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Abstract

Genetic variation in the CYP3A4 and CYP3A5 (CYP3A4/5) genes, which encode the key 

enzymes in tacrolimus metabolism, is associated with tacrolimus clearance and dose requirements. 

Tacrolimus has a narrow therapeutic index with high intra- and intersubject variability, in 

part because of genetic variation. High tacrolimus clearance and low trough concentration are 

associated with a greater risk for rejection, whereas high troughs are associated with calcineurin-

induced toxicity. The objective of this study was to develop a model of tacrolimus clearance 

with a dosing equation accounting for genotypes and clinical factors in adult kidney transplant 

recipients of European ancestry that could preemptively guide dosing. Recipients receiving 

immediate-release tacrolimus for maintenance immunosuppression from 2 multicenter studies 

were included. Participants in the GEN03 study were used for tacrolimus model development (n 

= 608 recipients) and was validated by prediction performance in the DeKAF Genomics study 

(n = 1361 recipients). Nonlinear mixed-effects modeling was used to develop the apparent oral 
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tacrolimus clearance (CL/F) model. CYP3A4/5 genotypes and clinical covariates were tested for 

their influence on CL/F. The predictive performance of the model was determined by assessing 

the bias (median prediction error [ME] and median percentage error [MPE]) and the precision 

(root median squared error [RMSE]) of the model. CYP3A5*3, CYP3A4*22, corticosteroids, 

calcium channel blocker and antiviral drug use, age, and diabetes significantly contributed to 

the interindividual variability of oral tacrolimus apparent clearance. The bias (ME, MPE) and 

precision (RMSE) of the final model was good, 0.49 ng/mL, 6.5%, and 3.09 ng/mL, respectively. 

Prospective testing of this equation is warranted.
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Immunosuppressive drugs are the key to the prevention of kidney allograft rejection. 

Tacrolimus is a potent immunosuppressive agent that is highly effective and along with 

mycophenolate is the primary maintenance immunosuppressant used in transplantation. 

However, tacrolimus dosing is complicated by its narrow therapeutic index and wide 

interindividual variability in its pharmacokinetics.1–8 These factors make defining an 

optimal dosing schedule for tacrolimus difficult and result in out-of-range trough 

concentrations and tacrolimus-related adverse effects, such as nephrotoxicity, in which 

subtherapeutic concentration increases the risk of de novo donor-specific antibody formation 

and acute rejection.9–11

Population pharmacokinetic analyses have been used to investigate and identify sources 

of the observed wide variability in the pharmacokinetics of tacrolimus.12–17 Factors that 

have been identified include age, race, body weight, hematocrit, and time posttransplant.6 

Genetic variation is also a well-known influencer of tacrolimus pharmacokinetic variability. 

Tacrolimus is extensively metabolized in the liver and small intestine by the CYP3A4 and 

CYP3A5 (CYP3A4/5) isoforms of the cytochrome (CYP) P450 system, and genetic variants 

in these genes are important determinates of tacrolimus troughs and dose.18,19

The CYP3A5*3 allele (rs776746) is the most common (allele frequency of ~95%) 

nonfunctional variant of the CYP3A5 gene in the European-American (EA, white) 

population.20,21 It is a splice-site variant and is associated with loss-of-function 

CYP3A5.20,22 Individuals with the CYP3A5*3/*3 genotype have significantly lower 

tacrolimus apparent clearance (CL/F) and smaller dose requirements compared with 

individuals with the CYP3A5*1/*1 or *1/*3 genotype.6,23,24 The CYP3A5 variant alleles 

CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) also cause loss of enzyme function, 

lower tacrolimus clearance and dose requirements, but occur primarily in those with African 

ancestry.25,26

CYP3A4*22 is a decrease-of-function allele (rs35599367) associated with reduced CYP3A4 

protein expression.27–30 Individuals carrying 1 or more CYP3A4*22 alleles require 

significantly lower tacrolimus doses and are at risk of tacrolimus overexposure compared 

with those who do not carry these alleles.27,28,31,32 The frequency of the CYP3A4*22 allele 
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is significantly higher in the EA population (minor allele frequency [MAF], 0.043–0.053) 

relative to African Americans (MAF, 0.009) in whom it rarely occurs.33

Because CYP3A5 represents at least 50% of the total hepatic CYP3A content in individuals 

expressing CYP3A5 enzyme and is also highly expressed in intestine,20 genetic variations in 

the CYP3A5 gene explain a substantial proportion of the variability in tacrolimus clearance 

and dose.34–38 In our previous work, we found that African American recipients with 

loss-of-function variants had a reduction in tacrolimus clearance near 50% and that 3 

genetic variants (CYP3A5*3, *6, and *7) and clinical factors explained 53.9% of variability 

in tacrolimus troughs.17,25 Therefore, continuing to add new genetic variants and clinical 

factors, as they are identified will improve the model and our ability to predict tacrolimus 

concentrations and dose. The aim of this study was to develop a tacrolimus clearance model 

and a dosing equation specific for those of European ancestry with important CYP3A4/5 

variants and clinical variables. Specifically, the CYP3A4*22 variant is included in this 

model, which has not been included in our previous dosing models. The long-term goal is to 

develop methods to personalize and guide immunosuppressive therapy.

Methods

Participants

Data were obtained from 2 multicenter observational studies (GEN03 and Deterioration 

of Kidney Allograft Function [DeKAF]) approved by local institutional review boards. 

Informed consent was obtained from each participant. The studies are registered at 

www.clinicaltrials.gov (NCT00270712 and NCT01714440). A total of 1969 adult (≥18 

years) kidney transplant recipients were eligible for this analysis. Participants were included 

if they were of European ancestry, as determined through principal components analysis, 

and received immediate-release oral tacrolimus for maintenance immunosuppression post-

transplant. The GEN03 study was conducted from 2012 to 2016 and included 608 recipients 

from 5 centers: University of Minnesota, Hennepin County Medical Center, University 

of Alabama, Mayo Clinic-Rochester, and University of Iowa. The DeKAF study was 

conducted from 2005 to 2010 and included 1361 recipients from 7 centers: University 

of Minnesota, Hennepin County Medical Center, University of Alabama, Mayo Clinic-

Rochester, University of Iowa, University of Manitoba, and University of Alberta. Patient 

demographics and dose ranges are presented in Table 1.

Participants received tacrolimus with mycophenolate along with corticosteroids for 

varying durations by center protocols. Induction was given per center preference but 

primarily contained rabbit antithymocyte globulin (rATG), basiliximab, or Campath-1H. 

Immunologically high-risk patients (eg, donor-specific antibody, prior pregnancies, or 

repeat transplants) were more likely to receive rATG. Recipient characteristics, such as 

serum creatinine (SCr), estimated glomerular filtration rate, and concomitant medications, 

were obtained from the electronic health records. Tacrolimus trough whole-blood 

measurements were measured clinically at each center and were analyzed in Clinical 

Laboratory Improvement Methods–approved laboratories; >95% were measured by liquid 

chromatography-mass spectrometry. Tacrolimus trough concentrations were obtained twice 

each week for the first 8 weeks, and 2 troughs per month in months 3, 4, 5, and 6 for a 
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maximum of 24 trough concentrations per patient. Tacrolimus doses and dosing intervals 

were adjusted based on troughs to achieve center-specific trough goals and were generally 

8–12 ng/mL in months 0 to 3 and 6–10 ng/mL in months 4 to 6. Dose was also adjusted 

for side effects (eg, tacrolimus-associated rise in SCr) by center-specific practices. All 

participants received the immediate-release formulation of tacrolimus (Prograf or generic), 

and no participants received the extended-release formulation. A total of 34 650 trough 

concentrations from the 1969 recipients were analyzed.

Genotyping

Pretransplant recipient blood was collected at each center at time of transplant, and DNA 

was isolated at a central laboratory at the University of Minnesota. Lymphocytes were 

isolated by centrifugation after red blood cell lysis and the DNA isolated. Genotyping was 

performed on a custom exome-plus Affymetrix TxAr-ray genome-wide association study 

(GWAS) single-nucleotide polymorphism chip.39 This chip contained ~782 000 markers 

including pharmacogenomic variants, 168 000 exonic or coding variants, and more than 

16 000 putative loss-of-function variants. The CYP3A5*3 (rs776746) and CYP3A4*22 
(rs35599367) genotypes were obtained from this chip. The variants did not diverge from 

Hardy-Weinberg equilibrium. Genotyping and data quality control for this chip have 

been previously described.25,40 European ancestry of each individual was determined by 

principal components analysis (PCA) of ancestry computed from the GWAS panel and 

through knowledge of self-reported ancestry and was previously described.41 There was 

high concordance with self-reported ancestry and PC-defined ancestry; however, when 

discordance was raised, PCA-defined ancestry was assigned to that individual.

Population Pharmacokinetic Modeling

Data from the GEN03 study, with 10 992 troughs from 608 recipients, was used for model 

development. Nonlinear mixed-effects modeling (NONMEM version 7.4 software; ICON 

Development Solutions, Ellicott City, Maryland) was performed to develop tacrolimus 

apparent oral clearance (CL/F) model and a subsequent dosing equation by first-order 

conditional estimation method with interaction. Exploratory analyses and diagnostic 

graphics were performed with R 3.6.1 (R Core Team, 2019) and RStudio 1.2.5001 (RStudio, 

Inc., The R Development Core Team) and Perl-speaks-NONMEM (PsN 4.9.0, Uppsala 

University, Uppsala, Sweden) under the Pirana interface.42

Our previously developed pharmacokinetic base model was used.17 In this study, the $PRED 

library in NONMEM was employed and pharmacokinetic base model was developed using a 

steady-state infusion model. Because of the longer half-life for tacrolimus (approximately 12 

hours, with a range of 3.5 to 40.5 hours), minimal peak-trough fluctuation is expected and 

steady-state trough concentrations were assumed to be approximately equivalent to average 

daily Cp,ss. Hence, Ctroughapproximately equals average daily Cp,ss. Because intravenous data for 

the tacrolimus were absent, it was not possible to calculate oral bioavailability. Therefore, 

tacrolimus CL/F, which is the ratio of total clearance (CL) to bioavailability (F), was used 

to regress average daily Cp,ss to the administered dose. CL/F was related to tacrolimus trough 

concentrations using the following equation:
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Ctrough = average daily Cp,ss

= total daily tacrolimus dose/([CL/F] × 24).

Although, the factual apparent oral clearance may differ from this approximated CL/F; this 

difference is negligible for drugs with longer half-lives, such as tacrolimus.

Two-level nested random effects were included in the model: interindividual variability (IIV) 

and intercenter variability (ICV). The interindividual variability of tacrolimus CL/F was 

estimated with an exponential error model and expressed as:

CL/Fi = TVCL/F x exp ηIIV i

where CL/F is a function of the typical value of apparent oral clearance (TVCL/F) and the 

individual parameter for the ith subject, with (ηIIV)i the estimate of individual deviation from 

TVCL/F and assumed to be normally distributed with mean 0 and variance ω2.

In the developed model, random effects explaining variability between 1 transplant center 

and the next (ICV) was mapped based on the $LEVEL record in NONMEM. Each study 

center in the development cohort has a separate identification number in the data set. 

Subjects from the same center share the same random effect. NONMEM is informed such 

that ηICV is a CL/F η that changes only with every study center and is associated by nesting 

with ηIIV, which varies with each subject, and was estimated with an exponential error model 

and expressed as:

CL/Fi = TVCL/F x exp ηIIV + ηICV i

where (ηICV)i is the estimate of center deviation from TVCL/F and is assumed to be normally 

distributed with mean 0 and variance ω2. The reason ηIIV and ηICV are associated together is 

that η in both provides random effects to the same parameter of CL/F.

For the residual unexplained variability, additive and proportional error models were used 

and expressed as:

Cij = Cpred,ij ∗ 1 + ε(prop)ij + ε(add)ij

where Cij is the observed concentration and Cpredij is the corresponding model-predicted 

concentration with the ith individual at the jth occasion, ε prop ij is proportional error and 

assumed to be normally distributed with mean 0 and variance σ2, and ε add ij is additive error 

and is assumed to be normally distributed with mean 0 and variance σ2.
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Covariate Analysis

Demographics, clinical factors, and genetic variants were evaluated for their influence 

on tacrolimus TVCL/F. The demographics evaluated were recipient body weight (kg), 

recipient age, donor age, donor deceased status, recipient sex, donor sex, days post-

transplant, smoking, ethnicity, recipient race, donor race, and glomerular filtration rate. 

Medications used at each trough measurement were evaluated and included steroids 

(prednisone, methylprednisolone), calcium channel blockers (CCBs), antiviral drugs, 

angiotensin-converting enzyme (ACE) inhibitors, ketoconazole, itraconazole, fluconazole, 

and voriconazole. Disease conditions considered were diabetes and post-transplant dialysis 

for delayed graft function. Genetic variants tested were CYP3A5*3 and CYP3A4*22 
because these are the common tacrolimus variants in EAs. Recipients who did not carry any 

CYP3A5*3 alleles were designated a CYP3A5*1/*1 genotype and those who carried 1 or 2 

CYP3A5*3 allele were designated either a CYP3A5*1/*3 or a CYP3A5*3/*3 genotype. For 

CYP3A4, recipients were classified as CYP3A4*1/*1, CYP3A4*1/*22 or CYP3A4*22/*22.

Covariate assessment was conducted by the stepwise covariate modeling in a PsN tool 

kit. Stepwise covariate modeling involved testing of covariate relationships in forward 

inclusion and backward exclusion processes. The significance of inclusion and elimination 

of each covariate was tested based on likelihood ratio test that follows the χ2 distribution. 

A decrease in objective function value (OFV) by 3.8 or more (P < .05) was considered 

significant for forward inclusion. A full model was built that included all the covariates that 

showed a significant decrease in OFV following forward inclusion. Each covariate was then 

reevaluated through a backward elimination process. The covariates yielding an increase in 

OFV by 10.8 or more (P < .001) were considered significant and retained in the final model.

Model Evaluation and Predictive Ability of the Pharmacokinetic Parameters

The precision of the final model parameters were evaluated with sampling-importance-

resampling (SIR)-based 95% confidence intervals (CIs).43,44 The final models were 

evaluated using prediction-corrected visual predictive checks (pcVPC; 1000 simulations).45 

Data from the DeKAF Genomics study, with 23 658 troughs from 1361 recipients, was 

used to validate model prediction performance from the GEN03 data set. The final 

model parameters and significant covariates were fixed in NONMEM and were used to 

predict trough concentrations in the validation cohort subjects. Population-predicted trough 

concentrations (PRED) were obtained for each observed concentration (dependent variable) 

given their actual administered dose, the time after transplant, and the significant clinical 

covariates and genotypes (which were identified from the development model). The bias 

(median prediction error [ME], median percentage error [MPE]) and the precision (root 

median squared error [RMSE]) of population prediction (PRED) was used to assess the 

predictive performance. The following equations were used:

ME = Median (PRED − DV)

MPE = Median [(PRED − DV)/DV × 100]
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RMSE = Median [(PRED−DV)]

Results

Characteristics of the participants in the development and validation cohorts are shown in 

Table 1. The typical value estimate of tacrolimus apparent clearance (CL/F) was 32.2 L/h. 

The estimates of IIV and ICV as coefficient of variation (CV%) were 41.9% and 31.3%, 

respectively. Steroid, calcium channel blocker, and antiviral drug use, age, diabetes, time 

posttransplant, and CYP3A5*1, *3, and CYP3A4*22 alleles were found to significantly 

contribute to the interindividual variability of oral tacrolimus CL/F in EAs. The effect of 

genotypes and clinical covariates on tacrolimus CL/F and final parameter estimates in the 

model development cohort and in the SIR analysis is shown in Table 2.

The final population pharmacokinetic model from the development cohort showed that 

tacrolimus CL/F decreased by 13% on average if the recipient was diabetic, 5% if receiving 

a CCB, and 9% if receiving an antiviral drug. Tacrolimus CL/F also decreased as the 

recipient’s age increased. Tacrolimus CL/F increased by 6% if recipient was receiving a 

corticosteroid at the time of tough measurement. CL/F of tacrolimus was 18% lower after 

day 8 posttransplant relative to day 8 or before. Other tested clinical factors were not 

significant (P > .001) on CL/F.

The effect of the genotypes was profound. In recipients with the CYP3A5*1/*1 or 
CYP3A5*1/*3 genotype, the tacrolimus CL/F increased by 305%, and 181%, respectively, 

compared with recipients with the CYP3A5*3/*3 genotype. For recipients with 1 or 2 

CYP3A4*22 alleles, the CL/F declined by 22% and 72%, respectively, relative to recipients 

with no CYP3A4*22 alleles. The final model and dose equation are given below:

CL/F(L/h) = 32.2 (L/h) × ([1.81, if CYP3A5*1/*3] × [3.05, if CYP3A5*1/*1] × [0.78, if 1 
CYP3A4*22] × [0.28, if 2 CYP3A4*22] × [1.06, if receiving a steroid] × [0.95, if receiving 

a calcium channel blocker] × [0.87, if diabetic] × [0.91, if receiving an antiviral drug] × 

[(AGE/52)–0.3]) × (0.82, if after day 8 posttransplant)

Daily dose (mg/day) = (CL/F × target tacrolimus trough concentration [ng/mL] × 24 hours)/

1000

Model Evaluation and Predictive Ability of Pharmacokinetic Parameters

The diagnostic scatterplots showed an acceptable overall goodness of fit of the final model 

(Figure 1). The final model parameter estimates were all within their SIR-based 95%CIs 

(Table 2). Parameter estimates for fixed and random effects obtained from the original data 

set fell within the prediction interval of the estimates obtained from SIR, indicating that the 

model is robust and reproducible.

The predictive performance of the final pharmacokinetic model, was measured through bias 

(ME, MPE) and precision (RMSE) in the validation cohort. The ME, MPE, and RMSE 

for all trough concentrations in the validation data were 0.49 ng/mL, 6.5%, and 3.09 
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ng/mL, respectively. This suggests that, on median, the model overpredicted the trough 

concentrations relative to the observed concentrations.

Discussion

We developed a tacrolimus dosing model and clinical equation that simultaneously accounts 

for genotypes and clinical factors in a large sample of adult kidney transplant recipients with 

European ancestry using a nonlinear mixed-effects modeling approach. Steroid, CCB, and 

antiviral drug use, age, diabetes, time post-transplant, and CYP3A5*1, *3, and CYP3A4*22 
alleles were identified as significant factors influencing tacrolimus clearance and were 

subsequently accounted for in the model. The model was then validated with data from the 

DeKAF Genomics data set. We previously developed and validated an African American-

specific model with 3 CYP3A5 variants along with clinical factors.17 The data here are 

consistent with our previous work in which models had to combine genotypes and clinical 

factors to robustly explain variability in clearance.

Our analysis identified a significant effect of several medications on tacrolimus CL/F. 

Concomitant use of steroids was reported with 64% of the trough concentrations and 

was associated with an increase in tacrolimus CL/F by 6%. Literature reports have also 

shown a significant association between relative tacrolimus clearance and steroid use.46 

Corticosteroids are inducers of CYP3A enzymes47–50 and are well known for their drug 

interactions with CYP3A substrates. CCB and antiviral drugs were concomitantly present in 

40% and 52%, respectively, of the troughs. For subjects receiving a CCB in the development 

cohort, 57% of them received amlodipine, felodipine, nimodipine, or nisoldipine; 6.5% 

received isradipine, nicardipine, or nifedipine; and 6.5% received diltiazem or verapamil 

for up to 6 months. Both CCB and antiviral drug use decreased tacrolimus CL/F by 5% 

and 9%, respectively. Drug interactions between CCBs and tacrolimus have been previously 

described, especially with diltiazem and verapamil, which are mechanism-based inhibitors 

of P450.51,52

We explored the potential effect of ACE inhibitors and antifungal drugs on tacrolimus CL/F, 

but no significant effects were detected. Tacrolimus is not known to interact with ACE 

inhibitors clinically, and our data are consistent with this knowledge. Antifungal drugs can 

inhibit CY3A4/5 and tacrolimus metabolism.53,54 Only 65 recipients, mostly on fluconazole, 

an antifungal drug, were in the GEN03 cohort, and the absence of an effect may be because 

of the small sample size and the relatively weak inhibition of CYP3A4/5 of fluconazole 

relative to itraconazole.

We found that tacrolimus CL/F decreased by 18% after day 8 posttransplant up to 6 months 

posttransplant relative to day 8 or before. We and others have previously described that 

tacrolimus clearance declines with increasing time posttransplantation and may be because 

of a reduction in CYP3A activity, a rising hematocrit, physiological changes occurring 

in hepatic and kidney function, and/or gastrointestinal motility.13,15–17,55 We also found 

that tacrolimus CL/F decreased as recipient age increased; other studies have shown no 

significant relationship between age and tacrolimus.12,14,56–59 Age is a factor known to 

influence drug metabolism of many other drugs.60,61 About 30% of our enrolled participants 
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were diabetic at the time of transplant, which was associated with a 13% decrease in 

tacrolimus CL/F relative to nondiabetic subjects. Hematocrit is also a significant factor for 

whole-blood tacrolimus concentrations because of high accumulation in erythrocytes. One 

of the limitations of our study is that hematocrit data were not available in our study 

and not tested in our model. Low hematocrit levels are associated with lower whole-blood 

tacrolimus concentrations and can be incorrectly interpreted as an increase in CL/F when 

concentrations and clearance are actually unchanged.62–64 Hematocrit levels are generally 

low in the early posttransplant period and improve in the first 1–3 months posttransplant.

The distribution of CYP3A5 alleles varies significantly by ancestry. The CYP3A5*3 allele 

has a high frequency in EAs.2 Our analysis was conducted only in those of European 

ancestry, and most participants (about 88%) carried 2 nonfunctional CYP3A5*3 alleles 

(CYP3A5*3/*3). About 10.7% of our participants carried 1 nonfunctional CYP3A5*3 
allele (CYP3A5*1/*3), which increased tacrolimus CL/F by 81% relative to those with 

CYP3A5*3/*3. As expected, only 0.5% of those enrolled in our study population carried 

the CYP3A5*1/*1 genotype and were associated with an increase in tacrolimus CL/F by 

205% relative to CYP3A5*3/*3. CYP3A5*6 and CYP3A5*7 alleles are usually not present 

in EAs.2,26 Only 1 participant carried CYP3A5*6.

The CYP3A4*22 allele was associated with a reduction in tacrolimus clearance and 

has a frequency that is higher than other ancestry groups.30,33,41 About 8.7% of our 

enrolled subjects carried 1 nonfunctional CYP3A4*22 allele (CYP3A5*22/*1), which 

decreased tacrolimus CL/F by 22% relative to subjects carrying CYP3A4*1/*1. Only 0.5% 

of our enrolled subjects carried 2 nonfunctional CYP3A4*22 alleles (CYP3A5*22/*22) 

that decreased tacrolimus CL/F by 72% relative to subjects carrying CYP3A4*1/*1. We 

previously evaluated the CYP3A4*22 allele in African American recipients in whom the 

allele frequency was lower (~4%), and we were unable to detect an association with 

tacrolimus CL/F, possibly because of the small sample size.17

The Clinical Pharmacogenetics Implementation Consortium (CPIC) gives CYP3A5 and 

tacrolimus an A level of evidence and categorizes individuals as extensive (CYP3A5*1/*1), 

intermediate (CYP3A5*1/*3), or poor (CYP3A5*3/*3) metabolizers.65 CPIC recommends 

that CYP3A5 poor metabolizers receive the standard recommended starting dose, whereas 

extensive or intermediate metabolizers receive 1.5–2 times the standard dose without 

exceeding 0.3 mg/kg/day65 but does not account for clinical factors. Our results in general 

support these recommendations, but our model includes clinical factors and drugdrug 

interactions that are well known to change the pharmacokinetics of tacrolimus, thereby 

creating a more precise starting dose. CPIC does not provide guidance for CYP3A4*22, 

but our results show that it has a significant effect on tacrolimus clearance and should be 

considered in dosing decisions. Although rare, carriers of 2 CYP3A4*22 alleles along with 2 

nonfunctional CYP3A5*3 alleles have profoundly reduced clearance.31

The model evaluation techniques including SIR and prediction-corrected visual predictive 

check (on a log scale; Figure 2) showed that the model is able to adequately predict 

the observed data. The predictability of the model was further tested by external 

validation, which showed acceptable bias (ME, 0.49 ng/mL; MPE, 6.5%) and imprecision 
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(population RMSE, 3.09 ng/mL; individual RMSE, 1.73 ng/mL) values for tacrolimus 

trough concentrations. Although the model slightly overpredicted trough concentrations 

relative to the observed concentrations (median tacrolimus trough in validation cohort, 8.4 

ng/mL), the current analysis reported a population median error of 36.8% and an individual 

median error of 20.5% with reasonable forecasting of future predictions. Use of the model 

should be coupled with clinical judgment to account for clinical factors potentially affecting 

clearance not included in the model.

A limitation to the study is the observational design. The exact times of the tacrolimus 

troughs were not confirmed with patients. If adherence concerns were noted in the electronic 

medical record, the trough was not collected or used in the analysis. For all other troughs, 

we assumed adherence was high. There may also be effects from varying hematocrit levels, 

rare variants and/or concomitant medications (eg, over-the-counter, neutraceuticals) that 

affect the clearance of tacrolimus that we have not accounted for.

Conclusion

Tacrolimus exhibits considerable interindividual variability in its pharmacokinetics in 

kidney transplant recipients of European ancestry. This study complements our previously 

published study that demonstrated the importance of population-specific genotypes to 

better understanding tacrolimus pharmacokinetics.17 The current analysis of recipients of 

genetically confirmed European ancestry, which accounts for variants and clinical factors, 

provides a tool to preemptively individualize the dose of tacrolimus and ultimately improve 

clinical immunosuppressant outcomes in kidney transplant recipients.
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Figure 1. 
Goodness-of-fit plots for the final tacrolimus model. (A) Observed concentrations (ng/mL) 

versus individual-predicted concentrations (ng/mL). (B) Observed concentrations (ng/mL) 

versus population-predicted concentrations (ng/mL). Dots represent the observed tacrolimus 

trough concentrations. Solid line represents the line of unity.(C) Conditional weighted 

residuals (CWRES) versus population-predicted concentrations (ng/mL). (D) CWRES 

versus time (days). Dots represent the observed tacrolimus trough concentrations. Solid 

line is the line at y = 0.
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Figure 2. 
Prediction-corrected visual predictive check (pcVPC) on a log scale for the final tacrolimus 

model. The solid red line represents the median observed trough concentrations (ng/mL; 

prediction-corrected trough concentration), and the semitransparent red field represents a 

simulation-based 95% confidence interval for the median. The observed 10th and 90th 

percentiles are presented with dashed red lines, and the 95% confidence intervals for the 

corresponding model-predicted percentiles are shown as semitransparent blue fields. The 

observed trough concentrations (prediction corrected) are represented by open circles. All 

tacrolimus observed concentrations are trough concentrations.
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