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Abstract: The orchestration of cellular metabolism and redox balance is a complex, multifaceted
process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert stor-
age depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism
and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy
production, metabolic pathways, and redox signaling. The physical and functional contacts between
LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial
for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This re-
view highlights recent advances in understanding the mechanisms governing LD–mitochondria
interactions and their regulation, drawing attention to proteins and pathways that mediate these
contacts. We discuss the physiological relevance of these interactions, emphasizing their role in
maintaining energy and redox balance within cells, and how these processes are critical in response
to metabolic demands and stress conditions. Furthermore, we explore the pathological implications
of dysregulated LD–mitochondria interactions, particularly in the context of metabolic diseases such
as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular
and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the
current understanding of LD–mitochondria interactions, underscoring their significance in cellular
metabolism and suggesting future research directions that could unveil novel therapeutic targets for
metabolic and degenerative diseases.
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1. Introduction

The intricate orchestration of cellular metabolism and redox balance is fundamental
to the sustenance of life. At the cellular level, this balance is maintained by a complex
network of biochemical pathways and interactions between various organelles. Among
these, lipid droplets (LDs) and mitochondria have emerged as key players, not just in their
traditionally recognized roles but also in their dynamic interactions, which are pivotal for
cellular health and function [1,2].

Historically perceived as mere fat storage bodies, LDs have been redefined over the
past decade. They are now recognized as highly dynamic organelles with crucial roles in
cellular lipid metabolism, signaling, and homeostasis [3,4]. Composed of a core of neutral
lipids, primarily triglycerides and esterified cholesterol, surrounded by a phospholipid
monolayer and specific proteins, LDs vary in size, number, and distribution depending on
the cell type and metabolic state [5]. The biogenesis of LDs is a complex process, starting
from the endoplasmic reticulum (ER), where lipid esterification occurs, followed by the
budding of these lipid-enriched domains [6]. Mitochondria, often termed the powerhouses
of the cell, are central to energy production through oxidative phosphorylation and the
tricarboxylic acid cycle [7]. Beyond energy production, they are involved in various
metabolic pathways, including fatty acid oxidation, amino acid metabolism, and the
synthesis of iron–sulfur clusters [8]. Mitochondria are also crucial in regulating apoptosis

Int. J. Mol. Sci. 2024, 25, 6878. https://doi.org/10.3390/ijms25136878 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25136878
https://doi.org/10.3390/ijms25136878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms25136878
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25136878?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 6878 2 of 18

and cellular redox balance [9]. Mitochondrial dynamics, including fusion, fission, and
biogenesis, are tightly regulated processes essential for maintaining mitochondrial function
and integrity [10].

The interaction between LDs and mitochondria represents a critical nexus in cellular
metabolism. These contacts facilitate the transfer of fatty acids from LDs to mitochondria,
where they undergo β-oxidation, thus linking energy storage with energy utilization [11,12].
This interaction is not merely physical but involves a complex network of protein–protein
interactions and signaling pathways [13]. Proteins like perilipin, located on the LD surface,
and mitochondrial outer membrane proteins play a pivotal role in mediating these con-
tacts [14]. Recent studies using advanced imaging techniques have provided insights into
the dynamics of these interactions, revealing that they are highly regulated and responsive
to the cellular metabolic status [15]. The physiological relevance of LD–mitochondria con-
tacts extend beyond mere energy metabolism. These interactions are crucial for maintaining
cellular energy homeostasis, especially under conditions of fluctuating energy demand or
nutrient availability [16]. They also play a significant role in lipid metabolism, including the
synthesis and breakdown of fatty acids, phospholipids, and cholesterol [17]. In adipocytes,
for instance, these interactions regulate lipolysis and lipid storage, directly impacting
systemic energy balance [18]. Moreover, the cross-talk between LDs and mitochondria is
vital to maintaining redox balance within cells [19]. Mitochondrial β-oxidation generates
reactive oxygen species (ROS), which can be deleterious at high concentrations. LDs can
sequester some of these ROS, thereby mitigating oxidative stress [20].

Dysregulation in LD–mitochondria interactions has been implicated in various metabolic
diseases. In obesity and diabetes, altered lipid metabolism and insulin resistance are
linked to dysfunctional LD–mitochondria cross-talk [21,22]. In non-alcoholic fatty liver
disease, excess lipid accumulation in hepatocytes and subsequent metabolic stress are a
result of impaired LD–mitochondria interactions [12,14]. Additionally, there is emerging
evidence linking these dysregulated interactions to cardiovascular diseases and potentially
to neurodegenerative disorders, where altered metabolism and redox balance play a critical
role [17,23]. Given their central role in metabolism and disease, targeting LD–mitochondria
interactions present a novel therapeutic strategy. Understanding the molecular mechanisms
governing these interactions could lead to the development of drugs aimed at restoring
or modulating these contacts, thereby offering potential treatments for metabolic diseases
and beyond.

2. Basics of LDs

LDs, once regarded as mere lipid storage units, have emerged as dynamic organelles
pivotal to a myriad of cellular processes [24] (Figure 1). This redefined understanding has
expanded our view of LDs from passive lipid reservoirs to active participants in cellular
metabolism, signaling, and disease pathogenesis.

2.1. LDs’ Structural Characteristics

LDs are characterized by a core of neutral lipids, predominantly triglycerides and ester-
ified cholesterol, encased in a monolayer of phospholipids interspersed with proteins [25].
This unique structure distinguishes LDs from other organelles, which typically possess
bilayer membranes. The size and number of LDs vary considerably between cell types
and are influenced by metabolic conditions. The protein composition of LDs is diverse
and cell-specific. Proteins like perilipins, which coat the LD surface, play crucial roles in
regulating lipid metabolism and LD dynamics [26].

2.2. LDs’ Formation and Growth

The genesis of LDs is intricately linked to the ER. Lipid esterification, primarily
triglyceride synthesis, is catalyzed by enzymes such as diacylglycerol acyltransferase
(DGAT) at the ER. This process leads to the accumulation of neutral lipids between the
leaflets of the ER membrane, eventually budding off to form nascent LDs [27]. The exact
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mechanisms governing LD formation and the role of cytosolic factors in this process remain
active areas of research.
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Figure 1. Composition and metabolic process of lipid droplets: LDs are unique cellular organelles 
composed of a monolayer of phospholipids surrounding a core of neutral lipids (triglycerides, cho-
lesterol, sterols). They originate from the endoplasmic reticulum, initially accumulating as lens-like 
structures in the ER membrane and ultimately released into the cytoplasm via budding. Free LDs 
grow through fusion or autonomous growth, leading to the formation of mature LDs. The surface 
of LDs contains lipolytic enzymes, activated during starvation, which hydrolyze neutral lipids into 
fatty acids. Additionally, LDs can be targeted and broken down by autophagolysosomes, releasing 
fatty acids that undergo beta-oxidation in mitochondria to provide energy. TAG: Triacylglycerol; 
DAG: Diacylglycerol; MAG: Monoacylglycerol; ATGL: Adipose triglyceride lipase; HSL: Hormone-
sensitive lipase; MGL: Monoacylglycerol lipase. 
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acid-binding proteins, and lipases contribute to these processes, regulating the size and 
lipid composition of LDs. Maintenance of LD integrity is also crucial. Proteins associated 
with LDs, including members of the perilipin family, orchestrate these dynamics, mediat-
ing interactions with lipases and other regulatory proteins [28]. 

Figure 1. Composition and metabolic process of lipid droplets: LDs are unique cellular organelles
composed of a monolayer of phospholipids surrounding a core of neutral lipids (triglycerides,
cholesterol, sterols). They originate from the endoplasmic reticulum, initially accumulating as lens-
like structures in the ER membrane and ultimately released into the cytoplasm via budding. Free LDs
grow through fusion or autonomous growth, leading to the formation of mature LDs. The surface of
LDs contains lipolytic enzymes, activated during starvation, which hydrolyze neutral lipids into fatty
acids. Additionally, LDs can be targeted and broken down by autophagolysosomes, releasing fatty
acids that undergo beta-oxidation in mitochondria to provide energy. TAG: Triacylglycerol; DAG:
Diacylglycerol; MAG: Monoacylglycerol; ATGL: Adipose triglyceride lipase; HSL: Hormone-sensitive
lipase; MGL: Monoacylglycerol lipase.

LD growth can occur through several mechanisms: de novo synthesis of lipids, uptake
of external lipids, and fusion of existing LDs. Lipid transport proteins, such as fatty acid-
binding proteins, and lipases contribute to these processes, regulating the size and lipid
composition of LDs. Maintenance of LD integrity is also crucial. Proteins associated with
LDs, including members of the perilipin family, orchestrate these dynamics, mediating
interactions with lipases and other regulatory proteins [28].

2.3. LDs’ Functional Diversity

LDs are central to energy homeostasis, serving as reservoirs for energy-rich lipids.
During periods of energy surplus, triglycerides are stored in LDs; conversely, in times of
demand, these triglycerides are mobilized for energy production. LDs also play a signif-
icant role in lipid metabolism, participating in the synthesis and degradation of various
lipid species. Furthermore, LDs interact with other organelles, including mitochondria,
peroxisomes, and lysosomes, facilitating lipid exchange and signaling events [29]. The
dynamics of LDs are influenced by a variety of factors. Hormonal cues such as insulin and
glucagon modulate LD metabolism in response to the body’s nutritional status. Cellular
stress conditions, such as hypoxia and oxidative stress, also impact LD behavior, with LDs
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serving as buffers against cellular damage. Genetic and epigenetic factors further dictate the
formation, size, and number of LDs, highlighting the complexity of LD regulation [30–32].

Beyond their metabolic functions, LDs are increasingly recognized as players in intra-
cellular signaling pathways. They influence the activity of transcription factors and gene
expression, affecting various cellular processes. LDs also serve as platforms for protein
modification and interaction, contributing to the regulation of signaling cascades [33]. LDs
are implicated in a range of metabolic disorders. In obesity and diabetes, aberrant LD
metabolism and insulin resistance are closely linked. LDs also play a role in the pathogene-
sis of liver diseases, including nonalcoholic fatty liver disease (NAFLD) and steatohepatitis.
Additionally, emerging research points to the involvement of LDs in immune responses,
cancer metabolism, and neurodegenerative diseases, underscoring their wide-ranging
impact on health and disease [34–36].

3. Interplay between LDs and Mitochondria

The cellular interplay between LDs and mitochondria represents a critical nexus in
the regulation of energy homeostasis and metabolic health. This dynamic interaction
is fundamental to mediating lipid metabolism, signaling pathways, and energy balance
within cells [11,37].

3.1. Peridroplet Mitochondria

Numerous investigations have noted both stable and transient interactions between
LDs and mitochondria [16,38–43]. The type of interaction—whether stable or dynamic—can
vary depending on the specific tissue or organ. For instance, in tissues with high metabolic
activity, such as the liver and muscles, dynamic interactions may be more prevalent to
rapidly respond to metabolic demands [1,44]. Conversely, in adipose tissue, stable interac-
tions might be more prominent to facilitate sustained lipid storage and regulation [11,39].
This tissue-specific variability underscores the complexity and specialization of metabolic
processes in different physiological contexts. Notably, recent findings have highlighted that
mitochondria associated with LDs, known as peridroplet mitochondria (PDM), display
unique bioenergetic, proteomic, cristae structure, and dynamic properties distinct from
cytoplasmic mitochondria [45]. These PDM were isolated from mature brown adipose
tissue (BAT) using high-speed centrifugation to separate the mitochondria from their asso-
ciated LDs. Research by Benador et al. revealed that PDM possess a higher capacity for
oxidizing pyruvate and malate, yet a lower capacity for lipid oxidation compared to cyto-
plasmic mitochondria. Additionally, PDM demonstrate increased ATP synthesis capacity
and elevated ATP synthase expression levels. This ATP production in PDM aids in lipid
esterification and LD expansion [39]. Moreover, despite high levels of the mitochondrial
fusion protein Mfn2, PDM exhibit different dynamics from cytoplasmic mitochondria, as
they do not fuse or share contents with neighboring mitochondria [12]. Their reduced
motility, likely due to their attachment to LDs, may explain their decreased fusion activity.
Data from experiments using the PDM tethered chain protein overexpression model in
native brown adipocytes suggest that anchoring mitochondria to LDs is sufficient to impart
the distinctive bioenergetic traits observed in PDM [46].

Brown fat plays an important role in thermogenesis, and the interaction of LDs with
mitochondria in brown fat has a potential effect on thermogenesis. A previous study
showed that in brown adipose tissue, exposure to cold environments leads to simultaneous
increases in the expressions of UCP1 and PLIN5, the latter being a protein critical for
LD–mitochondria interactions. It has been observed that the upregulation of PLIN5 is
dependent on UCP1 expression [47]. Given that PLIN5 is essential for LD–mitochondria in-
teractions, its increased expression under cold conditions enhances these interactions, facil-
itating the provision of energy. While it is not yet clearly established that LD–mitochondria
interactions directly promote thermogenesis, these interactions can potentially expedite
lipid transfer and provide the fatty acids necessary for heat production. Therefore, LD–
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mitochondria interactions may play a role in promoting thermogenesis, though this requires
further investigation.

3.2. Mechanisms of LD–Mitochondria Contacts

The physical interactions between lipid droplets (LDs) and mitochondria are crucial
for direct lipid transfer and metabolic communication. These interactions are facilitated by
proteins that anchor LDs to the mitochondrial membrane, creating a specialized microenvi-
ronment for efficient lipid exchange (Figure 2).
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Figure 2. Mechanisms of Mitochondria–LD Interaction. (1) PLIN5 and FATP4 interaction: The
C-terminal structural domain of PLIN5 interacts with FATP4, enhancing the connections between
LDs and mitochondria. Starvation triggers the phosphorylation of PLIN5, leading to lipolysis and the
release of fatty acids from LDs into mitochondria. These fatty acids are then converted to fatty acyl-
CoAs for oxidation. (2) ARFRP1 and SNAP23 recruitment: ARFRP1 recruits SNAP23 to a site near the
LD, promoting LD–mitochondria interactions and facilitating LD amplification. (3) MIGA2 linkage:
The mitochondrial outer membrane protein MIGA2 links mitochondria to LD proteins, enabling
efficient lipid storage within the LD. (4) Mfn2 and Hsc70/PLIN1 complex formation: Mitochondria-
localized Mfn2 and LD-localized Hsc70 or PLIN1 form a complex at the mitochondria–LD membrane
contact site. This complex tethers mitochondria to the LD, facilitating the transfer of fatty acids from
LDs to mitochondria for β-oxidation.

Perilipin 1 (PLIN1) and Perilipin 5 (PLIN5): These proteins are essential to medi-
ating LD interactions with mitochondria. PLIN1 primarily controls lipolysis and lipid
storage, while PLIN5 directly facilitates LD–mitochondria contacts. PLIN5 anchors LDs to
mitochondria, enabling efficient fatty acid transfer for oxidation [48]. During starvation,
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phosphorylation of PLIN5 in adult myoblasts promotes the transport of LD-associated
fatty acids to mitochondria for β-oxidation, requiring an intact mitochondrial tethering
structural domain within PLIN5 [49]. The acyl-CoA synthetase fatty acid transport pro-
tein 4 (FATP4) serves as a mitochondrial linker for PLIN5 [15]. The C-terminal structural
domains of PLIN5 and FATP4 form the minimal protein interaction domain that induces
organelle contacts. Starvation triggers PLIN5 phosphorylation, leading to lipolysis and
fatty acid transport from LDs to FATP4 on mitochondria, where they are converted to fatty
acyl-CoA for subsequent oxidation [15,50].

Mitofusin 2 (MFN2): As part of the outer mitochondrial membrane, MFN2 is critical
in forming contacts with LDs. It not only contributes to mitochondrial fusion but also
tethers mitochondria to LDs [51]. A complex involving mitochondria-localized Mfn2 and
LD-localized Heat shock cognate 71 kDa protein (Hsc70) is formed at the mitochondria–LD
membrane contact site, facilitating fatty acid transfer from LDs to mitochondria for β-
oxidation. Lipid overload decreases Mfn2 levels, impeding the mitochondria–LD contacts
(MLCs) and leading to lipid accumulation. Restoring Mfn2 levels reestablishes MLCs,
reducing myocardial lipotoxicity under lipid overload conditions both in vivo and in vitro.
Chronic lipid overloads induce Mfn2 degradation via the ubiquitin–proteasome pathway
after acetylation at the K243 site, shifting from adaptive lipid utilization to lipotoxic-
ity. This tethering is vital for lipid transfer during high energy demands like fasting or
exercise [46,51].

Acyl-CoA Synthetase Long-Chain Family Member 1 (ACSL1): ACSL enzymes regulate
lipid metabolism, including fatty acid elongation, oxidative catabolism, phospholipoge-
nesis, and protein acylation [52]. ACSL1 is crucial for fatty acid metabolism, activating
fatty acids for β-oxidation in mitochondria and regulating LD formation and lipolysis.
Its activity is closely tied to the cell’s metabolic status and influences LD–mitochondria
interactions [53,54].

Synaptosome-associated protein 23 (SNAP23): SNAP23, a SNARE protein, is highly
expressed in human skeletal muscle [55]. It mediates insulin-stimulated docking and
fusion of glucose transporter 4 (GLUT4) with the plasma membrane [55]. Recent studies
suggest that SNAP23 facilitates the import of LD-derived fatty acids into neighboring
mitochondria for β-oxidation. Research involving skeletal muscle biopsies from lean,
healthy men showed co-localization of SNAP23 with mitochondrial and LD markers [56].
Studies also reported higher levels of SNAP23 associated with LDs in the livers of fasted
mice, indicating increased LD–mitochondria interactions. SNAP23 may facilitate lipid and
protein transfer between LDs and mitochondria, although the exact mechanisms remain
under investigation [57]. Knockdown of SNAP23 with siRNA reduces LD–mitochondria
interactions and β-oxidation [56]. Additionally, ADP-ribosylation factor related protein 1
(ARFRP1) recruits SNAP23 near LDs, promoting LD growth in hepatitis C virus-infected
cells, suggesting SNAP23’s role in LD amplification [58].

VPS13D and MIGA2: Recent research has identified recombinant Vacuolar Protein Sort-
ing 13D (VPS13D) and mitoguardin 2 (MIGA2) as novel contributors to LD–mitochondria
interactions. VPS13D likely facilitates lipid transfer between these organelles [59]. MIGA2
binds to membrane proteins VAP-A or VAP-B in the ER and promotes triglyceride synthesis
from non-lipid precursors in adipocytes [60]. It connects mitochondrial neo-lipogenic reac-
tions with triacylglycerol production in the ER, enhancing lipid storage in LDs. MIGA2’s
widespread presence suggests its importance in maintaining lipid and energy homeostasis
across various cell types [16,59].

4. Physiological Relevance of LD–Mitochondria Contacts

The interactions between LDs and mitochondria are not just a biochemical curiosity;
they play pivotal roles in maintaining physiological homeostasis. Understanding these
interactions is crucial for appreciating how cells manage energy resources, respond to
oxidative stress, and maintain overall health.
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4.1. Role in Lipid Transfer and Fatty Acid Oxidation

The interplay between LDs and mitochondria is central to cellular energy homeostasis,
particularly in the context of lipid transfer and fatty acid oxidation. This relationship is cru-
cial for understanding metabolic processes, from basic cellular function to the pathogenesis
of metabolic diseases.

LDs serve as the primary storage sites for neutral lipids, mainly triglycerides and
cholesteryl esters, in the cell. Under conditions of energy surplus, such as excessive
caloric intake, LDs accumulate lipids, while in times of energy demand, these lipids are
mobilized for use as fuel [61]. The regulation of lipid storage and mobilization within LDs
is a tightly controlled process, influenced by hormonal signals and cellular energy needs.
Mitochondria are the primary site for fatty acid oxidation, a process critical for converting
stored lipids into usable energy [12]. Fatty acid oxidation involves the breakdown of fatty
acids into acetyl-CoA, which then enters the tricarboxylic acid cycle, ultimately leading to
the production of ATP. This process is especially important during periods of fasting or
prolonged exercise, when glucose availability is limited [62].

The first step in lipid mobilization is lipolysis, where triglycerides in LDs are hy-
drolyzed into free fatty acids and glycerol. Enzymes such as adipose triglyceride lipase
(ATGL) and hormone-sensitive lipase (HSL) are key players in this process [63]. Once
released, FFAs undergo activation by acyl-CoA synthetase enzymes, converting them into
fatty acyl-CoA, which is necessary for their subsequent transport into mitochondria. Fatty
acyl-CoA is then transported into the mitochondria by carnitine palmitoyltransferase I
located on the outer mitochondrial membrane [64]. Inside the mitochondria, fatty acyl-CoA
is converted back into fatty acyl-carnitine, which undergoes β-oxidation [65].

The efficiency of lipid transfer is significantly influenced by the proximity and dynam-
ics of LD–mitochondria contacts. These contacts ensure a streamlined and efficient transfer
of fatty acids, minimizing the loss of lipids and maintaining a high rate of fatty acid oxida-
tion [66]. The transfer of lipids and their subsequent oxidation in mitochondria are tightly
regulated processes influenced by several factors, including nutritional status, hormonal
regulation, and cellular energy sensors. In states of nutrient excess, lipid synthesis and
storage are upregulated, leading to a decrease in fatty acid oxidation. Conversely, during
nutrient deprivation, lipolysis is enhanced, and fatty acid oxidation is upregulated [67].
Hormones like insulin and glucagon play significant roles. Insulin suppresses lipolysis
and promotes lipid storage, while glucagon stimulates lipolysis and increases fatty acid
oxidation [68]. AMP-activated protein kinase (AMPK) and other cellular energy sensors
detect the energy status of the cell and adjust lipid metabolism accordingly. Activation
of AMPK during low-energy states leads to enhanced lipolysis and increased fatty acid
oxidation [69].

The LD–mitochondria contacts serve as critical conduits for the transfer of lipids,
especially fatty acids, facilitating their oxidation in mitochondria. This transfer is crucial
for maintaining cellular energy balance. The proximity of LDs to mitochondria minimizes
the diffusion distance, allowing for the efficient transfer of fatty acids [70]. Carrier proteins,
possibly including those yet unidentified, are thought to play a role in shuttling these fatty
acids across the contact sites. The breakdown of triglycerides into free fatty acids within
LDs is the first step in this transfer. Once inside the mitochondria, fatty acids undergo
β-oxidation, a process that breaks them down into acetyl-CoA. This acetyl-CoA then enters
the TCA cycle, ultimately leading to the production of ATP. The efficiency of fatty acid
oxidation is highly dependent on the availability of fatty acids, which is in turn influenced
by the dynamics of LD–mitochondria contacts [71]. For energy-intensive processes such
as phospholipid biosynthesis and membrane remodeling, substantial amounts of ATP
are required. The interactions between LDs and mitochondria, which promote energy
production, could support these energy-demanding processes. It is plausible that they have
a potential role in facilitating phospholipid biosynthesis and membrane remodeling by
ensuring efficient energy supply.
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4.2. Influence on Cellular Energy Homeostasis

LDs and mitochondria work in concert to balance energy storage and utilization.
LDs, as energy storage organelles, accumulate lipids in the form of triglycerides during
times of energy surplus. Mitochondria, on the other hand, are the main sites for energy
production through fatty acid oxidation. The contacts between LDs and mitochondria
facilitate the efficient transfer of fatty acids from LDs to mitochondria, ensuring a rapid
response to energy demands [72]. These interactions are central to metabolic flexibility—the
ability of a cell to switch between glucose and lipid metabolism depending on availability.
The coupling between LDs and mitochondria adjusts in response to nutritional status,
exercise, fasting, and other physiological conditions, thereby playing a key role in metabolic
health [73]. This hormonal interplay is crucial in conditions such as the postprandial
state or during fasting, effectively managing the switch between lipid storage and lipid
oxidation [74].

4.3. Impact on Oxidative Stress and Redox Signaling

Mitochondria are major sites of ROS production during oxidative phosphorylation.
Under normal conditions, ROS serve as signaling molecules, but excessive ROS can lead to
oxidative stress and cellular damage [75]. LDs can interact with mitochondria to modulate
ROS levels. By supplying fatty acids for β-oxidation, LDs influence the rate of electron
transport and subsequent ROS production. Furthermore, LDs can sequester lipid per-
oxidation products, reducing the burden of oxidative stress on cells [76]. The interplay
between LDs and mitochondria is crucial in redox signaling. This cross-talk affects various
cellular processes, including the activation of transcription factors like NRF2, which regu-
lates the expression of antioxidant genes, thereby playing a role in the cellular antioxidant
response [71].

The ability of cells to adapt to metabolic stress is heavily reliant on the functional
cooperation between LDs and mitochondria. This includes the response to nutrient de-
privation, physical activity, and changes in metabolic demands, where the efficient use of
stored lipids becomes critical for cell survival [38]. Emerging research suggests that LD–
mitochondria interactions may have implications in aging and longevity. Efficient energy
utilization and the balance in redox homeostasis contribute to cellular longevity, while
dysregulation in these processes is associated with age-related diseases [77]. Understand-
ing LD–mitochondria contacts open avenues for therapeutic interventions in metabolic
diseases. Targeting these interactions could offer strategies to enhance metabolic flexibility,
manage oxidative stress, and improve cellular health in conditions like obesity, diabetes,
and cardiovascular diseases [78,79].

4.4. Role in Promoting Mitophagy

Mitophagy is the process by which defective mitochondria are eliminated via lyso-
somes, and elevated levels of mitochondrial autophagy indicate altered metabolism [80].
Researchers investigated metabolic adaptations in cells treated with deferiprone (DFP), a
therapeutic iron chelator known to induce PINK1-PRKN-dependent mitophagy [81]. They
found that iron depletion remodels lipid metabolism within minutes. DGAT1-dependent
LD biosynthesis occurs upstream of mitochondrial turnover, and many LDs come into
contact with mitochondria after iron chelation. Inhibition of DGAT1 limits mitophagy
through lysosomal dysfunction. In vivo deficiency of mdy/DGAT1 impairs mitochondrial
autophagy and motility in Drosophila neuronal cells [19]. Long et al. also discovered that
mitophagy requires LD expansion mediated by DGAT1 [82]. The researchers measured
different stages of the mitochondrial autophagy process in DFP-treated cells in the presence
of a DGAT1 inhibitor and in Drosophila lacking the DGAT1 homologue. They found that
DGAT1 inhibition reduces mitochondrial autophagy by disrupting lysosomal homeostasis
rather than impairing the recruitment of mitochondria into the autophagosome. Mitophagy
is diminished because DGAT1 inhibition leads to an increase in non-esterified fatty acid
(NEFA), altering the shape and distribution of lysosomes [82]. These changes may impede
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the fusion of lysosomes with mitochondrial autophagosomes, thereby hindering the clear-
ance of mitochondria by mitochondrial autophagy. Furthermore, mitochondria attached to
the few remaining LDs after DGAT1 inhibition are highly susceptible to NEFA-induced
damage because their ability to oxidize NEFA is reduced.

5. Human Diseases Associated with Alterations in LD–Mitochondria Interaction

The physiological interplay between LDs and mitochondria, essential for maintaining
cellular homeostasis, can have profound pathological implications when dysregulated.
This section delves deep into the molecular underpinnings of these interactions in various
diseases, highlighting their critical role in pathology (Figure 3).
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Figure 3. Role of LD–Mitochondria Interaction in Diverse Diseases. (1) Type 2 diabetes: Excessive
storage of lipid droplets (LDs) in skeletal muscle is a hallmark of type 2 diabetes. High-intensity
interval training (HIIT) exercise alters the size, subcellular distribution, and mitochondrial content of
LDs, improving the deficiency of intramuscular LDs. (2) Viral replication: The ORF6 protein inserts
into the LD lipid monolayer through its two amphipathic helices. It interacts with endoplasmic
reticulum (ER) membrane proteins BAP31 and USE1 to mediate the formation of ER–LD contacts.
Additionally, ORF6 connects mitochondria to LDs by interacting with the SAM complex in the
mitochondrial outer membrane, promoting cellular lipolysis and LD biogenesis, reprogramming
lipid fluxes, and facilitating viral replication. (3) Astrocyte reactivity: When fatty acid load exceeds
the oxidative phosphorylation (OxPhos) capacity of astrocytes, elevated acetyl-CoA levels induce
astrocyte reactivity by enhancing STAT3 acetylation and activation. (4) Fatty acid utilization in skeletal
muscle: In rat skeletal muscle cells, the energy sensor AMPK increases the GTP-binding activity of
Rab8a, facilitating LD–mitochondria interactions by binding to PLIN5 under starvation conditions.
The assembly of the Rab8a-PLIN5 tethering complex recruits ATGL, mobilizing and transferring long-
chain fatty acids (LCFAs) from LDs to mitochondria for β-oxidation. Rab8a deficiency in a mouse
model impairs fatty acid utilization and reduces exercise endurance. The arrows mean decrease
or increase.
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5.1. Obesity and Type 2 Diabetes

Obesity is characterized by excessive accumulation of lipids in adipocytes, leading to
hypertrophic LDs and altered mitochondrial function. This imbalance results in a decreased
efficiency of mitochondrial fatty acid oxidation, contributing to a surplus of circulating
free fatty acids and their deposition in non-adipose tissues, a condition known as lipo-
toxicity [83]. In skeletal muscle and the liver, this ectopic fat accumulation causes insulin
resistance by interfering with insulin signaling pathways, mainly through the activation of
inflammatory pathways and the production of cytokines like TNF-α. Furthermore, the over-
supply of FFAs to the liver exacerbates insulin resistance and promotes gluconeogenesis,
aggravating hyperglycemia [84].

In type 2 diabetes, dysregulation of LD–mitochondria interactions significantly con-
tribute to insulin resistance and β-cell dysfunction. In peripheral tissues, impaired mito-
chondrial oxidative capacity leads to incomplete fatty acid oxidation, causing harmful lipid
intermediates such as diacylglycerols and ceramides to accumulate, which inhibits insulin
signaling. In pancreatic β-cells, mitochondrial dysfunction impacts ATP production, which
is crucial for insulin secretion. Faulty LD dynamics result in lipid accumulation in β-cells,
further impairing insulin secretion and contributing to hyperglycemia [45,85,86]. Excessive
LD storage in skeletal muscle is a hallmark of type 2 diabetes [87]. However, LD morphol-
ogy shows substantial subcellular heterogeneity and varies among individual muscle fibers.
A comprehensive single-fiber morphology analysis using quantitative transmission elec-
tron microscopy compared type 2 diabetic patients to non-diabetic obese and lean controls.
Researchers found that excessive lipid storage in the muscles of type 2 diabetic patients
was due to oversized LDs in different muscle fibers and a lack of LDs in specific locations
relative to mitochondria [86]. High-intensity interval training altered the size, subcellular
distribution, and mitochondrial content of LDs, improving the intramuscular LD deficit.
Additionally, the physical contact between LDs and mitochondrial membranes indicates
dysregulated organelle interactions in the diabetic state [88]. Type 2 diabetes is considered
a metabolic disease characterized by significant cellular heterogeneity in intramuscular
lipid storage, emphasizing the importance of single-cell techniques in clinical research.

5.2. Hepatic Lipotoxicity

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins commonly found in food
contaminants, primarily targeting the liver [89]. It poses a significant threat to global
food safety and public health. Researchers examined the potential hepatic lipotoxicity
resulting from AFB1 exposure using both in vitro and in vivo models to evaluate the public
health risks associated with high dietary AFB1 intake [90]. The study showed that low
doses of AFB1 (1.25 µM for 48 h, about one-fifth of the IC50 for HepG2 and HepaRG
cells, which were 5.995 µM and 5.266 µM, respectively) significantly induced hepatic
steatotoxicity. This was characterized by abnormal growth of LDs, increased mitochondrial–
LD contact, disrupted phagocytosis, and lipid accumulation. AFB1 exposure enhanced
mitochondrial–LD contact through the interaction of mitochondrial p53 (mito-p53) and the
LD-associated protein perilipin 2 (PLIN2), leading to lipid accumulation in hepatocytes.
Targeted inhibition of mito-p53, knockdown of PLIN2, and the application of rapamycin
effectively promoted lysosome-dependent lipophagy and reduced hepatic lipotoxicity and
liver injury caused by AFB1 exposure [90]. In summary, interactions between mito-p53
and PLIN2 regulate lipid homeostasis in AFB1-induced hepatotoxicity through a network
involving mitochondria, LDs, and lysosomes. This unique trio of organelles works in
concert, offering new insights for targeted interventions in inter-organellar lipid sensing
and trafficking to mitigate hepatic lipotoxicity induced by harmful substances.

In NAFLD, the disrupted balance between lipid acquisition, storage, and oxidation
in hepatocytes leads to hepatic steatosis. The main contributors are an increased influx of
free fatty acids (FFAs) from adipose tissue and de novo lipogenesis in the liver, worsened
by decreased fatty acid oxidation due to mitochondrial dysfunction. This persistent FFA
overload induces mitochondrial stress, oxidative damage, and eventually apoptosis, fa-
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cilitating the progression from simple steatosis to non-alcoholic steatohepatitis (NASH),
characterized by inflammation and fibrosis. A hallmark of NAFLD is the excessive accu-
mulation of LDs [91]. Interactions between LDs and mitochondria are crucial for lipid
metabolic homeostasis. Aerobic exercise reduces the size of LDs bound to mitochondria
and decreases the number of LD–mitochondrial contacts. There is a positive correlation
between the number of LD–mitochondrial contacts and the severity of NAFLD as well as
the size of mitochondria-bound LDs. Cellular fractionation studies have shown enhanced
ATP-coupled respiration and fatty acid oxidation in the periportal mitochondria of the liv-
ers of exercising mice on a high-fat diet compared to their sedentary counterparts, despite
similar body weights. Exercise increases fatty acid oxidation and mitofusin-2 abundance in
mitochondria through mechanisms involving mitochondrial membrane curvature and the
abundance of saturated lipids. Consequently, the ablation of hepatic mitofusin-2 prevents
the exercise-induced enhancement of fatty acid oxidation in periportal mitochondria [92].

5.3. Skeletal Muscle Exercise Tolerance

The dynamic interactions between lipid droplets (LDs) and mitochondria are essential
for mobilizing long-chain fatty acids (LCFAs) from LDs to mitochondrial β-oxidation in
skeletal muscle during energy stress. Rab8a has been identified as a mitochondrial LD
receptor that forms a tethered complex with the LD-associated protein PLIN5 in skeletal
muscle [1]. In rat L6 skeletal muscle cells, the energy sensor AMPK enhances the GTP-
binding activity of Rab8a, facilitating LD–mitochondrial interactions by binding to PLIN5
under starvation conditions. The assembly of the Rab8a-PLIN5 tethering complex also
recruits ATGL, which mobilizes and transfers LCFAs from LDs to mitochondria for β-
oxidation. In a mouse model, Rab8a deficiency impaired fatty acid utilization and reduced
exercise endurance [1]. These findings may help elucidate the regulatory mechanisms
underlying the beneficial effects of exercise on lipid homeostasis.

5.4. Cardiovascular Diseases (CVDs)

In the context of cardiovascular disease (CVD), dysfunctional interactions between
LDs and mitochondria have significant implications for atherogenesis and heart failure.
In atherosclerosis, the accumulation of oxidized low-density lipoprotein (LDL) particles
within macrophages leads to foam cell formation, a critical event in plaque development.
The ability of these cells to manage lipid overload via LDs and mitochondria is crucial
in preventing plaque formation. In the myocardium, imbalances in LD dynamics and
mitochondrial oxidative capacity result in excessive lipid accumulation, leading to lipo-
toxic cardiomyopathy [93]. Vascular smooth muscle cell (VSMC) senescence accelerates
atherosclerosis progression through lipid-mediated mitochondrial dysfunction and oxida-
tive stress. Research has shown that SRT1720 improves mitochondrial DNA (mtDNA)
damage and enhances mitochondrial repair in VSMCs affected by oleic acid (OA)-induced
mitochondrial dysfunction. Additionally, SRT1720 reduces mitochondrial reactive oxygen
species levels in OA-treated VSMCs. SRT1720 significantly elevates the expression levels of
Sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α).
However, pre-treatment with EX527 and SR-18292 prior to SRT1720 administration did
not reverse senescence, the inflammatory response, or the atherosclerotic phenotype in
VSMCs [94]. The upregulation of SIRT1 and deacetylation of PGC-1α by SRT1720 restores
mitochondrial function, inhibiting VSMC senescence and the expression of atherosclerosis-
related proteins and phenotypes. Through SIRT1-mediated deacetylation of the PGC-1α
pathway, SRT1720 mitigates OA-induced atherosclerosis associated with VSMC senescence
and mitochondrial dysfunction [94,95].

5.5. Virus Replication

LDs form inter-organelle contacts with the endoplasmic reticulum (ER) to facilitate
their biogenesis, while contacts between LDs and mitochondria enhance the β-oxidation
of fatty acids contained within them [96]. Viruses have been shown to utilize LDs to
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promote viral production [97]. Researchers discovered that the coronavirus ORF6 protein
targets LDs, localizes at mitochondria–LD and ER–LD contact sites, and regulates both
LD biogenesis and lipolysis [37]. At the molecular level, ORF6 inserts into the LD lipid
monolayer via its two amphipathic helices. Additionally, ORF6 interacts with ER membrane
proteins B cell receptor associated protein 31 (BAP31) and unconventional SNARE in the
ER 1 (USE1) to mediate the formation of ER–LD contacts. ORF6 also interacts with the SAM
complex in the mitochondrial outer membrane to link mitochondria to LDs. Through these
interactions, ORF6 promotes cellular lipolysis and LD biogenesis, thereby reprogramming
lipid fluxes in the host cell and enhancing virulence [37].

5.6. Neurodegenerative Diseases

Astrocytes play a crucial role in supporting neurons, and their phenotypic shifts are
associated with the onset of neurodegenerative diseases [98]. Metabolically, astrocytes ex-
hibit low mitochondrial oxidative phosphorylation (OxPhos) activity. Research has shown
that the brain relies significantly on astrocyte OxPhos for fatty acid degradation and main-
taining lipid homeostasis. Dysregulation in astrocyte OxPhos leads to lipid droplet (LD)
accumulation, triggering neurodegenerative changes characteristic of Alzheimer’s disease,
such as synaptic loss, neuroinflammation, demyelination, and cognitive deficits [99]. When
the fatty acid load exceeds the OxPhos capacity of astrocytes, elevated acetyl-CoA levels
induce astrocyte reactivity by promoting STAT3 acetylation and activation [17].

Lipid-rich reactive astrocytes enhance fatty acid oxidation and oxidative stress in neu-
rons, activate microglia through IL-3 signaling, and suppress the biosynthesis of fatty acids
and phospholipids essential for myelin repair. The progressive mitochondrial dysfunction
in astrocytes sequentially triggers neuroinflammation and neurodegeneration. The link
between metabolic dysregulation and Alzheimer’s disease (AD) pathology is becoming
increasingly clear. In AD, neurons show altered lipid metabolism and mitochondrial dys-
function, with dysfunctional LDs leading to toxic lipid accumulation, and mitochondrial
impairment resulting in reduced ATP production and increased oxidative stress [100].
These factors contribute to amyloid-β accumulation and tau pathology. LD–mitochondria
interactions in neurons are crucial for managing lipid homeostasis and mitochondrial
health, impacting AD progression [101].

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons
in the substantia nigra. A well-established feature in PD is mitochondrial dysfunction,
specifically impaired complex I activity of the electron transport chain. Additionally,
changes in lipid metabolism, including LD dynamics, have been observed in PD models.
These alterations in LD–mitochondria interactions may contribute to neuronal death by
disrupting energy homeostasis and increasing susceptibility to oxidative stress [102,103].

6. Therapeutic Perspectives

The intricate relationship between LDs and mitochondria presents a novel avenue
for therapeutic intervention, particularly in metabolic, cardiovascular, and neurodegen-
erative diseases. This section explores the potential of targeting these interactions, recent
advancements in the field, and the challenges faced in translating these findings into
clinical practice.

The dysregulation of LD–mitochondria interactions play a central role in the patho-
physiology of various diseases, making it a compelling target for therapeutic intervention.
Modulating these interactions could restore metabolic balance, reduce oxidative stress,
and improve cellular function [104]. Approaches to modulate these interactions include
enhancing mitochondrial fatty acid oxidation, regulating lipid mobilization from LDs, and
restoring the structural integrity of mitochondria [49]. Pharmacological agents that target
key enzymes or regulatory proteins involved in LD dynamics or mitochondrial function are
under investigation [105]. In metabolic diseases like obesity and type 2 diabetes, therapies
aimed at enhancing lipid oxidation in mitochondria or reducing lipid accumulation in LDs
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could improve insulin sensitivity and glucose homeostasis. For instance, activating AMPK
has been shown to stimulate mitochondrial biogenesis and fatty acid oxidation [106].

Recent research has identified several potential drug targets within the LD–mitochondria
axis. These include enzymes involved in lipid metabolism (e.g., lipases), proteins regulating
LD–mitochondria contacts (e.g., perilipins), and mitochondrial proteins involved in fatty
acid transport and oxidation (e.g., CPT1) [47,107,108]. The development of small molecules
that can specifically modulate the activity of these targets is underway. Such molecules
have the potential to fine tune the metabolic processes mediated by LD–mitochondria
interactions. AMPK activators, such as metformin, have shown promise in enhancing
mitochondrial function and energy expenditure. They are being explored for their broader
implications in metabolic diseases, extending beyond glycemic control [40].

Despite the promise, translating these findings from bench to bedside poses significant
challenges. These include the complexity of LD–mitochondria interactions, the need for
tissue-specific targeting, and potential off-target effects [109,110]. Future research is directed
towards understanding the precise molecular mechanisms governing LD–mitochondria
interactions in different disease contexts. This knowledge is crucial for designing more
effective and targeted therapeutic strategies. Considering the variability in metabolic
responses among individuals, a personalized medicine approach, taking into account
genetic and epigenetic factors influencing LD–mitochondria dynamics, could be pivotal in
the effective management of metabolic and degenerative diseases [111].

7. Conclusions and Perspectives

The exploration of LD and mitochondria interactions has unveiled a fascinating di-
mension of cellular biology, emphasizing its crucial role in energy homeostasis, metabolic
regulation, and disease pathogenesis. We have journeyed through the dynamic world of
these organelle interactions, uncovering their pivotal role in balancing energy storage and
utilization, adapting to metabolic stress, and maintaining cellular health. This journey
has also revealed the profound implications of these interactions in a range of diseases,
including metabolic disorders, liver and cardiovascular diseases, and neurodegenerative
conditions. The intricacies of LD–mitochondria contacts, once a niche area of cellular
biology, have emerged as a potential goldmine for therapeutic interventions, offering novel
strategies for tackling metabolic and degenerative diseases.

Despite significant advancements, critical gaps remain in our understanding. The
precise molecular mechanisms governing LD–mitochondria interactions are yet to be
fully elucidated. Future research should aim to uncover these mechanisms, exploring the
potential of integrative systems biology approaches to provide a holistic understanding.
Additionally, the tissue-specific dynamics of these interactions and their implications in
organ-specific diseases present a fertile ground for further investigation. Translating these
basic research findings into clinical applications is a paramount next step, necessitating
a concerted effort to develop targeted therapeutics and evaluate them in clinical trials.
The adoption of personalized medicine approaches, considering individual genetic and
metabolic profiles, will be key in optimizing these treatment strategies.

As we stand on the cusp of new discoveries, the study of LD–mitochondria interactions
beckon an interdisciplinary approach. Integrating insights from cell biology, biochemistry,
pharmacology, and clinical science is imperative to fully harness the potential of this
field. The future promises not just a deeper understanding of cellular metabolism but
also novel, effective therapeutic approaches for a range of challenging diseases. The
journey of exploring LD–mitochondria interactions, therefore, is not just a path to academic
enrichment but a beacon of hope for advancements in human health and medicine.

This review has traversed the complex and dynamic landscape of LD and mito-
chondria interactions, shedding light on their pivotal role in cellular metabolism and
highlighting their significance in health and disease. We have delved into the mechanisms
of these organelle interactions, their physiological relevance, and the profound impact
their dysregulation has on a spectrum of diseases, including metabolic disorders, liver and
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cardiovascular diseases, and neurodegenerative conditions. Furthermore, this exploration
has unveiled promising therapeutic opportunities, emphasizing the potential of targeting
LD–mitochondria interactions as a novel strategy for disease intervention. As we conclude,
it is evident that understanding the intricate dance between LDs and mitochondria is not
just crucial for deciphering cellular metabolic processes but also holds the key to unlocking
new avenues in disease treatment and prevention, heralding a new era in medical research
and therapeutic development.
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