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Abstract: Skin cancer encompasses a range of cutaneous malignancies, with non-melanoma skin
cancers (NMSCs) being the most common neoplasm worldwide. Skin exposure is the leading risk
factor for initiating NMSC. Ultraviolet (UV) light induces various genomic aberrations in both tumor-
promoting and tumor-suppressing genes in epidermal cells. In conjunction with interactions with
a changed stromal microenvironment and local immune suppression, these aberrations contribute
to the occurrence and expansion of cancerous lesions. Surgical excision is still the most common
treatment for these lesions; however, locally advanced or metastatic disease significantly increases
the chances of morbidity or death. In recent years, numerous pharmacological targets were found
through extensive research on the pathogenic mechanisms of NMSCs, leading to the development
of novel treatments including Hedgehog pathway inhibitors for advanced and metastatic basal
cell carcinoma (BCC) and PD-1/PD-L1 inhibitors for locally advanced cutaneous squamous cell
carcinoma (cSCC) and Merkel cell carcinoma (MCC). Despite the efficacy of these new drugs, drug
resistance and tolerability issues often arise with long-term treatment. Ongoing studies aim to identify
alternative strategies with reduced adverse effects and increased tolerability. This review summarizes
the current and emerging therapies used to treat NMSC.

Keywords: non-melanoma skin cancer; cutaneous squamous cell carcinoma; basal cell carcinoma;
Merkel cell carcinoma; immunotherapy; targeted therapy; new drugs

1. Introduction

Skin cancer has the highest incidence of all forms of cancer worldwide, with approximately
90% of these cases classified as non-melanoma skin cancer (NMSC) [1]. The leading cause of
NMSCs is unprotected exposure to ultraviolet (UV) radiation, although many other variables
also contribute to their pathogenesis [2]. Among these factors, immune suppression from various
causes significantly exacerbates the risk and aggressiveness of NMSCs. In 2020, GLOBOCAN
estimated that approximately 1.2 million new cases of NMSC occur annually, though this count
may be underestimated due to challenges with NMSC identification and documentation [3].
Among NMSCs, the most frequent are basal cell carcinoma (BCC) and cutaneous squamous
cell carcinoma (cSCC), while Merkel cell carcinoma (MCC) is less commonly encountered [4].
While the mortality rate from these cancers is relatively low, the prognosis worsens if the cancers
metastasize. The incidence of metastatic BCC is estimated to be less than 0.1%, with a median
overall survival (OS) of 10 months [5]. The metastatic potential of cSCC varies from 0.3% to 3.7%
with a median OS of 2.19 years [6]. cSCC and BCC have better prognoses than MCC, which has
a 5-year OS rate of ≤18% [7].

Surgical excision is still the most prevalent therapeutic approach in individuals who present
with NMSC [8]. Late-stage NMSC patients, however, often are not candidates for surgery
and have significant rates of post-surgical recurrence if they are surgical candidates. Recent
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studies aim to solve this problem by developing targeted therapeutics and immunotherapy [9].
Researchers have identified dysregulated intracellular signaling pathways in NMSCs for this
purpose. The hedgehog protein signaling pathway has been identified as a target for BCC, and
the epidermal growth factor receptor (EGFR) has emerged as a target for cSCC. Immunotherapy
studies have progressed in treating systemic disease by applying immuno-checkpoint inhibitors
targeting the PD-1/PD-L1 pathway and CTLA-4. The development of treatments with the
highest efficacy and fewest adverse effects will necessitate continued research for years to
come. This review aims to provide a comprehensive exploration of the traditional and the latest
therapeutic approaches in the treatment of NMSCs.

2. Pathogenesis of NMSC

NMSCs are characterized by aberrant cell growth and a high mutational burden. Their
development is primarily due to exposure to ultraviolet radiation (UV), although fair
skin, immunosuppression, viruses, and certain hereditary disorders also contribute to the
pathogenesis of these diseases [10,11].

2.1. UV Radiation

The most prevalent sites of NMSC are the most sun-exposed areas of the body, such as the
head and neck region, followed by the upper limbs [12,13]. A correlation between the geograph-
ical incidence of NMSC and latitudinal variation in the intensities of UV radiation has been
demonstrated [12,14]. Countries with the highest risk of NMSC incidence are predominantly
those with a more significant proportion of people with fair skin [1]. Individuals with darker
skin tones, who have higher melanin content, are generally more protected against UV-induced
damage [15]. UV radiation exerts its destructive effects through DNA damage and oxidative
stress, which can subsequently lead to gene mutations and inflammatory responses [16,17]. The
dysregulation of diverse signaling pathways caused by UV damage has been shown to impair
the ability to metabolize free radicals and to promote abnormal keratinocyte mitosis. These
changes may contribute to the development of NMSC [18].

2.2. Immunosuppression

Individuals with impaired immune systems are at a relatively increased risk of de-
veloping cutaneous malignancies when compared to healthy individuals [11]. Immuno-
suppressed patient cohorts comprise solid organ transplant recipients, patients afflicted
with hematologic neoplasms such as chronic lymphocytic leukemia, and individuals suffer-
ing from certain viral infectious diseases such as acquired immunodeficiency syndrome
(AIDS) [19,20]. Patients who have undergone transplantation and thus have been treated
with prolonged immunosuppressive therapy exhibit an increased risk of developing skin
malignancies [21]. Among the NMSC, the incidence of cSCC in immunosuppressed patients
is the most prominent [22,23]. Furthermore, tumors exhibit more aggressive behavior in
transplant recipients, with a higher risk of metastasis and mortality [24].

2.3. Oncogenic and Tumor Suppressive Pathway

Compared to all other types of cancer, NMSCs are associated with a significantly
elevated tumor mutational burden (TMB). The median number of mutations per megabase
(Mb) is 45.2, 47.3, and 53.9 in cSCC, BCC, and MCC, respectively [25,26]. The high TMB is
thought to be related to prolonged exposure to UV radiation. The mutational landscape of
NMSC typically results in the impairment of signal transduction pathways involved in cell
cycle control and the regulation of differentiation [27,28].

Various mutations are detected in cSCC, most commonly in the TP53, NOTCH1,
NOTCH2, CDKN2A, HRAS, and EGFR genes [27,29]. Mutations in the tumor suppressor
p53 can lead to alterations in the apoptosis of cells with damaged DNA and uncontrolled
proliferation of keratinocytes [30,31]. Meanwhile, mutations inhibiting NOTCH signaling,
often in combination with RAS and PI3K mutations, are primarily associated with the
dysregulation of keratinocyte differentiation [32,33]. Targeted therapeutic strategies mainly
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focus on inhibiting the EGFR, which is frequently mutated or deregulated in cSCC [34]. Its
dysregulation leads to downstream activation of signaling pathways, including Ras-Raf-
MEK-ERK and PI3K, which affect keratinocyte proliferation and differentiation [34].

The Hedgehog (Hh) signaling pathway is central to BCC initiation and progression [35].
Dysregulated activation of the Hh signaling pathway is mainly due to Patched 1 (PTCH1)
loss-of-function mutations and G-protein-coupled smoothed (SMO) transmembrane receptor
activating mutations [36]. PTCH1 is a constitutive inhibitor of SMO. In the presence of the ligand
Sonic Hedgehog, SMO is no longer repressed by PTCH1, activating the SMO-SUFU-GLI cascade.
Glioma-associated (GLI) transcription factors are free to translocate to the nucleus, where they
regulate the transcription of several genes that control cell proliferation and growth [37].

By contrast, two pathways are thought to contribute to MCC pathogenesis: UV radia-
tion and Merkel cell polyomavirus (MPyV) [38]. The development of MCC is more often
associated with MPyV [39]. Virus-positive (VP)-MCC accounts for almost 80% of the MCCs
in the USA, while the incidence of virus-negative (VN)-MCC increases in areas with high
UV exposure and fair-skinned populations [40,41]. It is important to note that VP- and
VN-MCC show significant differences in mutational burden and genomic stability, with
TP53 and RB1 being the most frequently mutated genes in VN-MCC [26,42]. Meanwhile,
small T antigen (sT) and the truncated form of large T antigen (LT), which are expressed
upon the integration of MPyV DNA into the host cells, are critical drivers for carcinogenesis
in VP-MCC [43]. The essential function of truncated LT in VP-MCC is to inhibit Rb and
p53, which, similarly to VN-MCC, leads to uncontrolled MCC cell proliferation [44,45].

3. Cutaneous Squamous Cell Carcinoma
3.1. Clinical Features and Staging of cSCC

cSCC often appears as a non-healing ulcer or an irregular growth on sun-exposed body
parts, such as the head, neck, lower lip, scalp, and forehead. It typically manifests as nodules or
plaques characterized by varying degrees of ulceration, crusting, and scaling [46]. The anatomi-
cal location and subtype impact the highly variable clinical characteristics of cSCC [47,48]. These
subtypes differ significantly in their biological behavior, with some showing a strong predispo-
sition for aggressive and often metastatic activity and others being relatively indolent. Several
cSCC subtypes can be categorized as low-, intermediate-, or high-risk variations based on the
likelihood of metastasis and tumor recurrence [49]. cSCC in situ lesions are the earliest form
of squamous cell skin cancer. They usually grow slowly and present with no symptoms [46].
These kinds of lesions can vary in appearance from a tiny keratotic papule to a scaly pink area.
A clearly defined, erythematous, red plaque is the hallmark of Bowen disease, a form of in situ
cSCC [50]. Invasive cSCC may develop from up to 5% of in situ cSCC. Histologic perineural
invasion is seen in lesions of invasive cSCC, particularly in high-risk cases [51].

cSCC presents a challenge in identifying high-risk cases, complicating treatment strate-
gies and prognosis assessment. Other factors, such as nodal involvement and in-transit
metastases, further add to the complexity of prognosis determination [52,53]. Brigham
and Women’s Hospital (BWH) (Boston, MA, USA) has identified four key risk factors that
improve predictive accuracy compared to traditional staging systems like the American
Joint Committee on Cancer (AJCC) and Union for International Cancer Control (UICC) [54].
These include tumor diameter ≥ 2 cm (linked to local recurrence), invasion beyond subcuta-
neous fat (associated with nodal metastasis risk), poor differentiation status, and perineural
invasion (the latter two both being related to disease-specific death risk). The National Com-
prehensive Cancer Network (NCCN) defines high-risk cSCC based on various clinical and
histological factors, including tumor size, margin definition, recurrence, and histological
characteristics like poor differentiation [55]. The NCCN mainly focuses on treatment guid-
ance, while the BWH prioritizes prognostic assessment, and the AJCC categorizes stages
from T0 to T4 based on tumor size and depth of invasion [56]. Recent studies have demon-
strated that BWH predicts metastasis and mortality more effectively than AJCC [57]. This
is due to its higher specificity and positive predictive value. This classification framework
assists clinicians in devising treatment plans and forecasting patient outcomes [49,58].
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3.2. Current Available Therapies

cSCC is predominantly managed through surgical excision and histopathologic scrutiny,
achieving remarkable cure rates of up to 95% [4]. Initial management of early-stage cSCC
predominantly relies on surgical resection, boasting a meager recurrence rate of approximately
4.6% and negligible metastatic potential [59,60]. High-risk cSCCs are best managed with
micrographically controlled surgery (MCS), which minimizes the removal of uninvolved tissue
and provides a thorough margin inspection [61].

In scenarios where surgery is not indicated, radiation therapy emerges as a viable alter-
native. Radiotherapy offers compelling outcomes, showcasing high cure rates particularly in
early-stage cSCC [62,63]. Although these standard-of-care methods are effective, they are often
invasive and may lead to considerable scarring and fibrosis. Alternatively, the management of
cSCC includes various physical treatment options such as laser therapies, cryotherapy, curettage,
and photodynamic therapy [64–66]. Among these, photodynamic therapy (PDT) utilizes a
photosensitizer along with light exposure in an oxygen-rich environment to eliminate cancer
cells. Over the past twenty years, PDT has developed into an effective treatment method for
NMSCs including superficial and thin nodular BBC and in situ cSCC.

These modalities are highly effective for low-risk, localized cSCC, especially when
conventional surgical intervention is not an option. Despite their effectiveness and favorable
aesthetic outcomes, these modalities lack histological assessment capabilities. Advanced
cSCC, typified by stage III or higher tumors, poses therapeutic challenges that extend
beyond conventional surgical or radiotherapeutic interventions.

Figure 1 illustrates the algorithm for the treatment of cSCC.
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3.2.1. Topical Treatment

For patients who are not candidates for surgery, topical treatments such as imiquimod
or 5-fluorouracil (5-FU) creams offer alternative approaches to manage precancerous lesions
or localized cSCC. Topical 5-FU disrupts intracellular nucleotide pools, selectively targeting
rapidly proliferating cells in abnormal skin, leading to inflammation, erosion, and lesion
resolution. Its targeted cytotoxicity makes it a promising choice in dermato-oncology,
effectively treating malignant and non-malignant skin conditions while minimizing harm
to healthy skin cells [67–71]. Imiquimod acts as a Toll-like receptor 7 agonist and serves as
a topical immunostimulatory agent. Treatment with imiquimod has achieved remission
rates exceeding 70% in patients with localized cSCC, although surgery is still considered
more effective overall [72]. However, imiquimod has not been shown to be effective in
treating or preventing cSCC in immunocompetent patients [73]. Recent advances in topical
immune-modulating treatments include the utilization of thymic stromal lymphopoietin
(TSLP). Known for its strong antitumor properties in skin with compromised barriers,
TSLP has shown considerable promise in enhancing skin cancer therapies [74]. It can
be activated in the skin by calcipotriol (calcipotriene), a topical medication approved
by the FDA for treating psoriasis [75]. A recent randomized, double-blind clinical trial
with immunocompetent patients found that combining calcipotriol with 5-FU not only
eradicated actinic keratoses (precursor lesions of cSCC) but also triggered a robust immune
response involving CD4+ and CD8+ tissue-resident memory cells targeting premalignant
epidermal clones. Three years later, the trial revealed that significantly fewer individuals in
the calcipotriol plus 5-FU treatment group developed new cSCC cases compared to those
in the control group [76,77].

3.2.2. Targeted Therapy

In the past, advanced cSCC was predominantly treated through targeted therapeutic
strategies, particularly emphasizing the utilization of EGFR inhibitors [78,79]. However,
with the advent of immunotherapy, the role of these agents has become less prominent.
Among the most promising therapeutic agents are cetuximab and panitumumab.

The administration of cetuximab, whether independently or in combination with ra-
diotherapy or platinum-based agents, has demonstrated clinical effectiveness in managing
advanced cSCC. Phase II trials have investigated EGFR inhibitors, such as cetuximab, in
patients with metastatic or locally advanced cSCC, displaying variable efficacy [80,81].
The objective response rate (ORR) ranged from 28% to 42%. Conversely, when used as
a standalone treatment for cSCC, panitumumab has shown notable safety and efficacy
profiles. Cetuximab is often utilized as a secondary-line option following primary or ac-
quired resistance to a PD1 therapy, while panitumumab awaits formal approval for the
treatment of cSCC despite demonstrating efficacy [82]. Genetic studies show a low preva-
lence of mutations in RAS, BRAF, and EGFR in cSCC, indicating that pre-screening before
cetuximab therapy may not be necessary [83]. However, caution is recommended due to
the potential for adverse events associated with cetuximab and panitumumab therapies,
including infections and bleeding related to EGFR-targeted therapies.

3.2.3. Systemic Immunotherapy

Systemic immunotherapy has revolutionized the treatment landscape for advanced or
metastatic non-melanoma skin cancers like cSCC, especially for patients who are unsuitable
candidates for surgery or radiation therapy. Checkpoint inhibitors such as cemiplimab and
pembrolizumab have emerged as key players, targeting pathways like PD-1/PD-L1 and
significantly improving patient outcomes. The advent of immunotherapy has transformed
the management of advanced non-melanoma skin cancers, offering new hope for patients
previously facing limited treatment options and poor outcomes.

Cemiplimab, a high-affinity monoclonal antibody against PD-1, has gained regulatory
approval from both the United States Food and Drug Administration (FDA) and the Euro-
pean Medicines Agency (EMA) for managing advanced cSCC and locally advanced BCC,
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administered intravenously every three weeks at a dosage of 350 mg per infusion [84–87].
Clinical trials, including the landmark EMPOWER-CSCC-1 trial (n = 78), have demon-
strated efficacy across metastatic and locally advanced cSCC cohorts with an ORR of 47%,
CR rate of 6.7%, and tolerability, irrespective of PD-L1 expression status [86–89]. In regard
to its safety, cemiplimab exhibits a toxicity profile comparable to that of other PD-1/PD-L1
inhibitors. Grade 3 or higher immune-related adverse effects (irAEs) were reported in 10%
of patients, with the most common being pneumonitis (3%), diarrhea (2%), and fatigue
(2%) [88]. Real-world data reaffirm cemiplimab’s effectiveness and safety, establishing it as
a frontline option for unresectable or metastatic cSCC [89–93]. Neoadjuvant cemiplimab
therapy has shown promising outcomes, achieving pathological remission in a significant
proportion of patients before surgical excision.

Pembrolizumab, a humanized PD-1 blocking antibody, has emerged as a significant
therapeutic option in managing cSCC, particularly for cases resistant to conventional
therapies [94]. Pembrolizumab received FDA approval as a first-line treatment for locally
advanced unresectable or metastatic cSCC based on the KEYNOTE-629 trial (n = 105),
in which the patients were administered intravenously every three weeks at the dosage
of 200 mg for up to 35 cycles or until progression [95,96]. Pembrolizumab achieved an
overall ORR of 40.3% and CR rate of 12.6% in all populations, with an ORR of 50% in the
locally advanced cohort and an ORR of 35.2% in the recurrent/metastatic group. Other
studies, such as the CARSKIN trial (n = 57), further supported pembrolizumab’s efficacy as
a first-line agent for unresectable cSCC, reporting an ORR of 41% at week 15 and a CR rate
of 21% [97]. In conclusion, pembrolizumab demonstrates both efficacy and tolerability in
the treatment of cSCC, showing promise in recurrent or metastatic settings and as a first-
line therapy. A total of 11.9% of patients experienced Grade 3–5 immune-related adverse
events (irAEs), including severe skin reactions, immune colitis, and immune hepatitis [96].
Tragically, two fatalities occurred due to treatment-related adverse events: one from cranial
nerve neuropathy and another from immune-mediated colitis.

3.3. New Treatment Modalities

In addition to cetuximab and panitumumab, other EGFR inhibitors were explored in phase
II studies, such as gefitinib (n = 40), erlotinib (n = 29), and lapatinib (n = 10). Gefitinib treatment
of patients with recurrent and metastatic cSCC was conducted in a phase II study (NCT00054691)
at The University of Texas M. D. Anderson Cancer Center. The treatment regimen consisted of
administering gefitinib orally at a dose of 250 mg per day until either disease progression or the
onset of intolerable side effects, showing an ORR of 16% [98]. In a phase 2 trial (NCT01198028),
the efficacy of erlotinib was evaluated in patients with recurrent or metastatic cSCC who were
unsuitable for curative treatment [99]. Thirty-nine patients received 150 mg of erlotinib daily.
The overall response rate was 10%, and no unexpected toxicities were observed. A phase
2 clinical trial (NCT0166431) was conducted to investigate the impact of lapatinib on cutaneous
squamous cell carcinoma (cSCC) and precursor lesions. Ten male patients received neoadjuvant
lapatinib therapy, demonstrating a reduction in cSCC size in two patients and a 30% decrease
in precursor lesions after 56 days [100]. These findings suggest potential for further research,
particularly in high-risk patients.

The involvement of the mTOR pathway in cSCC and other NMSCs has attracted sig-
nificant interest as well [101]. mTOR inhibitors have demonstrated potential as efficacious
treatments, particularly in solid-organ transplant recipients. Topical rapamycin treatment
has shown efficacy in conditions such as Paget’s disease and extramammary Paget’s disease
(EMPD) [102–104]. In conclusion, while EGFR inhibitors remain pivotal, targeted therapies
and mTOR inhibitors offer promising alternatives.

Two promising new PD-1 inhibitors effective in treating advanced and metastatic cSCC
are nivolumab and cosibelimab. Nivolumab has also been investigated in the first-line
treatment of advanced CSCC and in the second-line therapeutic option for head and neck
cSCC in China [105]. A phase II investigation (NCT03834233) in which the patients were
administered intravenously every two weeks at a dosage of 3 mg/kg for up to 12 months
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revealed encouraging results, with an ORR of 54.5% at 24 weeks for advanced cSCC, albeit
accompanied by notable treatment-related AEs affecting 21% of patients (n = 24) [106].
Cosibelimab was studied in a phase I trial (NCT03212404) in patients with metastatic
cSCC (n = 10) [107]. Administered intravenously at 800 mg every two weeks, it yielded an
ORR of 47.4% among participants, suggesting potential as a therapy for metastatic cSCC
with a tolerable safety profile. The most common adverse events included fatigue, rash, and
anemia, with manageable immune-related adverse events reported in 23.1% of participants.

In addition to checkpoint inhibitors, alternative immunotherapeutic approaches such
as intralesional injections of talimogene laherparepvec (T-VEC), an HSV-1 oncolytic virus
FDA-approved for the local treatment of unresectable recurrent melanoma, are being investi-
gated (NCT03714828). Clinical trials are exploring combination therapies to enhance response
rates and improve patient prognosis [108,109]. In this pilot study, all seven participants achieved
impressive ORR and CR values of 100%, with mild adverse effects. These findings highlight
TVEC’s potential as a treatment option for unresectable cSCC (Table 1).

Table 1. Ongoing trials in cutaneous squamous cell carcinoma (cSCC).

NCT Identifier Study Title Conditions Phases Patients

Topical Treatment NCT00652080
An Open-Label Safety Study of API 31510 in a

Topical Cream for in Situ Cutaneous Squamous
Cell Carcinoma (SCCIS)

In situ cSCC PHASE1/2 35

EGFR Inhibitor NCT02324608 Cetuximab Before Surgery in Treating Patients
With Aggressive Locally Advanced Skin Cancer

Locally advanced
cSCC NA 15

NCT00126555

Gefitinib in Treating Patients Who Are
Undergoing Surgery and/or Radiation Therapy
for Locally Advanced or Recurrent Squamous

Cell Skin Cancer

Locally advanced
cSCC or Recurrent

cSCC
PHASE2 23

NCT01198028 Erlotinib in Treating Patients With Recurrent or
Metastatic Skin Squamous Cell Carcinoma

Recurrent or
Metastatic cSCC PHASE2 42

Immunotherapy NCT02883556
Study of Pembrolizumab as First Line Therapy
in Patients With Unresectable Squamous Cell

Carcinoma of the Skin
Unresectable cSCC PHASE2 57

NCT03834233 Nivolumab in Patients With Advanced
Cutaneous Squamous Cell Carcinoma Advanced cSCC PHASE2 24

NCT03212404 Phase 1 Study of CK-301 (Cosibelimab) as a
Single Agent in Subjects With Advanced Cancers Advanced cSCC PHASE1 500

NCT03714828 Study of TVEC in Patients With Cutaneous
Squamous Cell Cancer cSCC PHASE2 11

NCT04163952
Talimogene Laherparepvec and Panitumumab

for the Treatment of Locally Advanced or
Metastatic Squamous Cell Carcinoma of the Skin

Locally advanced
cSCC or Recurrent

cSCC
PHASE1 5

NCT02760498 Study of REGN2810 in Patients With Advanced
Cutaneous Squamous Cell Carcinoma Advanced cSCC PHASE2 432

4. Basal Cell Carcinoma
4.1. Clinical Features and Staging of BCC

BCC is the most common form of human skin cancer arising from the basal layer of the
epidermis [110]. It is more commonly observed in sun-exposed areas of the skin, including the
face, neck, and trunk [111–114]. BCCs are typically small or intermediate-size lesions that progress
slowly and display benign clinical prognosis. In some cases, local tissue infiltration and ulceration
can occur, although BCC is rarely associated with the onset of metastasis [115]. Metastatic BCC
and locally advanced BCC are distinguished by marked invasiveness, rapid growth rate, and
tendency to recur [116,117]. These types of BCC often result in a poor prognosis [118]. The clinical
features of BCC are diverse, and several variants have been described. However, BCC is typically
classified into three categories, superficial, nodular, and infiltrative, with the last one being the
least common and characterized by superficial blood vessels and local tissue invasion [110,119].
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According to the NCCN, BCC staging is based on the likelihood of recurrence, which
varies depending on the location of the tumor. Thus, low-risk, high-risk, and regional or
distant metastasis are categorized into three categories. Low-risk BCCs are minor and
superficial with clear and defined edges, while high-risk BCCs measure at least 2 cm in
width and have returned despite therapy in the past. If a lesion has spread to a remote site,
it is classified as regional or distant metastatic BCC. A novel classification released by the
European Association of Dermato-Oncology (EADO) that considers factors including size,
location, boundary definition, previous treatments, and related recurrences divided BCCs
into two categories: easy-to-treat BCC and difficult-to-treat BCC [120–122]. Easy-to-treat
BCC accounts for about 95% of BCCs with low recurrence risk. In comparison, difficult-
to-treat BCC includes locally advanced and metastatic BCC, which have an estimated
incidence of 0.8% and 0.0028–0.55%, respectively [123,124]. This classification is essential
for determining the most appropriate treatment approach [114].

4.2. Current Available Therapies

Surgery is the primary treatment modality for easy-to-treat BCCs, which also offers the
opportunity to perform a deeper examination of the safety margins and histological characteris-
tics of the tumor [120,125,126]. MCS should be instead utilized in patients with high-risk BCC.
However, it should be noted that surgery is associated with a high risk of relapse. Radiotherapy
has been identified as a potential treatment alternative for patients who are not eligible for
surgical intervention, with a comparable recurrence rate to that of surgery [127]. When surgery
and radiotherapy are unsuitable or contraindicated for the patient, second-line treatment options
may include topical treatment, targeted Hh inhibitors, or PD-1 inhibitor immunotherapy.

Figure 2 illustrates the algorithm for the treatment of BCC.
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4.2.1. Topical Treatment

Topical treatments are indicated as an option in low-risk superficial BCCs [128]. Topical
agents exhibit fewer side effects, are more cost-effective, and have lower cosmetic implications,
especially in patients where multiple BCC lesions necessitate multiple excisions [129–132].
Imiquimod 5% and 5-fluorouracil 5% cream are currently FDA-authorized for treating small
superficial BCCs [133–135]. Imiquimod is an immune response modifier that stimulates the
release of inflammatory immunomodulatory cytokines, leading to apoptosis of BCC [136]. The
treatment is indicated for use in immunocompetent adults and requires the application of the
cream five times per week for six weeks. Fluorouracil is a chemotherapeutic agent that acts as
a pyrimidine antimetabolite, interfering with DNA synthesis and inhibiting the proliferation
of BCC cells [137,138]. It must be applied twice daily for two to four weeks [135]. The most
common adverse effects are localized skin irritations, including burning and itching. The
immune-modulating effect of imiquimod may be more effective in preventing superficial BCC
recurrence [139,140]. The concerns regarding the utilization of topical treatment for BCC are
related to the difficulties of self-application by patients, the potential adverse reactions, and the
restricted application limited to low-grade superficial lesions.

4.2.2. Hedgehog Inhibitors

Aberrant activation of the Hh pathway and the subsequent loss of SMO receptor inhibition
is a hallmark of basal cell carcinoma [141]. The loss of SMO inhibition induces a cascade
activation that promotes tumor cell division and proliferation [142,143]. Identifying the role
of Hh pathway mutations in BCC pathogenesis pioneered the development of Hh inhibitor
treatment. Two oral Hh inhibitors, vismodegib and sonidegib, have been FDA-approved for
patients with locally advanced BCC and metastatic BCC [144]. These drugs are semi-synthetic
derivatives of natural alkaloid cyclopamine and target SMO protein [145]. Oral administration
is convenient and preferred by patients due to non-invasiveness. However, adverse side
effects, including muscle spasms and alopecia, may be alleviated with topical therapy [146,147].
Although Hh inhibitors are an effective alternative for treating advanced BCC, drug resistance
is one of the significant concerns, and known SMO mutations can confer functional resistance
to vismodegib and sonidegib [148,149]. Vismodegib is approved worldwide for treating adult
patients with locally advanced BCC or metastatic BCC who are not candidates for surgery or
radiotherapy [150,151]. It was the first authorized Hh inhibitor following the success of the
phase I ERIVANCE trial in which patients with locally advanced BCC (n = 15) or metastatic
BCC (n = 18) received 150 mg daily. The ORR was 43% and 30%, respectively, and the results
were in line with subsequent studies like the STEVIE trial, which enrolled 1215 subjects with an
ORR of 69% in the locally advanced BCC group and 37% in patients with metastatic BCC [152].
However, the common adverse effects such as muscle spasms, alopecia, fatigue, and nausea
have a high incidence and often result in treatment discontinuation [153]. In addition, the
rate of intrinsic or acquired resistance to vismodegib is as high as 20% within the first year
of treatment [154]. At a daily dose of 200 mg, sonidegib is the second FDA-approved drug
for treating unresectable locally advanced BCC [155,156]. In fact, in the BOLT trial of patients
with locally advanced BCC and metastatic BCC receiving sonidegib at 800 mg and 200 mg
daily, tumor response was independent of sonidegib dose in this range, suggesting 200 mg/day
instead of 800 mg/day [157]. The final report at 42 months showed that ORRs were 56% for
locally advanced BCC and 8% for metastatic BCC in the 200 mg group and 46.1% and 17%,
respectively, in the 800 mg cohort [158]. The most common adverse effects were similar to those
reported with vismodegib but also included raised creatinine and lipase concentration [157].

4.2.3. Systemic Immunotherapy

BCC cells express PD-L1, which, through the binding of the PD-1, can lead to the
inhibition of T cell function [159,160]. Cemiplimab is an anti-PD-1 monoclonal antibody
that enhances antitumor responses. It has been FDA-approved for treating locally advanced
BCC and metastatic BCC in patients with progressive disease, resistance or intolerance to
Hh inhibitors [161]. In a study involving 84 locally advanced BCC patients, cemiplimab
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was administered intravenously at a dosage of 350 mg every three weeks for up to 93 weeks.
The ORR was 31%, including 6% CR and 25% PR [162]. However, 97% of participants had
adverse effects, most commonly fatigue and itching, but colitis and adrenal insufficiency
were observed [162].

4.3. New Treatment Modalities

New clinical trials are underway for BCC, some of which have reported successful
preliminary results. Patidegib is a novel SMO inhibitor under development for topical
and oral administration. In a study involving 36 subjects with nodular BCC, patients were
treated topically once or twice daily with patidegib 2% or 4% gel for a total of 12 weeks,
with patidegib 2% gel showing a greater efficacy and lower adverse effects (NCT02828111).
Meanwhile, oral administration of patidegib at various doses (20 to 210 mg/day) was
associated with the most commonly reported adverse effects of muscle spasms, fatigue,
nausea, and hair loss in a phase I study involving 94 patients with advanced BCC [163].
Other studies are ongoing, and promising outcomes have been evaluated, evaluating the
efficacy of oral administration of second-generation Hh inhibitors such as taladegib and
itraconazole (NCT03972748) [164–166]. Topical itraconazole treatment is assessed in two
phase I trials (NCT02735356). Regarding immunotherapy, there has also been progress in
clinical trials on PD-1 inhibitors. Recent studies have investigated the neoadjuvant use of
oral pembrolizumab (NCT02690948) and nivolumab (NCT03521830) (Table 2).

Table 2. Ongoing trials in basal cell carcinoma (BCC).

NCT Identifier Study Title Conditions Phases Patients

Topical Treatment NCT05157763
A Study to Evaluate the Safety and Efficacy of

EscharEx (EX-02) in the Treatment of Basal
Cell Carcinoma

Superficial or
nodular BC PHASE1/2 32

NCT00604890
Dose-Ranging Clinical Trial of Topical Creams

Containing API 31510 for the Treatment of
Superficial Basal Cell Carcinoma

Superficial BCC PHASE1/2 186

NCT03180528 Topical Remetinostat in Treating Patient With
Cutaneous Basal Cell Cancer BCC PHASE2 30

HH Inhibitors NCT02667574
Study Evaluating the Interest of Vismodegib as

Neo-adjuvant Treatment of Basal Cell
Carcinoma (BCC)

BCC PHASE2 55

NCT04806646 Tailored Sonidegib Schedule After Complete
Response in BCC laBCC PHASE2 21

NCT02690948
Pembrolizumab With or Without Vismodegib in
Treating Metastatic or Unresectable Basal Cell

Skin Cancer

Metastatic or
unresectable BCC PHASE1/2 16

NCT06344052
To Assess the Safety and Efficacy of SP-002 With

Vismodegib for the Treatment of Locally
Advanced Basal Cell Carcinoma

Locally advanced
BCC PHASE2 80

NCT03035188
Neoadjuvant Vismodegib in Patients With Large

and/or Recurrent Resectable Basal Cell
Carcinoma

BCC PHASE2 40

NCT03972748 Use Of Oral Itraconazole In Patients With
Locally Limited Basocellular Carcinoma Of Skin. BCC NA 28

NCT02735356 Topical Itraconazole in Treating Patients With
Basal Cell Cancer BCC EARLY

PHASE1 9

NCT02828111

Clinical Trial of Patidegib Gel 2%, 4%, and
Vehicle Applied Once or Twice Daily to Decrease
the GLI1 Biomarker in Sporadic Nodular Basal

Cell Carcinomas

Nodular BCC PHASE2 36

NCT01700049 Study Evaluating the Efficacy of Oral
Vismodegib in Various Histologic Subtypes BCC PHASE2 28
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Table 2. Cont.

NCT Identifier Study Title Conditions Phases Patients

Immunotherapy NCT01327053
A Phase II Study of Efficacy and Safety in

Patients With Locally Advanced or Metastatic
Basal Cell Carcinoma

Locally advanced or
metastatic BCC PHASE2 230

NCT04679480 Anti-PD1-antibody and Pulsed HHI for
Advanced BCC Advanced BCC PHASE2 20

NCT03521830
Nivolumab Alone or Plus Relatlimab or

Ipilimumab for Patients With Locally-Advanced
Unresectable or Metastatic Basal Cell Carcinoma

Metastatic or
unresectable BCC PHASE2 57

NCT03132636

PD-1 in Patients With Advanced Basal Cell
Carcinoma Who Experienced Progression of

Disease on Hedgehog Pathway Inhibitor
Therapy, or Were Intolerant of Prior Hedgehog

Pathway Inhibitor Therapy

BCC PHASE2 138

5. Merkel Cell Carcinoma
5.1. Clinical Features and Staging of MCC

MCC is a rare and aggressive skin cancer with two main types: the virus-negative
MCC (VN-MCC), driven by ultraviolet-induced mutations, and virus-positive MCC (VP-
MCC), driven by Merkel cell polyomavirus (MPyV) [38,167]. Clinically, MCC presents as
painless but rapidly expanding flesh-colored nodules, mainly in the skin or subcutaneous
tissue [168]. Usually, MCC lesions are on sun-exposed skin, most commonly on the
extremities, head, and neck. MCCs are often confused with other lesions like cysts or
melanomas. Diagnosis requires biopsy due to nonspecific clinical features. However,
89% of patients with MCC show at least three of these features captured in the acronym
AEIOU: asymptomatic, expanding rapidly, immunosuppression, older than age 50, and
UV radiation [169]. Confirmation involves immunohistochemistry for neuroendocrine and
epithelial markers such as cytokeratin 20. MCCs can metastasize without a primary lesion.

The 8th Edition AJCC staging system for MCC refines staging by distinguishing
between clinical and pathological assessments using TNM criteria [170]. The majority of
patients exhibit local (65%), nodal (26%), or distant (8%) disease. Survival outcomes are
better for patients with pathological staging data. An extensive evaluation, encompassing
physical examination and imaging, is vital for precise staging. If metastasis is not identified,
patients may undergo a sentinel lymph node biopsy (SLNB) in conjunction with primary
tumor surgery [171,172]. This approach facilitates the discussion of prognosis and treatment
planning for patients with MCC.

5.2. Current Available Therapies

Surgical excision remains the primary treatment for resectable MCC. The standard
procedure involves excising the primary tumor with 1 cm lateral margins, encompassing
the underlying fascia, followed by a potential SLNB [173,174]. Adjuvant radiation therapy
(50–55 Grays) is recommended post-surgery, also in patients with pathologically negative
lymph nodes. For patients who are unsuitable candidates for surgery or have primary
tumors in anatomical locations where excision would cause notable functional limitations,
radiotherapy monotherapy serves as an alternative [175,176]. A positive SLNB without dis-
tant metastasis may result in complete lymph node dissection (CLND), radiation therapy, or
both [174]. Treatment options encompass radiotherapy, immunotherapy, or chemotherapy
in metastasis to additional organs.

Figure 3 illustrates the algorithm for the treatment of MCC.
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Systemic Immunotherapy

The advent of checkpoint inhibitors targeting the PD-1/PD-L1 pathway has revolution-
ized the treatment of metastatic MCC, now recommended as the first-line therapy by global
guidelines. Avelumab, the first systemic therapy for MCC, proved effective in both second-
line (n = 88) and first-line (n = 116) treatments in the JAVELIN Merkel 200 trial [7,177].
Administered intravenously every two weeks at a dosage of 10 mg/kg until treatment
progression, it achieved an ORR of 33% and CR of 11% post-chemotherapy failure. In
first-line treatment, a 40% ORR was observed. While PD-L1 positivity correlated with
better responses, it was not a requisite for the treatment. Although not approved for the
treatment of locally advanced disease alone, the off-label use of this treatment is being
explored [178,179]. Pembrolizumab gained FDA approval in 2018 for recurrent locally
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advanced or metastatic MCC. In Keynote 017 (n = 50), in which the patients were admin-
istered intravenously every three weeks at a 2 mg/kg dosage for up to 2 years, the ORR
was 58%, including 24% demonstrating an imaging CR [180,181]. Retifanlimab, another
PD-1 receptor monoclonal antibody, was investigated in the POD1UM-201 phase II trial
(NCT03599713), in which 87 treatment-naïve patients received 500 mg IV every four weeks
for up to 2 years, with an ORR of 46% and CR of 12%. Subsequently, the FDA approved
retifanlimab for adult patients with metastatic or recurrent locally advanced MC.

5.3. New Treatment Modalities

Targeted therapies represent a promising avenue for patients with advanced MCC who
are ineligible for or unresponsive to immune checkpoint inhibitors. Merkel cell carcinoma
exhibits increased angiogenesis driven by high VEGF-A expression. Trials with tyrosine
kinase inhibitors (TKIs), such as pazopanib and cabozantinib, targeting VEGFR and other
pathways, showed modest efficacy [182]. The use of TKIs in combination with immunother-
apies is currently being investigated to improve outcomes (NCT04869137). YM155 and
ABT-263, small-molecule inhibitors of antiapoptotic protein surviving and apoptosis regu-
lator BCL-2 family proteins, have shown efficacy in inducing cell death in MCC cell lines
and xenografts [183,184]. VN-MCC is frequently associated with p53 mutations, whereas
VP-MCC is typically characterized by wild-type p53 [185,186]. KRT-232 (navtemadlin),
an MDM2 inhibitor, demonstrated efficacy in phase 1b/2 trials (NCT03787602) for p53
wild-type MCC patients, particularly those resistant to anti-PD1/PD-L1 therapy. Despite
these promising results, drug development for MCC was discontinued.

Merkel cell carcinoma expresses somatostatin receptors (SSTRs), suggesting potential
avenues for treatment with somatostatin analogs such as octreotide and lanreotide [187,188].
Although the effectiveness of these treatments in MCC is limited, ongoing investigations
aim to enhance outcomes by developing higher-affinity analogs and peptide receptor
radionuclide therapy.

The PI3K/AKT/mTOR signaling pathway is crucial in promoting tumor cell prolif-
eration and survival, including in the MCC [189]. MCC often exhibits elevated levels of
phosphorylated AKT and occasional mutations in the PIK3CA gene, indicating pathway
activation [190,191]. Inhibition of mTOR has shown promise in inducing cell death and
suppressing MCC growth in preclinical models [192,193]. Despite setbacks in clinical trials
targeting both mTOR complexes, recent research continues to highlight the importance of
this pathway in MCC, with upregulated gene expression linked to poor outcomes [194].
Clinical responses to PI3K and AKT inhibitors underscore the therapeutic potential of
targeting this pathway. There has only been a single reported case of a patient with ad-
vanced MCC carrying a known PI3K mutation successfully treated with idelalisib, a PI3K-δ
inhibitor, resulting in a rapid and complete remission [195]. A clinical trial is investi-
gating the safety and efficacy of mTOR inhibition in patients with MCC (NCT02514824).
Studies have demonstrated the effectiveness of copanlisib in inhibiting tumor growth,
while combination therapies with alpelisib and the BCL-2 inhibitor navitoclax show syn-
ergistic effects [196,197]. Additionally, artesunate, known for its anti-malarial properties,
exhibits cytotoxic activity in MCC, particularly in MCPyV-positive cases, suggesting a
novel therapeutic avenue for further exploration [198,199].

A recent preclinical study highlighted MUC1-C as a potential therapeutic target in
MCC [175,200]. This study revealed that MUC1-C interacts with MYCL, promoting MCC
progression and cell survival in both VP- and VN-MCC cells [201]. This finding underscores
the significance of targeting MUC1-C in MCC treatment, offering a potential avenue for
pharmacological intervention to impede disease progression.

In addition to the previous PD-1/PD-L1 inhibitors, nivolumab has been investigated
in treating advanced MCC, achieving an ORR of 68% (CheckMate 358 phase I/II trial,
NCT02488759). Combining nivolumab with ipilimumab, targeting cytotoxic T-lymphocyte
associated antigen-4 (CTLA-4), enhances antitumor responses, offering potential for pa-
tients unresponsive to PD-1 blockade [202,203]. CTLA-4 is an immune checkpoint protein
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able to repress the function of activated T cells binding CD80 or CD86 on their surface [204].
Despite the challenges that remain, immune checkpoint inhibitors represent a pivotal ad-
vancement in the management of MCC, offering hope for prolonged survival and enhanced
quality of life among patients with this aggressive malignancy.

Other potential treatment avenues under investigation include immunostimulatory
agents such as MCPyV vaccination and talimogene laherparepvec (T-VEC). In situ vaccina-
tion with plasmid DNA has been demonstrated to be an effective treatment for advanced
MCC patients who have shown resistance to PD-1/PD-L1 inhibitors. At the same time,
off-label use of T-VEC showed promise in treating recurrent MCC, with reported partial
or complete responses in several patients [205–209]. Clinical trials explore its potential in
MCC and other non-melanoma cancers (NCT03458117, NCT02819843, and NCT02978625).
These treatments may offer alternative options, particularly for patients unsuited for im-
munotherapy (Table 3).

Table 3. Ongoing trials in Merkel cell carcinoma (MCC).

NCT Identifier Study Title Conditions Phases Patients

Targeted Therapies NCT04869137 Neoadjuvant Lenvatinib Plus Pembrolizumab in
Merkel Cell Carcinoma MCC PHASE2 26

NCT03787602
Navtemadlin (KRT-232) with or without

Anti-PD-1/Anti-PD-L1 for the Treatment of
Patients with Merkel Cell Carcinoma

MCC PHASE1/2 115

NCT02514824 MLN0128 in Recurrent/Metastatic Merkel
Cell Carcinoma

Recurrent or
metastatic MCC PHASE1|2 9

Immunotherapy NCT04291885 Immunotherapy Adjuvant Trial in Patients with
Stage I-III Merkel Cell Carcinoma MCC PHASE2 132

NCT05496036 Neoadjuvant PD-1 Blockade in Resectable
Merkel Cell Carcinoma MCC PHASE2 15

NCT06151236 Neoadjuvant Nivolumab and Relatlimab in
Merkel Cell Carcinoma MCC PHASE2 20

NCT03599713 A Study of INCMGA00012 in Metastatic Merkel
Cell Carcinoma (POD1UM-201) Metastatic MCC PHASE2 107

NCT02488759

An Investigational Immuno-therapy Study to
Investigate the Safety and Effectiveness of
Nivolumab, and Nivolumab Combination

Therapy in Virus-associated Tumors

Advanced MCC PHASE1/2 578

NCT03458117 T-VEC in Non-melanoma Skin Cancer MCC PHASE1 26

NCT02819843
A Study of T-VEC (Talimogene Laherparepvec)
with or without Radiotherapy for Melanoma,

Merkel Cell Carcinoma, or Other Solid Tumors
MCC PHASE2 19

NCT02978625

Talimogene Laherparepvec and Nivolumab in
Treating Patients with Refractory Lymphomas or

Advanced or Refractory Non-melanoma
Skin Cancers

MCC PHASE2 68

NCT02155647 Avelumab in Participants with Merkel Cell
Carcinoma (JAVELIN Merkel 200) MCC PHASE2 204

NCT04393753
Domatinostat in Combination with Avelumab in
Patients with Advanced Merkel Cell Carcinoma

Progressing on Anti-PD-(L)1
Advanced MCC PHASE2 19

NCT05422781

Study to Evaluate The Safety, Tolerability and
Immunogenicity of 4 mg of ITI-3000 In Patients

with Polyomavirus-Positive Merkel Cell
Carcinoma (MCC)

VP-MCC PHASE1 6

6. Future Perspectives

Recent advancements in understanding the pathogenesis of cSCC, BCC, and MCC
have significantly advanced therapeutic options, enhancing patients’ survival and quality
of life. Crucial findings have highlighted the role of immune suppression in cSCC, the
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Hedgehog pathway’s critical involvement in BCC and its targeted inhibition’s success,
and the MPyV’s influence in the development of VP- MCC. Systemic immunotherapies
targeting PD-1 and PD-L1 have transformed the management of aggressive and metastatic
NMSC. However, the etiological complexity of NMSC, involving both genetic and envi-
ronmental factors, prevents a singular treatment approach. Furthermore, the incidence
of NMSC has grown over time and this is correlated with growing treatment costs. Of
the NMSC treatments that have been addressed in this review, topical therapy is more
cost-effective than other non-surgical therapies since it requires fewer in-office procedures
and reduces surgical risks such as scarring and infection [210]. However, as with surgery,
the cost of treatment is influenced by the size of the tumor and the delay in diagnosis. It is
evident that the future of NMSC management will increasingly rely on successful primary
and secondary prevention strategies. Well-defined risk factors, such as UV exposure and
immune suppression, provide unique opportunities for preventive strategies not typically
available for other cancers. Recent studies have also highlighted the dynamic interactions
within the tumor microenvironment, offering new perspectives on NMSC management,
including therapies for metastatic cSCC and extending research into MCC and BCC. Future
treatments may need to address the continuously evolving nature of cancer cells and the
intricate interplay of genetic, immunological, and stromal factors. Adopting a holistic ap-
proach could revolutionize treatment strategies by focusing not only on eliminating cancer
cells but also on altering the broader tumor environment to inhibit cancer progression.
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