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Abstract: Recent studies have hinted at a potential link between Alzheimer’s Disease (AD) and cancer.
Thus, our study focused on finding genes common to AD and Liver Hepatocellular Carcinoma
(LIHC), assessing their promise as diagnostic indicators and guiding future treatment approaches for
both conditions. Our research utilized a broad methodology, including differential gene expression
analysis, Weighted Gene Co-expression Network Analysis (WGCNA), gene enrichment analysis,
Receiver Operating Characteristic (ROC) curves, and Kaplan–Meier plots, supplemented with im-
munohistochemistry data from the Human Protein Atlas (HPA) and machine learning techniques, to
identify critical genes and significant pathways shared between AD and LIHC. Through differential
gene expression analysis, WGCNA, and machine learning methods, we identified nine key genes
associated with AD, which served as entry points for LIHC analysis. Subsequent analyses revealed
IKBKE and HSPA1A as shared pivotal genes in patients with AD and LIHC, suggesting these genes
as potential targets for intervention in both conditions. Our study indicates that IKBKE and HSPA1A
could influence the onset and progression of AD and LIHC by modulating the infiltration levels
of immune cells. This lays a foundation for future research into targeted therapies based on their
shared mechanisms.

Keywords: AD; LIHC; IKBKE; HSPA1A; bioinformatics analysis; machine learning

1. Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia in the elderly. Its pathological hallmarks are the insidious
accumulation of amyloid-β plaques and the presence of neurofibrillary tangles within the
brain, leading to the gradual erosion of cognitive function and memory [1–3]. The etiology
of AD is multifactorial, involving an intricate interplay between genetic, environmental,
and lifestyle factors, ultimately leading to synaptic dysfunction and neuronal loss [4–6].
The molecular mechanisms associated with AD are yet to be fully elucidated, which has
made the identification of robust biomarkers a contemporary research imperative.

Cancer is firmly established as one of the preeminent causes of mortality worldwide,
posing a significant challenge to global health with its profound impact on individuals,
families, and healthcare systems [7]. Some studies have pointed to a potential inverse
correlation between cancer and AD, while others argue for a parallel relationship [8–10].
Although the exact mechanisms underlying the relationship between cancer and AD
remain to be fully understood, both conditions share similar characteristics and risk factors,
including aging, smoking, obesity, and Type 2 diabetes [11–15]. The pathogenesis of both
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AD and cancer involves the PI3K/AKT/mTOR signaling pathway, which is crucial for
regulating cell proliferation, metabolism, growth, and autophagy [16–20]. Additionally,
angiogenesis, inhibition of cell adhesion, and inflammation are common features in both
cancer and AD [9]. Therefore, elucidating the commonalities between cancer and AD is of
paramount importance, potentially unlocking novel therapeutic avenues and offering new
hope for the treatment of these diseases.

In this research, we utilized bioinformatics and machine learning approaches to dis-
cern the links between AD and Liver Hepatocellular Carcinoma (LIHC). Bioinformatics
facilitates the comprehensive analysis of gene expression datasets to identify potential
biomarkers for disease diagnosis and prognosis [21,22]. Machine learning explores patho-
logical mechanisms and therapeutic targets at the genetic level across different diseases [23].
Through a combined bioinformatics and machine learning analysis, we have identified
key genes and molecular mechanisms shared between AD and LIHC, offering significant
insights for a potential cure for these two diseases.

2. Results
2.1. Identification of Differentially Expressed Genes (DEGs) in AD

The flow chart of this study is shown in Figure 1. Initially, we normalized the data
and illustrated the distribution of the normalized expression values using a box plot
(Figure 2A). This step ensured the quality and comparability of the dataset. Following
normalization, we conducted a differential gene expression analysis on the GSE132903
dataset, identifying a total of 14,677 differentially expressed genes (DEGs). Among these,
7436 genes were upregulated and 7241 genes were downregulated in the Alzheimer’s
disease (AD) samples compared to the control samples. The DEGs were visualized using a
volcano plot (Figure 2B), which highlights the upregulated and downregulated genes based
on log2 fold change and statistical significance (p-adj < 0.05). Additionally, a heatmap was
generated to display the expression patterns of the DEGs across the samples (Figure 2C),
providing a clear visual representation of the clustering of gene expression profiles between
the AD and control groups. These results laid the foundation for further investigation into
the key modules associated with AD.
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was constructed and hub genes were identified using CytoHubba. RF and SVM-RFE were employed
to pinpoint key genes, which were validated in external datasets. Their relevance in LIHC was
examined, including their expression, prognostic value, and relationship with immune infiltration.
Alzheimer’s Disease (AD), Liver Hepatocellular Carcinoma (LIHC), Differentially Expressed Genes
(DEGs), Linear Models for Microarray Data (LIMMA), Weighted Gene Co-expression Network
Analysis (WGCNA), Protein-protein Interaction (PPI), Betweenness Centrality (BC), Eigenvector
Centrality (EC), Closeness Centrality (CC), Degree Centrality (DC), Local Average Connectivity-based
method (LAC), Network Centrality (NC), Subgraph Centrality (SC), and Information Centrality (IC),
Random Forest (RF), Support Vector Machine Recursive Feature Elimination (SVM-RFE), The Cancer
Genome Atlas (TCGA), Human Protein Atlas (HPA), Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), Kaplan-Meier (KM), Receiver Operating Characteristic (ROC).
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Figure 2. Differential Gene Expression Analysis in AD versus Control Samples in GSE132903. (A) Box
plot shows the distribution of normalized expression values for each sample, ensuring data quality
and comparability. (B) Volcano plot illustrates the differentially expressed genes (DEGs), with
upregulated genes in red and downregulated genes in blue, based on log2 fold change and statistical
significance (p-adj < 0.05). (C) Heatmap depicts the expression patterns of DEGs across AD and
control samples, with hierarchical clustering applied to both samples and genes, highlighting distinct
expression profiles.

2.2. Identifying Key Modules Highly Correlated with the Progression of AD via WGCNA

Using WGCNA analysis in GSE132903, we set the soft threshold to 16 at an R2 of
0.87 to ensure a biologically meaningful scale-free network (Figure 3A,B). After merging
highly correlated modules with a clustering height cutoff of 0.25, a total of 16 modules were
detected (Figure 3D). These modified and merged modules are displayed under the cluster
tree. Subsequent examination of module correlations revealed no significant associations
among them (Figure 3C). The relationship between modules and clinical traits was inves-
tigated using the leading eigengene (ME) value’s correlation with clinical features. The
sienna3 module was negatively correlated with normal state (r = −0.37, p = 1.5 × 10−7) and
positively correlated with AD (r = 0.37, p = 1.5 × 10−7), cyan negatively correlated with nor-
mal (r = −0.42, p = 1.1 × 10−9) and positively correlated with AD (r = 0.42, p = 1.1 × 10−9),
orange negatively correlated with normal (r = −0.28, p = 7.6 × 10−5) and positively corre-
lated with AD (r = 0.28, p = 7.6 × 10−5), black positively correlated with normal (r = 0.22,
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p = 1.7 × 10−3) and negatively correlated with AD (r = −0.22, p = 1.7 × 10−3), darkgrey
positively correlated with normal (r = 0.42, p = 1.3 × 10−9) and negatively correlated
with AD (r = −0.42, p = 1.3 × 10−9), yellow positively correlated with normal (r = 0.36,
p = 1.9 × 10−7) and negatively correlated with AD (r = −0.36, p = 1.9 × 10−7), lightcyan
positively correlated with normal (r = 0.21, p = 2.6 × 10−3) and negatively correlated
with AD (r = −0.21, p = 2.6 × 10−3), blue positively correlated with normal (r = 0.43,
p = 5.7 × 10−10) and negatively correlated with AD (r = −0.43, p = 5.7 × 10−10), dark-
olivegreen positively correlated with normal (r = 0.28, p = 6.3 × 10−5) and negatively
correlated with AD (r = −0.28, p = 6.3 × 10−5), yellowgreen negatively correlated with
normal (r = −0.18, p = 0.01) and positively correlated with AD (r = 0.18, p = 0.01), and grey
negatively correlated with normal (r = −0.23, p = 1.3 × 10−3) and positively correlated
with AD (r = 0.23, p = 1.3 × 10−3) (Figure 3E). Hence, we identified key modules of clinical
relevance and further examined all genes within these 11 modules. These key modules
lay the foundation for the subsequent analysis in which we investigated the enrichment
of immune-related genes within these modules to gain deeper insights into the immune
mechanisms underlying AD pathogenesis.
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Figure 3. Construction of the WGCNA. (A,B) The soft-thresholding power was set to 16, achieving
a scale-free topology fit index (R2) of 0.87. (C) Heatmap of collinearity for module eigengenes.
(D) Dendrogram of original and merged modules, with a total of 16 modules detected after merging
highly correlated modules with a clustering height cutoff of 0.25. (E) Heatmap of module-trait
relationships, indicating the correlation between module eigengenes (MEs) and clinical traits, such as
normal state and AD (Alzheimer’s Disease).

2.3. Identifying Overlapping Immune-Related Genes in AD through Intersection Analysis of
ImmPort, GEO Database, and WGCNA Modules

To determine the immune genes linked to AD, we obtained 1793 immune-related genes
from the ImmPort database. By intersecting these genes with the DEGs retrieved from the
GEO database and the pivotal module genes pinpointed in the WGCNA, we uncovered
303 overlapping immune-related genes (Figure 4A). Subsequent enrichment analysis of
these overlapping genes revealed that in the GO enrichment analysis, biological processes
(BP) were primarily enriched for responses to chemicals, regulation of responses to stimuli,
and responses to organic substances. Cellular Components (CC) enrichment was related
to the extracellular region, vesicles, and the endomembrane system. Enriched molecular
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functions (MF) involved signaling receptor binding, molecular function regulator, and
signaling receptor activity (Figure 4B and Table S2). In the KEGG analysis, enrichment was
found for pathways related to cancer, cytokine–cytokine receptor interactions, Epstein–Barr
virus infection, Influenza A, the MAPK signaling pathway, Herpes simplex virus 1 infection,
Kaposi’s sarcoma-associated herpesvirus infection, Human cytomegalovirus infection,
antigen processing and presentation, and the PI3K–Akt signaling pathway (Figure 4C and
Table S3). These enrichments underscore the involvement of immune-related processes in
AD pathogenesis, highlighting the need to investigate key genes and pathways further.
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Figure 4. Enrichment Analysis of Immune-Related Overlapping Genes. (A) Venn diagram showing
the overlap of immune-related genes from the ImmPort database, key module genes from WGCNA,
and DEGs from the GEO database. (B) Gene Ontology (GO) analysis of the overlapping genes,
with categories for biological processes (BP), cellular components (CC), and molecular functions
(MF). (C) KEGG pathway analysis of the overlapping genes, indicating the pathways involved in
immune-related processes.

2.4. Machine Learning Identifies Key Genes Linked to AD from Overlapping
Immune-Related Genes

To delve deeper into the intricate web of interactions among the overlapping genes we
had identified, we constructed a PPI network. This PPI network, comprising 302 nodes and
408 edges, offered a visual representation of the complex gene interactions (Figure 5A). Sub-
sequently, we utilized the cytoHubba plugin in Cytoscape to identify hub genes, employing
eight ranking algorithms (BC, EC, CC, DC, LAC, NC, SC, IC). Hub genes are identified
through network analysis as genes with high connectivity within a protein–protein interac-
tion (PPI) network. They play central roles in maintaining the integrity and functionality of
the network, and their dysregulation can significantly impact various cellular processes.
The top 130 genes from each method were selected, and a petal diagram was used to
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determine 83 common hub genes (Figure 5B). To further identify key genes from these
hub genes, we employed two machine learning algorithms: RF and SVM-RFE. Key genes
are those that have been identified as crucial for specific biological functions or disease
mechanisms, selected based on their functional importance. These genes are often high-
lighted due to their involvement in critical pathways or significant differential expression
in diseased versus normal states. RF is capable of predicting continuous variables and
offers predictions without apparent variance, with the advantage of no variable condition
restrictions (Figure 5C). SVM-RFE allows for fine screening, focusing on genes with high
discriminatory power (Figure 5D,E). A Venn diagram revealed the sweet spot where both
methods converged, identifying 25 key genes at their intersection (Figure 5F).
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collaborate in biological processes. (B) The Venn diagram reveals the overlap of hub genes pinpointed
through PPI analysis using eight distinct ranking algorithms, highlighting genes recognized as
significant nodes across multiple methods. (C) Critical genes are further honed using the RF algorithm,
selecting those with a high importance score within the model. (D,E) The SVM-RFE algorithm is
employed to iteratively eliminate less discriminatory genes, ultimately identifying the most influential
ones. (F) A Venn diagram illustrates the convergence of key genes pinpointed by both the RF and
SVM-RFE techniques, emphasizing their shared importance. (G) GO enrichment analysis offers
insights into the primary biological functions, cellular components, and molecular processes enriched
among the selected genes. (H) Associated KEGG pathways are presented, delving into the genes’
potential roles in cell metabolism, signal transduction, and other vital biological processes.

Functional enrichment analysis based on these 25 key genes indicated that in the GO
enrichment analysis, BP were primarily enriched for regulation of response to stimulus,
positive regulation of response to stimulus, and intracellular signal transduction. CC
enrichment related to vesicles, extracellular regions, and the cytoplasm. Enriched MF
included enzyme binding, signaling receptor binding, and molecular function regulator
(Figure 5G and Table S4). In the KEGG analysis, enrichment was found for pathways related
to the MAPK signaling pathway, measles, hepatitis C, human cytomegalovirus infection,
cancer pathways, the TNF signaling pathway, hepatitis B, influenza A, Epstein–Barr virus
infection, and human papillomavirus infection, among others (Figure 5H and Table S5).
These findings highlight the crucial roles of these key genes in AD pathogenesis and provide
a foundation for the subsequent analysis in which we investigated the expression and
validation of these key genes to further elucidate their potential diagnostic and therapeutic
implications in AD.

2.5. Constructing a Prognostic Model for Alzheimer’s Disease Using Key Genes

Through Venn diagram analysis, we ultimately identified nine upregulated key genes
(Figure 6A). Subsequently, we constructed an AD diagnostic nomogram model based
on these key genes (LEP, PLXNA3, HLA-E, DDX58, IKBKE, VCAM1, HSPA6, SOS2, and
HSPA1A) using the rms package (Figure 6B). This model not only encompassed the com-
plexity of AD but also provided a visual representation for easier understanding and
application. To assess the predictive prowess of our model, we generated calibration curves.
These curves revealed a negligible disparity between the actual AD risk and the risk pre-
dicted by our nomogram, attesting to the model’s remarkable accuracy in forecasting AD
(Figure 6C). Furthermore, Decision Curve Analysis (DCA) was employed to evaluate the
clinical utility of our model. The “nomogram” curve consistently hovered above the gray
line, indicating that our model offers significant benefits to patients—especially those at
higher risk thresholds. This further underscores the success of our nomogram construction
(Figure 6D).

To validate the diagnostic value of the key genes in AD, we established ROC curves
through dataset GSE132903, revealing high diagnostic values for LEP (AUC: 0.721229),
PLXNA3 (AUC: 0.742689), HLA-E (AUC: 0.691248), DDX58 (AUC: 0.754103), IKBKE (AUC:
0.733537), VCAM1 (AUC: 0.635283), HSPA6 (AUC: 0.678098), SOS2 (AUC: 0.686409),
and HSPA1A (AUC: 0.615927) in AD (Figure S1A). Moreover, in the validation dataset
(GSE33000), we quantitatively evaluated the expression levels of key genes in AD. The
results demonstrated that expressions of LEP, PLXNA3, HLA-E, DDX58, IKBKE, VCAM1,
HSPA6, SOS2, and HSPA1A were similarly upregulated in AD tissues (Figure S1B), and
ROC curve analysis on this validation dataset further corroborated their high diagnostic
values for AD (Figure S1C). These results validate the diagnostic potential of these key
genes in AD, providing a basis for the subsequent analysis in which we explored the ex-
pression and screening of these key genes across various cancers using the TCGA database
to uncover potential cross-cancer associations and implications for AD treatment strategies.
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Figure 6. Construction and Validation of the AD Diagnostic Nomogram Model. (A) Venn diagram
showing the overlap between key genes and upregulated DEGs. (B) Predicting the occurrence of AD
using a nomogram. (C) A calibration curve is presented to evaluate the predictive accuracy of the
nomogram model, demonstrating its reliability in forecasting AD occurrence. (D) DCA is employed
to assess the clinical utility and net benefit of the nomogram model in the context of AD diagnosis.

2.6. Utilizing the TCGA Database to Observe the Expression of Key Genes across Cancers

Through extensive pan-cancer analysis utilizing the TCGA database, we systematically
explored the expression patterns of key genes identified in AD across various cancer types.
This comprehensive study aimed to uncover potential associations and novel insights into
the role of these genes in cancer biology. Remarkably, our findings revealed a notable
upregulation of several key genes specifically in LIHC. Among these, PLXNA3, HLA-E,
DDX58, IKBKE, HSPA6, SOS2, and HSPA1A stood out, with significantly elevated expres-
sion levels in LIHC compared to other cancer types (Figure 7A–I). This discovery suggests a
possible link between these genes and the development or progression of LIHC. To further
validate our findings, we conducted a detailed expression analysis in LIHC tissues. Box
plots clearly demonstrated that PLXNA3, HLA-E, DDX58, IKBKE, SOS2, and HSPA1A were
all significantly upregulated in LIHC tissues compared to normal tissues (Figure S2A).
Additionally, our paired comparison plots further highlighted the expression differences
between normal and LIHC tissues on an individual level. Except for HSPA6, all other
key genes (PLXNA3, HLA-E, DDX58, IKBKE, SOS2, and HSPA1A) showed notably higher
expression in LIHC samples compared to their normal counterparts. This comparison
underscores the specificity and consistency of their upregulation in LIHC (Figure S2B).
Moreover, to assess the clinical relevance of these findings, we performed survival curve
analysis. The results indicated that among the upregulated genes, only IKBKE and HSPA1A
demonstrated a statistically significant association with patient survival. Specifically, high
expression levels of these two genes correlated with poorer survival rates in LIHC patients
(refer to Figure S2C). This suggests that IKBKE and HSPA1A may serve as valuable prog-
nostic biomarkers for LIHC, aiding in the prediction of disease outcomes and potentially
guiding treatment strategies (Figure S2C). The pan-cancer analysis revealed intriguing
patterns of key gene expression across different cancer types, particularly highlighting their
relevance in LIHC. This analysis laid the groundwork for further investigation. Afterwards,
we delved into the validation of IKBKE and HSPA1A expression in LIHC, elucidating their
potential role in the tumor microenvironment of LIHC.
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Figure 7. Expression of Key Genes Across Pan-Cancer Types: (A) LEP. (B) PLXNA3. (C) HLA-
E. (D) DDX58. (E) IKBKE. (F) VCAM1. (G) HSPA6. (H) SOS2. (I) HSPA1A. The LIHC group is
highlighted in red. *, ** and *** indicate significant difference from the Normal group, * p < 0.05,
** p < 0.01, *** p < 0.001 compared with Normal group.

2.7. Expression and Validation of IKBKE and HSPA1A in LIHC

To validate the expression patterns of IKBKE and HSPA1A in LIHC, we examined
immunohistochemical images obtained from the HPA database. These images revealed
a striking increase in the protein expression of both IKBKE and HSPA1A in LIHC sam-
ples when compared to normal liver tissues. This visual evidence strongly supports the
upregulation of these genes in cancerous tissues (Figure 8A). Subsequently, we selected
other GEO datasets related to LIHC (GSE36376 and GSE39791) as validation groups. ROC
curve results demonstrated high diagnostic accuracy for IKBKE (AUC = 0.777504 for
GSE36376; AUC = 0.643519 for GSE39791) and HSPA1A (AUC = 0.779555 for GSE36376;
AUC = 0.623746 for GSE39791) in the validation group. These results underscore the po-
tential of these genes as biomarkers for LIHC diagnosis (Figure 8B–E). Box plots further
showed that, compared to the normal group, the expression of IKBKE and HSPA1A was
significantly upregulated in the LIHC group in the validation datasets (Figure 8F–I). This
quantitative data provides additional confirmation of the elevated expression of these
genes in cancerous tissues. We further quantitatively analyzed the mRNA levels in human
liver cancer tissues using qPCR. The expression of HSPA1A and IKBKE was significantly
elevated in liver cancer tissues, consistent with our previous findings. (Figure 8J,K).
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Figure 8. Expression and Validation of IKBKE and HSPA1A in LIHC. (A) Immunohistochemical
staining reveals the expression patterns of IKBKE and HSPA1A in normal liver tissues compared to
LIHC tissues. (B,C) ROC curve analysis demonstrates the diagnostic accuracy of IKBKE and HSPA1A
in the validation dataset GSE36376. (D,E) ROC curve analysis further validates the diagnostic utility
of IKBKE and HSPA1A in another dataset, GSE39791. (F,G) Quantitative expression analysis confirms
the differential expression of IKBKE and HSPA1A in the GSE36376 dataset. (H,I) Similar expression
patterns of IKBKE and HSPA1A are observed in the GSE39791 dataset. (J,K) Quantitative analysis
of IKBKE and HSPA1A mRNA transcription levels in LIHC patients (n = 3) versus adjacent non-
cancerous tissue samples (n = 3) provides further evidence of their differential expression in vivo. *,
** and **** indicate significant difference from the control group, * p < 0.05, ** p < 0.01, **** p < 0.0001
compared with control group.

In summary, our comprehensive validation efforts strongly support the upregulated
expression of IKBKE and HSPA1A in LIHC. These findings not only confirm the role of these
genes in LIHC but also highlight their potential as diagnostic biomarkers. Moving forward,
we delve into the complex relationship between IKBKE, HSPA1A, and immune infiltration
in LIHC, shedding light on the intricate interactions within the tumor microenvironment
and paving the way for more targeted therapeutic approaches.

2.8. Analysis of Immune Infiltration for IKBKE and HSPA1A in LIHC

To verify the relevance of IKBKE and HSPA1A in immune cell infiltration in LIHC,
we conducted Spearman correlation analysis. The results indicated a positive correlation
between IKBKE and immune cell infiltration in LIHC (Figure 9A), while HSPA1A showed
a negative correlation with immune cell infiltration in LIHC (Figure 9B). Digging deeper,
lollipop charts illuminated the intricate dynamics at play; IKBKE expression, for instance,
was found to be tightly linked to the presence of CD8-positive T cells, indicating a potential
role in activating these crucial immune cells. Interestingly, it also showed a negative associ-
ation with neutrophils, suggesting a complex regulatory role in the immune landscape of
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LIHC (Figure 9C). On the other hand, HSPA1A expressed a significant negative relationship
with memory B cells and helper T cells, hinting at its influence in modulating these im-
mune responses (Figure 9D). Therefore, these genes significantly influence the regulation
of immune cell infiltration in the LIHC tumor microenvironment.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 19 
 

 

association with neutrophils, suggesting a complex regulatory role in the immune land-
scape of LIHC (Figure 9C). On the other hand, HSPA1A expressed a significant negative 
relationship with memory B cells and helper T cells, hinting at its influence in modulating 
these immune responses (Figure 9D). Therefore, these genes significantly influence the 
regulation of immune cell infiltration in the LIHC tumor microenvironment. 

To further unpack the roles of IKBKE and HSPA1A in shaping the immune response 
within LIHC, we leveraged the powerful xCELL algorithm. This analysis provided com-
pelling evidence that both IKBKE and HSPA1A have the capability to fine-tune the infil-
tration levels of multiple immune cells in the LIHC environment (Figure S3A,B). Subse-
quently, the use of the CIBERSORT algorithm and QUANTISEQ algorithm also confirmed 
that the expression levels of IKBKE and HSPA1A have a significant impact on infiltrating 
immune cells (Figure S3C–F). In essence, our comprehensive correlation analysis under-
scores the profound connection between IKBKE, HSPA1A, and immune cell infiltration in 
the LIHC tumor microenvironment. This exploration not only sheds light on the complex 
immune dynamics within LIHC but also lays the groundwork for future investigations. 
We are eager to delve deeper into the single-cell expression patterns of IKBKE and 
HSPA1A in LIHC, with the ultimate goal of unraveling their precise functions within dis-
tinct immune cell subpopulations of the tumor microenvironment. 

 
Figure 9. Analysis of Immune Infiltration for IKBKE and HSPA1A in LIHC. (A,B) Spearman corre-
lation analysis graphs illustrate the relationship between the expression levels of IKBKE and 
HSPA1A, respectively, and the degree of immune cell infiltration in LIHC. (C,D) Lollipop charts 
further detail the correlation between the expression levels of IKBKE and HSPA1A, respectively, and 
various immune cell types. *, ** and *** indicate significant difference from the control group, ns 

indicates no significant difference, * p < 0.05, ** p < 0.01, *** p < 0.001 compared with control group. 

2.9. Expression of IKBKE and HSPA1A at the Single-Cell Level in LIHC 
In previous studies, the analysis of gene expression in LIHC primarily focused on 

tissue samples and cellular populations. To gain a more precise understanding of the ex-
pression patterns of IKBKE and HSPA1A in different immune cell and cancer cell subpop-
ulations, as well as their potential roles within the tumor microenvironment, we explored 

Figure 9. Analysis of Immune Infiltration for IKBKE and HSPA1A in LIHC. (A,B) Spearman correlation
analysis graphs illustrate the relationship between the expression levels of IKBKE and HSPA1A,
respectively, and the degree of immune cell infiltration in LIHC. (C,D) Lollipop charts further detail
the correlation between the expression levels of IKBKE and HSPA1A, respectively, and various
immune cell types. *, ** and *** indicate significant difference from the control group, ns indicates no
significant difference, * p < 0.05, ** p < 0.01, *** p < 0.001 compared with control group.

To further unpack the roles of IKBKE and HSPA1A in shaping the immune response
within LIHC, we leveraged the powerful xCELL algorithm. This analysis provided com-
pelling evidence that both IKBKE and HSPA1A have the capability to fine-tune the infiltra-
tion levels of multiple immune cells in the LIHC environment (Figure S3A,B). Subsequently,
the use of the CIBERSORT algorithm and QUANTISEQ algorithm also confirmed that the
expression levels of IKBKE and HSPA1A have a significant impact on infiltrating immune
cells (Figure S3C–F). In essence, our comprehensive correlation analysis underscores the
profound connection between IKBKE, HSPA1A, and immune cell infiltration in the LIHC
tumor microenvironment. This exploration not only sheds light on the complex immune
dynamics within LIHC but also lays the groundwork for future investigations. We are
eager to delve deeper into the single-cell expression patterns of IKBKE and HSPA1A in
LIHC, with the ultimate goal of unraveling their precise functions within distinct immune
cell subpopulations of the tumor microenvironment.

2.9. Expression of IKBKE and HSPA1A at the Single-Cell Level in LIHC

In previous studies, the analysis of gene expression in LIHC primarily focused on tissue
samples and cellular populations. To gain a more precise understanding of the expression
patterns of IKBKE and HSPA1A in different immune cell and cancer cell subpopulations,
as well as their potential roles within the tumor microenvironment, we explored their
expression in LIHC using single-cell transcriptomic analysis. In LIHC, we conducted an
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in-depth single-cell transcriptomic analysis of IKBKE and HSPA1A using four datasets from
the TISCH database (LIHC-GSE125449, LIHC-GSE140228 10X, LIHC-GSE140228 Smartseq2,
LIHC-GSE98638). Heatmaps revealed significant upregulation of IKBKE in CD4Tconv, Treg,
Tprolif, CD8T, and CD8Tex cells. This upregulation suggests a potential role for IKBKE in
the activation, proliferation, or regulatory functions of these immune cell subsets within
the LIHC tumor microenvironment (Figure 10A). HSPA1A showed significant upregulation
in Treg, CD8Tex, B, Plasma, Mono/Macro, Endothelial, and Fibroblasts cells. This finding
indicates that HSPA1A might play a crucial role in the stress response, immune modulation,
or tissue remodeling within the tumor (Figure 10B). To further elaborate on these expression
patterns, we utilized t-SNE plots to visualize the intricate distribution of IKBKE and HSPA1A
expression across various immune cell subpopulations in LIHC. These plots not only confirm
the upregulation observed in the heatmaps but also reveal the heterogeneity of expression
within each cell type, shedding light on the complexity of the immune response and tumor
microenvironment in LIHC (Figure 10C–E). Collectively, our findings at the single-cell level
strongly implicate IKBKE and HSPA1A in the regulation of local immune responses and the
modulation of the tumor microenvironment in LIHC. The observed upregulation patterns
suggest potential targets for immunotherapy and highlight the importance of considering
cellular heterogeneity when designing treatment strategies for LIHC.
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types within the LIHC datasets, highlighting their potential roles in immune cell differentiation and
function. (C–E) The t-SNE plots further visualize the intricate distribution of IKBKE and HSPA1A
expression within the immune cell population of LIHC, offering insights into their spatial and
functional heterogeneity within the tumor microenvironment.

3. Discussion

Cancer and AD are two prevalent disorders whose ultimate pathophysiological mech-
anisms remain unclear. In our analysis of the GSE132903 dataset, we conducted a thorough
examination of gene expression profiles to identify 14,677 DEGs associated with AD.
Through WGCNA, we further elucidated key module genes that are closely linked to the
pathogenesis of AD. By integrating these DEGs, module genes, and leveraging data from
the ImmPort database, we employed PPI network analysis to pinpoint hub genes crucial in
AD. To further refine our identification of key genes within these hub genes, we utilized
two advanced machine learning algorithms: RF and SVM-RFE. These methods allowed us
to prioritize genes based on their importance and predictive power within the dataset [24].
By combining the results of RF and SVM-RFE, we identified nine key genes consistently
highlighted for elevated expression in AD: LEP, PLXNA3, HLA-E, DDX58, IKBKE, VCAM1,
HSPA6, SOS2, and HSPA1A. To validate the significance of these genes in LIHC, we ana-
lyzed LIHC-related datasets. This validation process confirmed the significant differential
expression of IKBKE and HSPA1A in LIHC tissues. Furthermore, our q-PCR results revealed
a substantial increase in the transcription levels of IKBKE and HSPA1A in LIHC tumor
tissues compared to adjacent normal tissues. This suggests a potential role for these genes
in the development and progression of LIHC. In-depth immune infiltration and single-cell
analyses were then conducted to understand how IKBKE and HSPA1A might influence the
immune microenvironment in LIHC. These analyses unveiled the potential of these genes
to modulate the immune response in LIHC, thereby impacting disease progression. Taken
together, these findings indicate that IKBKE and HSPA1A may serve as crucial factors in the
onset and development of both AD and LIHC, highlighting them as promising targets for
future therapeutic strategies.

Inflammation, a pivotal factor in AD and LIHC, underscores the intricate interplay
between chronic inflammation and neurodegeneration, as well as cancer development [25].
The relationship between inflammation and cancer is well-documented, with LIHC often
arising from a background of chronic inflammation and fibrosis [26,27]. Our bioinformatics
analysis uncovered that IKBKE and HSPA1A play pivotal roles in modulating immune cell
infiltration in AD and LIHC patients, thereby reshaping the immune microenvironment.
IKBKE, a key activator of the NF-κB pathway, is instrumental in regulating NF-κB-mediated
inflammatory responses, immune cell activation, and tumorigenesis [28]. This is achieved
through the phosphorylation of IκB, an inhibitor of NF-κB, leading to IκB’s degradation
and subsequent release of NF-κB into the nucleus to initiate downstream gene expres-
sion [29–31]. Such regulation is crucial for immune responses, inflammation, and in some
instances, tumor initiation and progression. HSPA1A, a member of the Heat Shock Protein
(HSP) family [32], is implicated in exacerbating inflammation by stimulating the secre-
tion of pro-inflammatory cytokines [33,34]. These findings underscore the pivotal roles
of IKBKE and HSPA1A in modulating the pathogenesis of AD and LIHC, thus highlight-
ing their potential as promising therapeutic targets. Targeting these pathways may offer
novel therapeutic strategies for managing AD and LIHC by modulating the inflammatory
microenvironment.

In this study, we integrated several advanced techniques, including WGCNA, PPI,
and machine learning algorithms, to identify the key genes IKBKE and HSPA1A and assess
their diagnostic value for patients with AD and LIHC. Furthermore, validation through
multiple independent datasets and experiments enhanced the credibility and applicability
of our findings. Nevertheless, a pivotal limitation of the present study lies in the absence of
laboratory validation pertaining to associated signaling pathways. Hence, future endeavors
will necessitate the experimental validation of pertinent signaling pathways, aiming to
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further elucidate the functional roles of IKBKE and HSPA1A and to investigate their specific
implications in the therapeutic management of AD and LIHC.

4. Materials and Methods
4.1. Data Collection and Differential Gene Analysis

We retrieved four datasets from the Gene Expression Omnibus (GEO) database using
“AD” and “LIHC” as keywords, including AD datasets GSE132903 and GSE33000 and
LIHC datasets GSE36376 and GSE39791 [35]. GSE132903 served as the primary dataset
for analysis, while GSE33000, GSE36376, and GSE39791 were utilized as validation sets
for further verification (Table S1). Subsequently, differential expression genes (DEGs)
analysis related to AD was conducted on the GSE132903 dataset using the “limma” package
(Available online: https://www.bioconductor.org/packages/release/bioc/html/limma.
html (accessed on 13 November 2023), within the R environment, version 4.3.0), and
volcano plots were generated [36]. The criteria for significant differential expression were
defined as a log2|fold change (FC)| > 1 and a p-value < 0.05. Finally, heatmaps of the
selected DEGs were produced using the pheatmap package (Available online: https://
cran.r-project.org/web/packages/pheatmap/index.html (accessed on 13 November 2023),
within the R environment, version 4.3.0). The purpose of this analysis was to identify
key genes associated with AD, providing a foundation for subsequent functional and
pathway analyses.

4.2. Identification of Key Gene Modules Associated with AD via WGCNA

Using the “WGCNA” package (Available online: https://cran.r-project.org/web/
packages/WGCNA/index.html (accessed on 12 January 2024), within the R environment,
version 4.3.0), we conducted Weighted Gene Co-expression Network Analysis (WGCNA)
to identify key modules associated with AD in dataset GSE132903. This analysis aimed
to uncover gene relationships through co-expression networks, thereby enhancing our
understanding of the molecular mechanisms underlying the disease. Initially, samples
were clustered to identify potential outliers. Subsequent automated network construction
facilitated the formation of a co-expression network. Gene modules were delineated
through hierarchical clustering combined with dynamic tree cutting. To associate these
modules with clinical traits, we assessed module membership (MM) and gene significance
(GS). Modules exhibiting an absolute threshold of Pearson MM correlation and a p-value
below 0.05 were designated as central modules. Criteria of MM > 0.8 and GS > 0.2 indicated
a significant association with clinical attributes. For these significant modules, in-depth
gene-specific analysis was performed [37].

4.3. Enrichment Analysis of DEGs

Utilizing the Metascape online platform (https://metascape.org/ accessed on 14
January 2024) [38], we conducted a comprehensive enrichment analysis encompassing Gene
Ontology (GO) annotations—including Biological Processes (BP), Cellular Components
(CC), and Molecular Functions (MF)—as well as KEGG pathways. This analysis was
crucial for understanding the functional roles and biological processes in which DEGs are
involved. Annotations and pathways with an adjusted p-value below 0.05 were considered
significantly enriched.

4.4. Construction of the PPI Network and Identification of Hub Genes

We constructed a Protein–Protein Interaction (PPI) network using the STRING database,
setting a stringent interaction score threshold of >0.9 [39]. This analysis aimed to iden-
tify potential interactions between proteins encoded by DEGs that could provide insights
into their functional roles. For enhanced visualization, we employed Cytoscape software
(version 3.9.1) [40]. Within Cytoscape, the CytoHubba plugin facilitated the identification
of pivotal genes [41]. We selected eight distinct algorithms from CytoHubba’s ranking
methodologies, namely: Betweenness Centrality (BC), Eigenvector Centrality (EC), Close-
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ness Centrality (CC), Degree Centrality (DC), Local Average Connectivity-based method
(LAC), Network Centrality (NC), Subgraph Centrality (SC), and Information Centrality
(IC). Aggregating results across these eight approaches, we chose the top 130 genes from
each method and utilized a Venn diagram to determine the hub genes common across all
algorithms (Table S2). This comprehensive approach ensured the robust identification of
key genes involved in disease progression.

4.5. Machine Learning and Identification of Key Genes

In this study, we employed advanced machine learning techniques, including Random
Forest (RF) [42–44] and Support Vector Machine Recursive Feature Elimination (SVM-
RFE) [45,46], to identify key genes associated with AD. These machine learning methods
are powerful tools for selecting the most informative features from large datasets, enhanc-
ing the predictive power of our models. The RF method systematically ranked genes, with
those exhibiting a relative importance exceeding 0.25 identified as significant determinants.
The SVM-RFE technique iteratively trained various feature subsets to pinpoint the most
influential predictors. Rigorous ten-fold cross-validation was utilized to optimize parame-
ters, ensuring the minimization of partial likelihood bias. Genes at the intersection of RF
and SVM-RFE were deemed critical for the diagnosis of AD.

4.6. Predictive Modeling of AD Recurrence and Evaluation of Key Genes

Following the identification of key genes associated with AD, we meticulously con-
structed a composite nomogram model using the “rms” package (Available online: https:
//cran.r-project.org/web/packages/rms/index.html (accessed on 20 January 2024), within
the R environment, version 4.3.0), aimed at predicting the recurrence of AD. This model
provided a visual representation of how different clinical factors contribute to recurrence
risk. In this model, “Scores” represent the weighted values of individual clinical factors,
while “Total Score” encompasses the cumulative weights of all considered factors. The
reliability and predictive capability of our model were rigorously assessed via calibration
curves. To ensure the clinical applicability of our model, we employed decision curve
analysis to scrutinize its clinical impact curves. Additionally, we generated a Receiver
Operating Characteristic (ROC) curve using the pROC function in R, with the Area Under
the Curve (AUC) serving as a metric to evaluate the diagnostic utility of the key genes [47].

4.7. Expression and Analysis of Key Genes in Hepatocellular Carcinoma

We downloaded clinical data for LIHC from The Cancer Genome Atlas database
(https://tcga-data.nci.nih.gov/tcga/ accessed on 11 February 2024). This step was essential
for validating the relevance of key genes identified in AD within the context of another
disease. The expression of key genes was compared between case and control groups to
identify any significant differences. Furthermore, the prognostic relevance for patients
with LIHC was evaluated using the Kaplan–Meier plotter tool (Available online: https:
//kmplot.com/analysis/ (accessed on 11 February 2024)). Lastly, immunohistochemical
images of key genes in LIHC and normal tissues were sourced from the Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/ accessed on 13 February 2024). These
images were utilized to assess the differential expression of key genes at the protein level.

4.8. Immune Infiltration and Single-Cell Analysis

We explored the relationship between the expression of key genes and immune infil-
tration in LIHC using algorithms such as TIMER, EPIC, IPS, MCP-counter, xCELL, CIBER-
SORT, and QUANTISEQ. This analysis aimed to elucidate the role of key genes in the tumor
immune microenvironment, providing insights into potential immunotherapeutic targets.
A p-value < 0.05 was considered statistically significant for immune cell infiltration [48].
Subsequently, utilizing the TISCH database [49], we delved into the single-cell expression
landscape of key genes within the microenvironment of LIHC.
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4.9. Quantitative Real-Time RT-PCR

Our study encompassed a total of 3 adult inpatients diagnosed with LIHC. The re-
search protocol adhered strictly to the principles outlined in the Declaration of Helsinki,
ensuring the ethical treatment of human tissues. Additionally, the study received ap-
proval from the Clinical Research Ethics Committee of Hebei Medical University. Prior
to their participation, each patient provided informed consent by signing the necessary
forms. The total RNA from the human liver tissues was extracted using the RNA isola-
tion kit (RNAiso, Takara, San Jose, CA, USA). In this experiment, the isolated RNA was
dissolved in 20 mL of DEPC-treated water and then reverse-transcribed using a reverse
transcription reagent kit (PrimeScript RT Reagent Kit with gDNA Eraser, Takara) and
a thermal cycler (Mastercycler, Eppendorf, Hamburg, Germany). The cDNA was used
for the qPCR assay and the amplification curves were produced using SYBR Premix Ex
TaqII from Takara. This experimental validation ensures the accuracy and reliability of the
identified gene expression levels, reinforcing the robustness of our results. Primers used in
the quantitative PCR were: GAPDH: forward-AATGGACAACTGGTCGTGGAC; reverse-
CCCTCCAGGGGATCTGTTTG; HSPA1A: forward-CATCGCCTATGGGCTGGAC; reverse-
GGAGAGAACCGACACATCGAA; IKBKE: forward-GAGGGGCAGAGCATCTACAAG;
reverse-AGACCGAGACGAACTTCTCATC.

4.10. Statistical Analysis

The Wilcoxon rank-sum test was utilized to assess statistical significance between two
groups. Correlation analysis was performed using the Spearman correlation coefficient.
All statistical analyses were conducted using R software (version 3.6.3), with a two-tailed
p-value < 0.05 considered statistically significant.

5. Conclusions

This study, by integrating bioinformatics analysis with machine learning techniques,
has identified that IKBKE and HSPA1A exert regulatory effects on the incidence and pro-
gression of both Alzheimer’s Disease (AD) and Liver Hepatocellular Carcinoma (LIHC)
through the modulation of immune cell infiltration. This provides new strategies for the
diagnosis and treatment of these two diseases in the future, and lays a solid theoretical
foundation for further exploration into AD and LIHC.
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