potential. Recent studies suggest a multifaceted
interplay between gut bacteria, the immune system, and the CNS that may contribute
to HD progression [84,145–147]. One key mechanism in this scenario involves SCFAs
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produced by beneficial bacteria like Bifidobacterium and Faecalibacterium prausnitzii that exert
neuroprotective effects [62,148,149]. Thus, in a mouse model of HD, SCFA supplementation
can improve motor function, reduce mHTT aggregation, and mitigate neuroinflammation.
Conversely, dysbiosis, leading to LPS production, has been linked to an increase in mHTT
aggregation and neuronal death [150].

Another critical link in GBA is a bidirectional communication pathway involving the
vagus nerve, immune signaling, and the production of neurotransmitters. Dysbiosis can
trigger chronic low-grade inflammation in the gut, leading to the activation of immune
cells and the release of pro-inflammatory cytokines. These inflammatory signals can then
travel up to the brain via the vagus nerve, promoting neuroinflammation and further
compromising neuronal health in the basal ganglia [151]. Interestingly, mHTT was shown
to be widely expressed in the intestines, which would allow it to interact with the GM,
hence affecting the progression of HD [146]. GM involvement in HD pathology has also
been verified in several animal models [145,152].

It was mentioned earlier that a leaky BBB, characterized by increased permeability,
allows the passage of harmful bacterial products and inflammatory molecules into the brain.
It is noteworthy that dysbiosis can also disrupt the tight junctions of the BBB, potentially
accelerating neurodegeneration in HD [153].

9. Conclusions

Neurodegenerative diseases exact a tremendous toll on those affected and their care-
givers. Although, in most cases, the etiology is unknown, in the case of HD, a mutation
in huntingtin gene is the main culprit. In this regard, efforts are underway to quantify
the mutant protein in the cerebrospinal fluid with the aim of developing effective thera-
pies [154]. In addition, exposure to high levels of essential heavy metals such as Fe, Mn, and
Cu may exacerbate HD symptoms by disrupting neuronal communications, particularly
glia–neuron interaction. High levels of heavy metals, via their interaction with the GM
and induction of dysbiosis, can also promote neuroinflammation and, hence, indirectly
contribute to HD pathology (Figure 1). Understanding the intricate coordination of the
GBA and specific effects of each heavy metal on this axis may provide further therapeutic
intervention in this devastating disease [8,155,156].Cells 2024, 13, x FOR PEER REVIEW 10 of 16 
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