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1. Introduction

Migraine is a debilitating neurological disorder characterized by recurring episodes
of throbbing headaches that are frequently accompanied by sensory disturbances, nausea,
and sensitivity to light and sound [1–4]. With a global prevalence of approximately 15%
and a significant impact on individuals’ quality of life, migraine represents a major public
health concern [5–7]. Despite its high prevalence and impact, the underlying mechanisms
of migraine remain complex and multifaceted, involving a combination of genetic, environ-
mental, and neurobiological factors [8–10]. Understanding the pathophysiology of migraine
is essential for developing targeted therapies that can effectively manage symptoms and
improve patient outcomes [11–13].

Recent advances in migraine research have emphasized the importance of experi-
mental models in understanding the neurobiological mechanisms that cause migraine
attacks [14–18]. Experimental models, particularly murine models, have provided valuable
insights into the molecular and cellular pathways involved in migraine pathophysiology,
allowing researchers to investigate the neurotransmission, inflammation, and sensitiza-
tion processes that underpin migraine attacks [19–22]. Researchers have identified key
molecules, pathways, and neural circuits that contribute to the initiation and progression
of migraine attacks by simulating migraine conditions in controlled experimental set-
tings [23–25]. These experimental models not only enhance our understanding of migraine
pathophysiology but also serve as valuable tools for testing potential therapeutic targets
and interventions.

The pathophysiology of migraines is significantly influenced by neuroplasticity, which
includes modifications to brain excitability, biochemistry, and functional connectivity [26–28].
Chronic migraines are linked to persistent changes in neural plasticity, such as central sen-
sitization and impaired pain modulation mechanisms [29–33]. These changes can set off a
vicious cycle of pain chronification, in which the brain’s reaction to pain becomes maladaptive
and pathological. Several receptors, including calcitonin gene-related peptide (CGRP), tran-
sient receptor potential vanilloid subtype 1 (TRPV1), and purinergic receptor P2X subtype 3
(P2X3), have also been implicated in migraine mechanisms. For example, CGRP has been
shown to stimulate trigeminal afferent activity and sensitize nociceptive neurons, whereas
TRPV1 and P2X3 receptors are involved in mechanical pain modulation and nociceptive signal
generation, respectively. Understanding the interplay between neuroplasticity and receptor
activity is essential for developing targeted therapies for neurological disorders, including
migraine [34–37].

The following Special Issue, entitled “Migraine Neuroscience: From Experimental
Models to Target Therapy”, aims to showcase the latest research findings and advancements
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in the field of migraine neuroscience, with a specific focus on experimental models and
therapeutic targets for migraine treatment. This collection of articles brings together
cutting-edge studies that explore the intricate interplay of the neurobiological processes
involved in migraine, from neurotransmitter signaling to neuroinflammation and genetic
predisposition. By bridging the gap between basic science research and clinical applications,
this Special Issue seeks to provide a comprehensive overview of the current state of migraine
research and offer insights into novel therapeutic strategies for managing this complex
neurological disorder.

2. Topic Articles
2.1. Calcitonin Gene-Related Peptide (CGRP)-Related Mechanisms and Therapies

CGRP plays a pivotal role in migraine pathophysiology [38–40]. During both migraine
attacks (ictal phase) and headache-free periods between attacks (interictal phase), CGRP
levels are elevated [41–43]. However, after abortive and prophylactic treatment, these
levels tend to decrease [44,45]. Notably, CGRP can induce migraine-like headaches in
patients, and studies have demonstrated its significant release during acute migraine and
cluster headache attacks [46–48]. Chronic migraine may be associated with chronically
elevated CGRP levels [49–51]. Beyond headache mechanisms, CGRP also contributes to
maintaining a normal resting tone in brain circulation [52–54]. Perivascular CGRP appears
to mediate a protective vasodilatory reflex triggered in response to vasoconstriction [55–57].
Additionally, trigeminal pathway activation leads to the release of both CGRP and substance
P [58–60]. A literature review highlights the variability in study design, determination
methods, and results for CGRP measurements in migraine patients [61]. Overall, the above
findings collectively emphasize the importance of CGRP in migraine and highlight the
need for standardized measurement methods, potentially informing therapeutic strategies
targeting CGRP for migraine treatment.

2.1.1. Interaction between Calcitonin Gene-Related Peptide (CGRP) and Nitric Oxide
in Migraine

Benedicter et al. investigated the complex relationship between glycerol trinitrate
(GTN) and CGRP in the context of trigeminal nociception, a key mechanism in migraine
pathogenesis [62]. The researchers used rodent experiments and the anti-CGRP antibody
Fremanezumab to better understand GTN’s downstream effects on CGRP signaling. Their
findings provide compelling evidence that GTN acts downstream of CGRP in the trigeminal
nociceptive system, suggesting that the modulation of CGRP is a critical factor in the
complex pathways that drive migraine pain. By unraveling this interplay between two
key players in migraine, the authors contribute valuable insights that may inform the
development of targeted therapeutic strategies for migraine management. The findings
of their study underscore the importance of understanding the intricate mechanisms
underlying migraine in order to develop more effective and personalized treatments for
this debilitating condition.

Greco et al. investigated the interaction between CGRP and pain mediators involved
in neuronal sensitization in an animal model of chronic migraine [63]. The study authors
aimed to investigate the central and peripheral mechanisms of CGRP receptor antagonism.
The authors revealed that olcegepant reduced the incidence of trigeminal hyperalgesia by
lowering the expression of CGRP in the trigeminal nucleus and proinflammatory markers
such as cytokines, microRNA-132, and TRPA1. The results suggest that CGRP receptor
antagonism is important in both the central and peripheral mechanisms of chronic migraine.
The results of the above study have the potential to contribute to the development of novel
therapeutic strategies for chronic migraine, potentially leading to improved treatment
outcomes and enhanced patient quality of life.

Dux et al. investigated the effects of Fremanezumab, an anti-CGRP monoclonal
antibody, on CGRP release from the rat dura mater and meningeal blood flow [64]. In the
rat model, the authors found that administering Fremanezumab reduced CGRP release
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from the dura mater and, as a result, meningeal blood flow. These findings shed light on
the mechanisms by which anti-CGRP antibodies, such as Fremanezumab, can modulate
CGRP-mediated processes critical to migraine pathogenesis. The above study advances
our understanding of the therapeutic potential of CGRP-targeted interventions in migraine
management by elucidating Fremanezumab’s effect on CGRP release and meningeal blood
flow (Table 1).

Table 1. Major subtopics covering the Special Issue “Migraine Neuroscience: From Experimental
Models to Target Therapy”.

Subtopics Ref.

1. CGRP-related mechanisms and therapies

a. Interaction between CGRP and nitric oxide in migraine [62–64]
b. Real-world outcomes and new therapeutic targets for migraine [65,66]

2. Metabolic pathways and migraine

a. Altered tryptophan metabolism and migraine susceptibility [67]
b. Tryptophan metabolism pathways in migraine: therapeutic implications [68]

3. Experimental Models and Therapeutic Targets

a. Dual FAAH/MAGL inhibitor in a migraine model [69]
b. SFK activity and CGRP–cytokine crosstalk [70]
c. KATP channels in migraine pathophysiology [71]

4. Inflammation and pathophysiology in migraine

a. Neurogenic neuroinflammation in migraine [72]
b. Complex symptomatology of migraine [73]

CGRP: calcitonin gene-related peptide; FAAH: fatty acid amide hydrolase; KATP: ATP-sensitive potassium;
MAGL: monoacylglycerol lipase; SFKs: Src family kinases.

2.1.2. Real-World Outcomes and New Therapeutic Targets for Migraine

Pavelic et al. conducted a systematic review to assess the real-world outcomes of mono-
clonal antibodies targeting CGRP for migraine prophylaxis [65]. CGRP has been recognized
as a key player in migraine pathophysiology, and the development of CGRP-targeted
therapies, including monoclonal antibodies, has revolutionized migraine management.
In their review, the authors analyzed data from 134 publications, including retrospective
and clinic-based studies, case reports, and other articles. The study findings suggest that
treatment with anti-CGRP monoclonal antibodies is associated with lower healthcare uti-
lization, better treatment adherence, and comparable efficacy to randomized controlled
trials. The authors do, however, acknowledge that the retrospective study designs, small
patient populations, and short follow-up periods used in the examined studies limit the
availability of real-world data. They emphasize the need for large prospective studies with
long-term follow-up to fully understand the real-world impact of these novel therapies. By
synthesizing the available evidence on the efficacy and safety of anti-CGRP monoclonal
antibodies in clinical practice, the authors contribute to the growing body of knowledge on
the practical implications of these therapies in migraine management.

Tanaka et al. addressed the potential of other neuropeptides, such as pituitary adeny-
late cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), to
better understand the evolving landscape of migraine treatment beyond CGRP [66]. These
neuropeptides have shown promise in novel migraine management as a potential thera-
peutic target in addition to CGRP. Their review delves into the transition from CGRP to
PACAP, VIP, and beyond, shedding light on the next generation of migraine treatments.
By unraveling the roles of these neuropeptides in migraine pathophysiology, the authors
contribute to expanding the understanding of potential targets for migraine therapy beyond
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the traditional focus on CGRP. Their research paves the way for exploring novel treatment
avenues and advancing the field of migraine management (Table 1).

2.2. Metabolic Pathways and Migraine

Altered tryptophan (Trp) metabolism plays a crucial role in migraine susceptibility
through its main metabolites, serotonin and kynurenine (KYN), which affect pain process-
ing, stress response, neural hypersensitivity, and inflammatory processes [74–82]. These
pathways have been extensively studied in the context of migraine, with a focus on their
influence on vascular and inflammatory mechanisms [68,83–85]. The involvement of Trp
metabolism, particularly through the serotonin and KYN pathways, has been a key area
of research in understanding migraine pathophysiology [86,87]. The authors of recent
studies have identified potential therapeutic targets within these pathways for future drug
development, emphasizing the importance of regulating Trp-KYN metabolism in migraine
treatment [88,89]. The intricate interplay between neurotransmitters, neuropeptides, and
inflammatory mediators underscores the complexity of migraine pathogenesis and the
potential for targeted interventions to improve treatment outcomes [90,91].

2.2.1. Altered Tryptophan Metabolism and Migraine Susceptibility

Gecse et al. investigated the neuroendocrine response to citalopram in patients with
migraine [67]. The authors used a neuroendocrine challenge to assess the metabolism of
Trp and KYN, a key amino acid and its metabolite involved in migraine pathophysiology.
The findings of their study indicate that patients with migraine exhibit altered Trp-KYN
metabolism compared to healthy controls. Specifically, they observed increased Trp levels
and decreased KYN levels in migraine patients. These changes suggest that the metabolism
of these amino acids may play a crucial role in the development and continuation of
migraine. By elucidating the neuroendocrine response to citalopram in migraine patients,
the results of the above study advance our understanding of the complex mechanisms
that underpin migraine, highlighting the potential therapeutic implications of targeting
Trp-KYN metabolism in migraine management (Table 1).

2.2.2. Tryptophan Metabolism Pathways in Migraine: Therapeutic Implications

Körtési et al. present a narrative review that explores the role of Trp metabolism in
migraine pathogenesis [68]. The authors looked at the complex interactions of Trp metabolic
pathways and how they affect migraine-related mechanisms such as pain processing, stress
response, neural and brain hypersensitivity, and vascular and inflammatory processes.
Their review highlights the importance of Trp metabolism in migraine susceptibility and the
potential therapeutic implications of targeting these pathways. By synthesizing the current
knowledge of Trp metabolism in migraine, they provide a comprehensive overview of the
underlying mechanisms and identify promising avenues for future drug development and
migraine management strategies (Table 1).

2.3. Experimental Models and Therapeutic Targets

Experimental models and therapeutic targets are critical for better understanding mi-
graine pathophysiology and developing effective treatments [92–94]. Experimental models,
particularly murine models, provide invaluable insights into the biological mechanisms
that underpin migraines, allowing researchers to test various pharmacological interven-
tions [16,95]. These models simulate migraine conditions, allowing researchers to study
neurotransmission pathways and identify key molecules involved in migraine attacks.
Therapeutic targets identified by the authors of such studies provide promising treatment
options, focusing on molecules and pathways that can be modulated to alleviate migraine
symptoms [12,96–98]. The authors of recent studies have identified several potential tar-
gets, including enzymes, ion channels, and signaling pathways, each of which contribute
uniquely to our understanding of migraine and offer new opportunities for therapeutic
intervention [88,99–102]. Three papers delve into the specifics of these experimental models
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and therapeutic targets, providing a thorough overview of current progress and future
directions in migraine research [69–71].

2.3.1. Dual Fatty Acid Amide Hydrolase (FAAH)/Monoacylglycerol Lipase (MAGL)
Inhibitor in the Migraine Model

Greco et al. investigated the potential therapeutic benefits of targeting the endocannabi-
noid system in the context of migraine pathophysiology [69]. Utilizing a male rat model, the
authors examined the effects of trigeminal hyperalgesia using AKU-005, a dual fatty acid
amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibitor. The study reported
that administering AKU-005 significantly reduced trigeminal hyperalgesia in the rat model,
implying that dual inhibition of FAAH and MAGL could be a useful strategy for managing
migraine-related pain. By elucidating the effects of AKU-005 on trigeminal hyperalgesia, the
findings of the above study contribute to the growing body of research on the role of the
endocannabinoid system in migraine and highlight the potential therapeutic implications of
this novel pharmacological intervention for migraine management.

2.3.2. Src Family Kinase (SFK) Activity and Calcitonin Gene-Related Peptide
(CGRP)–Cytokine Crosstalk

Nie et al. investigated the role of Src family kinases (SFKs) in the interaction between
CGRP and cytokines in sensitizing the trigeminal ganglion [70]. CGRP and cytokines are
key players in migraine pathophysiology, and their interaction is thought to contribute to
the sensitization of the trigeminal system, a crucial mechanism underlying migraine-related
pain. The study authors revealed that SFKs play a crucial role in mediating the crosstalk
between CGRP and cytokines in the trigeminal ganglion. Specifically, they demonstrated
that SFKs facilitate the transmission of CGRP receptor signaling via the protein kinase A
pathway, leading to the sensitization of trigeminal ganglion neurons. By elucidating the
mechanisms by which SFKs regulate the interaction between CGRP and cytokines in the
trigeminal system, the authors contribute to our understanding of the complex pathways
involved in migraine pain and highlight the potential therapeutic implications of targeting
SFKs in migraine management.

2.3.3. ATP-Sensitive Potassium (KATP) Channels in Migraine Pathophysiology

Clement et al. explored the potential role of ATP-sensitive potassium (KATP) channels
in migraine pathophysiology and their therapeutic implications [71]. KATP channels are
known to be involved in various physiological processes, including vascular regulation and
pain perception, making them an intriguing target for migraine research. The researchers
synthesized findings from both preclinical and clinical studies to provide a comprehen-
sive overview of the current understanding of KATP channels in migraine. The above
review emphasizes the translational potential of KATP channel modulation in migraine
management, with the results of animal studies indicating that KATP channel openers
may have anti-nociceptive effects and reduce the incidence of migraine-related behaviors.
Additionally, genetic studies involving humans have identified associations between KATP
channel subunits and migraine susceptibility. By integrating these findings, Clement et al.
propose that targeting KATP channels could be a promising avenue for the development
of novel migraine therapies. Their review underscores the importance of translational
research in bridging the gap between preclinical discoveries and clinical applications in the
field of migraine treatment (Table 1).

2.4. Inflammation in the Pathophysiology of Migraine

Inflammation plays a pivotal role in the pathophysiology of migraine [1,103–106]. The
complex mechanisms underlying migraine include neurogenic inflammation, which con-
tributes to peripheral and central sensitization, resulting in the condition’s chronicity [107–110].
Two papers included in the present Special Issue examine the current understanding of neuro-
genic neuroinflammation and its role in migraine pathophysiology, focusing on how inflam-
matory processes in the meninges and trigeminal nerve pathways cause and sustain migraine
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pain [72,73]. Additionally, the authors of the second paper explore the wider symptomatology
linked to migraines, highlighting the significance of recognizing and managing symptoms
other than headache, such as photophobia and nausea, which have a major influence on pa-
tients’ quality of life [73]. The following section provides a brief overview of the inflammatory
processes involved in migraine, as well as potential strategies for mitigating these effects in
order to improve patient outcomes.

2.4.1. Neurogenic Neuroinflammation in Migraine

Reducha et al. explored the potential of using experimental inflammation models to
gain a better understanding of migraine pathophysiology [72]. Their review highlights
how, in addition to other mechanisms, neurogenic neuroinflammation has been proposed
to play a role in the chronification of migraine, which involves peripheral and central
sensitization. Extensive data indicate that CGRP and intracranial meningeal inflammation
may play a major role in triggering the sensitivity of trigeminal meningeal nociceptors.
The authors discuss how several studies have utilized inflammatory animal models to
investigate this concept, with a focus on the sensitization of trigeminovascular afferent
nerve terminals. By applying a range of pharmacological interventions, these studies
provide insights into the pathways involved in the inflammatory processes underlying
migraine. However, the authors emphasize the importance of using animal models with
care and carefully evaluating the outcomes in the context of migraine pathophysiology, as
the invasive procedures used in these models may have implications for data interpretation.
Overall, the above review underscores the potential of experimental inflammation models
in enhancing our understanding of the complex mechanisms driving migraine while also
highlighting the need for cautious interpretation and translation of the findings into a
clinical setting.

2.4.2. Complex Symptomatology of Migraine

Villar-Martinez and Goadsby conducted a comprehensive review of the pathophysi-
ology and treatment of migraine-associated symptoms [73]. Their review highlights that
migraine is a complex and heterogeneous disorder that goes beyond the core symptom
of headache. The authors discuss the various associated features, including photophobia,
vomiting, and other symptoms that are often overlooked but can significantly impact
patients’ quality of life. The review authors emphasize the importance of understanding
these associated features in the context of migraine pathophysiology as they can provide
valuable insights into the underlying mechanisms driving the disorder. Additionally, the
authors discuss the therapeutic implications of these associated features, including the
potential for targeted interventions to alleviate symptoms and improve patient outcomes.
By synthesizing the current understanding of migraine-associated features, the authors of
the above review provide a comprehensive overview of the complex interplay between
migraine pathophysiology and therapy, highlighting the need for a more holistic approach
to managing this debilitating disorder.

3. Discussion

Migraine research has undergone significant advancements in recent years, shedding
light on the intricate neurobiological mechanisms that underlie this debilitating neurolog-
ical disorder [111–113]. The present Special Issue on migraine neuroscience serves as a
comprehensive compilation of cutting-edge research in the field, with a specific emphasis
on experimental models and therapeutic targets aimed at enhancing our understanding of
migraine pathophysiology and improving patient outcomes. The ultimate goal of this line
of research is to develop targeted therapies that can effectively manage migraine symptoms
and alleviate the burden of this complex disorder on individuals’ quality of life. By delving
into the molecular and cellular pathways involved in migraine attacks, researchers strive to
identify novel therapeutic strategies that can address the diverse array of symptoms experi-
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enced by migraine sufferers, ranging from throbbing headaches to sensory disturbances,
nausea, and sensitivity to light and sound [66].

However, a significant challenge in the field of migraine research lies in bridging the gap
between basic science discoveries and their translation into clinical applications. To overcome
this challenge, researchers must collaborate across disciplines, integrating knowledge from
neuroscience, genetics, pharmacology, and other fields to develop innovative treatment
modalities. Leveraging cutting-edge technologies such as advanced imaging techniques,
genetic sequencing, and computational modeling is crucial in unraveling the complexities
of migraine pathophysiology and identifying potential therapeutic targets. For example, the
functional interplay between error-related brain activity and the autonomic nervous system
in migraine emphasizes the significance of coordinated interactions between the central and
autonomic nervous systems [114,115]. These interactions are critical for survival because they
aid in the detection and correction of errors that could be fatal [116–118].

Advancements in migraine research have not only deepened our understanding of the
underlying mechanisms driving migraine attacks but have also paved the way for person-
alized and targeted treatment approaches. These studies expand on previous research on
CGRP-related mechanisms, Trp metabolic pathways, and experimental models, providing
new insights and having implications for future research directions in migraine neuro-
science [119–121]. Traditional medicine, particularly those derived from herbal compounds,
has proven to be effective in the treatment of a variety of neurological and mental health dis-
orders [122–127]. These remedies have played an important role in the field, and ongoing
research is being conducted to identify potential antimigraine agents [128–130]. Herbs and
other traditional forms of treatment have been linked to the treatment of conditions such
as migraine [131–136]. By investigating the properties of these herbs, researchers hope to
develop more effective medicines and targeted treatments for various conditions, including
migraine. Furthermore, neurophysiological procedures have emerged as promising non-
invasive interventions for migraine treatment, such as transcranial magnetic stimulation
(TMS), with the potential to reduce migraine frequency and severity by modulating cortical
excitability and inhibiting cortical spreading depression. [137–140]. TMS has a lower side
effect profile than traditional pharmacological treatments, making it an appealing option
for patients who cannot tolerate medication [141,142].

The significance of this line of research extends beyond the realm of academia, with
profound implications for clinical practice and patient care. By elucidating the neurobio-
logical underpinnings of migraine and exploring novel therapeutic avenues, researchers
aim to revolutionize the management of this complex neurological disorder, providing
tailored treatment options that address the individual needs and symptoms of migraine
sufferers. Furthermore, the collaborative efforts of basic science researchers and clinicians
are essential in driving forward the field of migraine research and translating scientific dis-
coveries into tangible benefits for patients. By embracing multidisciplinary approaches and
innovative research methodologies, the study of migraine neuroscience holds enormous
promise for future breakthroughs and improved outcomes for individuals affected by this
debilitating condition.

4. Conclusions

The following Special Issue on migraine neuroscience has shed light on the intricate
mechanisms underlying this debilitating neurological disorder. Through experimental
models and therapeutic targets, researchers have made significant strides in understanding
migraine pathophysiology, from genetic predisposition to neurotransmitter signaling and
neuroinflammation. The emphasis on CGRP-related mechanisms and the exploration of
Trp metabolic pathways have provided valuable insights into potential treatment avenues.
Moving forward, future research directions could focus on further unraveling the complex
interplay of neurobiological processes involved in migraine, including investigating novel
therapeutic strategies and exploring the impact of environmental factors on migraine
development. Collaborative efforts between basic science researchers and clinicians will
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be crucial in filling the gap between research findings and clinical applications, ultimately
leading to improved management of this complex neurological disorder. By continuing to
push the boundaries of our understanding and embracing multidisciplinary approaches,
the field of migraine research holds enormous promise for innovative breakthroughs and
improved outcomes for migraine sufferers.
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CGRP Calcitonin gene-related peptide
FAAH Fatty acid amide hydrolase
GTN Glycerol trinitrate
KATP ATP-sensitive potassium
KYN Kynurenine
MAGL Monoacylglycerol lipase
PACAP Adenylate cyclase-activating polypeptide
P2X3 Purinergic receptor P2X 3
SFKs Src family kinases
TMS Transcranial magnetic stimulation
Trp Tryptophan
TRPV1 Transient receptor potential vanilloid subtype 1
VIP Vasoactive intestinal peptide
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