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Abstract: Diabetes is associated with numerous comorbidities, one of which is increased vulnerability
to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and
its various components, leading to the impaired proliferation of immune cells and the induction of
senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have
similarities to the pathways of “inflammaging”, a persistent low-grade inflammation common in
the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis
(RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular
senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid
differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune
system response in both the innate and adaptive phases, resulting in higher infection rates, reduced
vaccine response, and increased immune cells’ senescence in diabetics. We will also explore how
some diabetes drugs induce immune senescence despite their benefits on glycemic control.

Keywords: diabetes; immune dysfunction; immune senescence; infection; medication side effects;
vaccine uptake; latent autoimmune diabetes in adults

1. Introduction

Type 2 diabetes (T2DM) is a chronic illness normally occurring in adults, especially
the elderly, characterized by an impaired response to insulin (insulin resistance) leading
to impaired glucose control and thus chronic hyperglycemia. In the latter stage of T2DM,
it leads to the death of the beta-cells in the pancreas that produce insulin, a phenomenon
named beta-cell exhaustion [1].

A major side effect of diabetes is the increasing susceptibility to infections. In upper
respiratory viral infections, pre-existing diabetes in COVID-19 patients has been shown
to be both a comorbidity that leads to a more severe infection [2] and also a predictor of
those patients developing long COVID-19 [3]. Similar impairment in diabetic patients with
higher glycated hemoglobin (HbA1c) was also shown to occur in response to the original
severe acute respiratory syndrome (SARS) [4] as well as influenza [5] and pneumonia [6].

One common comorbidity is diabetic foot infection, which commonly results from
diabetic foot ulcers (DFUs) [7]. DFUs are open sores found at the bottom of the feet of
individuals with diabetes, and around half of all DFUs become infected. Diabetic patients
often do not even notice the wound or infection and thus do not seek treatment in time to
prevent or treat the infection [8]. The two most common types of infections are bacterial
and fungal infections. Common types of bacterial infections include cellulitis, folliculitis,
and erythrasma while the most common types of fungal skin infections include tinea
pedea and cutaneous mycoses. Otitis externa, necrotic infections, and mucormycosis are
especially concerning infections that continue to be common despite antibiotic use and
better blood glucose control [9]. Diabetic skin infections can become even more severe if
not treated quickly enough due to the chance of superinfections [7]. Superinfections are a
second infection that spreads before the first infection is completely treated. Diabetic skin
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infections are also difficult to treat due to the lack of efficacy from systemic antibiotics. The
lack of efficacy results from both the poor delivery of antibiotics to the infection as well
as increasing antibiotic resistance [10]. Due to the rising incidence of diabetes mellitus,
diabetic skin infections will not only increase the healthcare burden but will also exacerbate
the antibiotic resistance crisis.

Urinary tract infections (UTIs) are not only common but more severe and difficult to
treat in patients with diabetes mellitus. Urinary tract infections are the most common type
of infection that occurs in individuals with type 2 diabetes [11]. Diabetic UTIs are more com-
mon in women, and women who have been diagnosed with diabetes for at least 6 months
have higher rates of UTIs than women who were recently diagnosed with diabetes [12].
Another risk factor for UTIs is age, and the possibility of a UTI increases as diabetic patients
age. The most common bacteria that cause UTIs in patients with diabetes are Escherichia coli,
Klebsiella pneumoniae, Pseudomonas auregonosa, Enterobacter pneumoniae, Proteus spp., Proteus
spp., and enterococci [12,13]. Diabetic UTIs also have fungal causes, and Candida spp. is
the most pervasive [14]. Diabetic UTIs are more likely to be caused by antibiotic-resistant
pathogens such as fluoroquinolone-resistant uropathogens and vancomycin-resistant en-
terococci [12]. Specifically, the gram-negative bacteria display a concerning amount of
resistance to common antibiotics such as trimethoprim-sulphamethoxazole, cephalosporins,
amikacin, and amoxicillin/clavulanic acid [13]. Diabetic UTIs are also a risk factor for
longer hospitalization and serious complications like bacteremia, azotemia, and septic
shock. Mortality, morbidity, and relapse are all higher in diabetic individuals [12]. Without
better solutions for treating UTIs in diabetic patients, both medical costs and bacterial
resistance will continue to rise.

The various difficult comorbidities of diabetes mentioned above make it important
to understand how diabetes leads to immune dysfunction. Chronic diabetes, especially
those with less well-controlled blood glucose, seems to induce a similar pattern of immune
dysfunction as those found in the elderly. While T1DM has also been associated with the
accelerated aging phenotype in the immune system, likely because of chronic inflammation,
there is a lack of studies that may explain this phenomenon [15]. The accelerated immune
aging in T1DM seems to predominantly happen in the first 30 years of life, thus limiting
comparison to immune senescence that is normally expected in the elderly [15]. As such,
this review will focus on T2DM because of the higher availability of studies on how it
leads to immune senescence. In this review, we will examine the various pathologies that
can explain this immune dysfunction and how they can explain the rise or worsening of
diabetes comorbidities.

2. Diabetes-Induced Inflammaging May Explain Diabetes-Related Comorbidities

A critical feature of aging is chronic low-grade inflammation, termed “inflammag-
ing” [16]. Numerous elderly individuals develop inflammaging as they age, which causes
an increase in disability, morbidity, accelerated aging, and death [17]. Interestingly, type 2
diabetes itself gives rise to the same inflammaging activities [16]. Inflammaging seems to
explain how diabetes cascades onto later comorbidities such as beta-cell dysfunction that
worsens T2DM, rheumatoid arthritis, and periodontitis. In this section, we will describe
the pathogenesis of inflammaging from T2DM, how inflammaging leads to different types
of disorders, and the efficacy of treatments.

2.1. How Does T2DM Lead to Inflammaging?

T2DM is a chronic metabolic disorder characterized by insulin resistance, β-cell dys-
function, and hyperglycemia, and is known to increase reactive oxygen species (ROS) [18,19].
Importantly, ROS and hyperglycemia from T2DM have been implicated as risk factors
leading to the inflammaging process. In this section, we will look at how ROS are increased
in the conditions of T2DM and how they lead to inflammaging.

ROS are the source of inflammaging caused by the antioxidants and hyperglycemia of
T2DM [20]. ROS include oxygen-free radicals such as superoxide anion (O2

−), hydroxyl
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(·OH), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), hydroperoxyl (HO2), singlet
oxygen (O2), perhydroxyl radicals (HO2), and alkoxy (RO) [21]. Moderate or low levels of
ROS bring benefits such as the maturation of cells, cellular apoptosis, and the progression
of cellular cycles [22]. However, in hyperglycemic conditions of T2DM, the activation of
the polyol pathway, hexosamine, and Protein Kinase C and the formation of advanced
glycation end products and glycolysis intermediates arise, leading to the overproduction
of ROS and the induction of oxidative stress. [23]. In contrast to moderate or low levels
of ROS, high levels of ROS in T2DM conditions are known to damage the cells, such as
proteins, DNA, lipids, and cellular functions [24]. To add on, according to a study from
Eugene and colleagues, oxidative stress biomarkers were notably higher in patients with
T2DM in contrast to non-diabetic patients. This result gives evidence of T2DM inducing
oxidative stress [25].

With the overproduction of ROS and oxidative stress in T2DM, the promotion of
transcription factors such as activator protein-1 (AP-1) and nuclear factor-kappa B (Nf-Kb)
produce pro-inflammatory cytokines [26], leading to an inflammatory stage [27]. As stated
earlier, T2DM, a chronic disease, induces low-grade chronic inflammation, contributing to
and accelerating “inflammaging” (Figure 1). Research from Irene and colleagues provided
a cross-sectional study on 122 T2DM patients and 54 non-diabetic patients to analyze
inflammation levels in T2DM patients. This study showed that the accumulation of low-
density lipoprotein (LDL) and poor glycemic control resulted in a significantly higher
inflammatory biomarker in T2DM patients compared to non-diabetic patients [28]. In
the following sections, we will review how inflammaging can explain the rise in diabetes
comorbidities (Figure 1).
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2.2. T2DM-Derived Inflammaging Leads to Beta-Cell Death

Pancreatic β-cells produce the hormone insulin, which has a pivotal role in glucose
homeostasis [29]. Interestingly, under the condition of inflammaging from T2DM, beta-cell
damage occurred. An in vitro study of non-obese diabetic (NOD) mice by Stephens and
colleagues found that the tumor necrosis factor-α (TNF-α) pathway may have been the
inflammaging-associated mediator that induced the apoptosis of islet cells [30]. In follow-
up studies, therapeutic targets regarding reducing TNF-α levels induced by inflammaging
in T2DM were evaluated. Treatment by vitamin D3 and chromium picolinate (CrPic)
supplementations, proven to reduce TNF-α levels, have been examined and have been
shown to prevent β-cell damage and increase insulin sensitivity in T2DM patients [31].
Adding on, the therapeutic method using a caspase inhibitor has also been studied, since
caspase activation was found to be a crucial factor for the TNF-α induced apoptosis of
beta-cells. Importantly, a study by Stephens and colleagues found that caspase inhibitors
protect the isolated beta-cells from NOD mice [30].

2.3. T2DM-Derived Inflammaging Leads to the Development of Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a symmetrical, chronic autoimmune inflammatory disease
characterized by inflammatory arthritis that is known to increase in risk with T2DM [32,33].
Bone erosion and distortion from cartilage destruction of the joints and the weakening of
tendons and ligaments are features of RA. This painful disease eventually starts causing
cardiovascular disease and damage to not only the bones but skin, eyes, kidneys, and
lungs [34]. The exact reasoning behind why RA occurs from T2DM is not exactly given, but
there are growing data that inflammaging from T2DM may be causing the progression of
RA. A study by Ming-Chi and colleagues, a study regarding the association between low-
grade chronic inflammation in T2DM and RA, was conducted. The study demonstrated
that patients with T2DM had elevated risks of RA from inflammation by T2DM [32]. The
reasoning behind why patients with T2DM have an increased risk of RA has not yet been
identified, but recent case-control studies have shown evidence of an affiliation between
inflammation from T2DM and RA. Therefore, further research should be constructed for
reasoning and therapeutic methods to cure RA in patients with inflammaging from T2DM.

With the hypothesis of inflammaging from T2DM occurring RA, one of the treatments
to be studied is anti-interleukin-1 (IL-1). A study by Piero and colleagues investigated if
treatment with anti-IL-1 can improve the inflammatory parameters of patients with both
T2DM and RA [35]. The treatment with anakinra, an interleukin-1 receptor antagonist,
was given to patients with both T2DM and RA and was shown to decrease the percentage
of glycated hemoglobin (HbA1c%) [35]. As stated earlier, RA induces a higher chance of
cardiovascular disease and is one of the leading mortality causes of RA [36]. Interestingly,
a 1% decrease in HbA1c% was shown to decrease 15% of the occurrence of cardiovascular
disease from RA [37].

2.4. T2DM-Derived Inflammaging Leads to the Development of Periodontitis

Periodontitis is a serious disorder caused by inflammation from infection in the gum
and increases in risk with aging [17]. If periodontitis is left untreated, the bone structure
supporting the teeth will be destroyed [38]. T2DM is a known risk factor for gingivitis [39]
and periodontitis [40,41], with the pathophysiology remaining underexplained. There is
still a lack of evidence that this finding is associated with other types of diabetes, such
as gestational or T1DM [41]. Patients with T2DM can develop gingivitis without pre-
existing dental plaque normally responsible for the pathology [39]. The severity of the
hyperglycemia, not the DM diagnosis itself, affects the periodontium tissue [42] and its
vulnerability to developing periodontitis [39] (Figure 1).

Inflammaging may explain how hyperglycemia in T2DM leads to increased periodon-
titis. Recently, a study with streptozotocin-induced mice models from Qian and colleagues
found that diabetes source periodontitis through glucose transporter (GLUT-1)-driven
macrophage inflammaging. The study was conducted with diabetic mice (18-week-old)
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models, and the results showed inflammatory bone loss. Interestingly, the same study con-
ducted with aged (20-month-old) mice showed a worse degree of inflammatory bone loss
due to periodontitis. This evidences that diabetic models had accelerated inflammaging and
caused more severe degrees of periodontal damage [43]. To support the idea of inflammag-
ing causing periodontitis, a recent study with streptozotocin-induced mice models from
Peng and colleagues found that inflammaging accelerated the gingival senescence from the
NLR family CARD domain containing 4 protein (NLRC4) phosphorylation [44]. Gingiva is
commonly stated as gum and is the primary host defense of periodontium [45]. As a result,
diabetic mice with inflammaging effects were found to have an increase in p16 markers,
which represent a greater degree of periodontitis, giving evidence of inflammaging causing
periodontitis [44].

As more data have been proving that inflammaging causes periodontal damage,
therapeutic mechanisms have also been talked about. The study by Qian and colleagues
observed the degree of periodontitis levels with the p16 marker and revealed that the
treatment of metformin significantly lowered the p16 levels compared to the control group
with no treatment of metformin [43]. The study from Peng and colleagues, examining the
degree of gingival tissue damage observed with p16 and p21 expressions, established that
the treatment of metformin weakened the senescence of gingival tissue in inflammaging
mice models. For both studies, a decrease in p16 and p21 levels represented less periodontal
damage [43]. In conclusion, this suggests how inflammaging is a strong pathway that
increases vulnerability to gingivitis and periodontitis in T2DM patients, linked to how well
glycemic control is achieved in these patients. Interestingly, metformin that is already in
use as standard treatment may have additional benefits on inflammaging in addition to its
effects on glycemic control.

3. Diabetes Increases Senescence of Immune Cells from the Bone Marrow
3.1. How Diabetes Induces Senescence in the Bone Marrow

Hyperglycemia in diabetic patients induces the senescence of immune cells in the
bone marrow through several pathways (Figure 2).
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First, hyperglycemia induces a pro-inflammatory state by expanding the bone marrow
adipose tissue (BMAT) population. Hyperglycemia induces β-galactosidase activity and
the adipogenic differentiation of bone marrow stem cells (adipogenic genes aP2, Lpl, and
Pparγ) and increases lipid accumulation in the bone marrow [46] while reducing their
osteogenic differentiation potential [47]. Uncontrolled diabetes with Hba1C >7% increases
BMA compared to well-controlled diabetes patients with HbA1C <7% [48]. This expansion
of bone marrow adiposity (BMA) has been consistently shown to increase pro-inflammatory
responses and maintain a steady inflammatory state [49]. This pro-inflammatory state is
similar to that found in the aging population, where 10–20% of bone marrow stem cells
(BMSCs) are expressing SASP [50] and inducing a decrease in the progenitor cell population
and their stem cell differentiation ability [51].

The second cause of the reduction in progenitor cells and their differentiation ability in
the bone marrow is likely caused by increased reactive oxygen species (ROS) by BMAT [52,53].
This is further confirmed by the response to ROS scavengers, which significantly reduced
ROS levels in BMAT [54].

A third cause is how hyperglycemia induces the senescence of bone marrow mes-
enchymal stem cells [55] by causing an increase in MSC autophagy. This response to
hyperglycemia seems to be a secondary effect of the increase in oxidative stress. This was
confirmed by the ability of N-acetylcysteine (antioxidant) and diphenyleneiodonium (DPI,
inhibitor of NADPH oxidase) equally to block autophagy and prevent senescence [55].

The hyperglycemia-induced increase in the BMA population causes a significant in-
crease in cytokines upregulated in aging [56]. Senescent cells are characterized by the
expression of the senescence-associated secretory phenotype (SASP). These secretagogues
include interleukin-1α (IL-1α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear fac-
tor Kb (NF-Kb), transforming growth factor β (TGF-β), p21, p16, chemokine ligand 2
(CCL2)/monocyte chemoattractant protein 1 (MCP-1), and chemokine (C-X-C motif) ligand
(CXCL1/2) [57], which are themselves associated with local pro-inflammatory responses,
especially IL-6 [58]. Using an in vitro co-culture model, BMAT was shown to inhibit B-cell
lymphopoiesis at the differentiation stage from progenitor cells to pre–pro B-cells. The pro-
genitor cells instead differentiate toward the myeloid lineage [59]. This is similar to the de-
cline in B-cell lymphopoiesis that occurs in middle age [60] and late stages of life [59,61,62].
BMAT is theorized to inhibit B-cell lymphopoiesis by increasing the population of myeloid-
derived suppressor cells (MDSCs) in mononuclear cells (CD11b+Ly6C+Ly6G−) through
IL-1 mediated inhibition [63]. A second route is the activation of inflammasomes, such
as nod-like receptor 3 (NLRP3) [64], which also negatively affects T-cell proliferation [65]
through degeneration in the thymus [66].

CCL2/MCP-1 upregulation that resulted from an increased BMA induces a higher
expression of cyclooxygenase-2 (COX-2) in the bone marrow environment [67,68]. COX-2
is metabolized to prostaglandin E2 (PGE2), which promotes the differentiation of dendritic
cells toward T-regulatory cells and MDSCs [69,70]. This resulted in the reduction in CD8
T-cells’ response when normally responding to infected cells, as well as the reduction in the
antigen-presenting cell population [70].

Restoring glycemic control in diabetes is shown to increase antioxidant enzyme activity
and decrease superoxide production, which reduces oxidative stress [47]. A reduction in
oxidative stress has been shown to counter BMAT expansion, redirecting the bone marrow
cells toward osteogenesis even in older cell populations [71]. In the following section, we
will evaluate the effect of diabetes treatments on BMAT expansion.

3.2. Effect of Diabetes Treatments on Bone Marrow Adiposity

Treatments of diabetes vary in their effect on bone marrow adiposity and may explain
some of the failures in preventing immune senescence in diabetic patients. Metformin is
commonly used as a frontline treatment to improve insulin sensitivity. However, metformin
increases bone marrow adiposity, prompting osteogenic genes (RunX2, OPN, and OCN)
and adipogenic genes (Ppar-γ, Cebpα, and Scd1) in vivo. In contrast, in vitro results showed
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the opposite effect, where metformin inhibits adipogenesis and promotes osteogenesis [72].
This conflicting result may be explained by considering the balance of BMAT and MSC in
filling space in the bone marrow stroma. Further studies showed that metformin induces
MSC apoptosis both in vitro and in vivo, explaining the filling of the bone marrow stroma
by BMAT [72].

A second class of diabetes drugs is thiazolidinedione (glitazones, TZD) [73]. One of
the most common drugs of this class is rosiglitazone. An in vivo mouse femur fracture
model showed that rosiglitazone increased BMAT compared to a non-rosiglitazone-treated
control. These mice also have a greater bone volume but greater bone porosity. In vitro,
the rosiglitazone treatment induced more adipogenesis and reduced osteogenesis [73]. A
similar effect is seen with the use of pioglitazone [74,75]. Further characterization of this
effect found that Adipsin, a cytokine released by adipocytes, is responsible for the increased
BMAT after the rosiglitazone treatment of MSC. The rosiglitazone treatment causes BMAT
expansion, during which Adipsin is the most upregulated through the PPARγ acetylation-
dependent pathway. An Adipsin knockout mice model showed the inhibition of the BMAT
expansion response to rosiglitazone [76].

Gastric bypass surgery is used as a treatment for obese patients and has been found
to improve the glycemic control of obese T2DM patients. In a study on gastric bypass
patients with or without diabetes, the patients initially showed similar BMAT parameters
in both groups. After 6 months post-surgery, diabetic patients showed a decline in BMAT
and increased unsaturated lipids. This BMAT decline was not found in the non-diabetic
group [77].

In conclusion, the negative effect of metformin and thiazolidinedione on BMAT may
explain the immune senescence of T2DM patients despite intensive glycemic control. In
obese T2DM patients, this may lead to the consideration of increasing the priority of gastric
bypass over pharmacologic options. Alternatively, new PPARγ-sparing TZD analogs, such
as MSDC-0602K, offer the benefits of thiazolidinedione without increasing the adipogenesis
and senescence of bone marrow cells [74]. In the interim, no data have been reported
yet for GLP-1 analogs such as semaglutide or liraglutide, a more advanced treatment for
diabetes and the newest entry to the pharmacologic arsenal against obesity, on their effect
on immune senescence or on bone marrow adiposity.

4. How DM Affects the Innate and Adaptive Immune System

It is observed that several innate defense mechanisms work less than optimally due to
DM [78]. Innate immunity is one of the largest tools for fighting primary infections through
macrophages. DM leads to a reduced expression of Fcγ receptors on macrophages and
monocytes [79]. This leads to a less effective initial response as it causes a decreased rate
of endocytosis of a foreign pathogen, thereby slowing subsequent steps in the immune
response of DM individuals. Other immune molecules that are affected by hyperglycemic
conditions include natural killer (NK) cells, which seem to display problems regarding
the surveillance of virally infected cells. DM changes the transcription of the NKp46
receptor (NCR1) and endoplasmic reticulum (ER) stress-induced reduction in NK2GD
receptors. In T2DM, ER stress markers such as BiP and PDI mRNAs had a 2.2 times
increase. In addition, the Inositol-requiring transmembrane kinase endoribonuclease-
1α (IRE1α) pathway of the unfolding protein response (UPR) is increased by 1.98 times
in SXBP1 mRNA in diabetics. Collectively, all these variables combined lead to major
reductions and or changes to the production and presence of NK2GD receptors on NK
cell surfaces. When comparing the mRNA transcription for NCR1 in diabetics to healthy
individuals, a significant decrease in mRNA levels was observed [80]. This suggests that
hyperglycemic conditions continue to silence the innate response as both receptors play a
key role in the cytokine response when surveilling potentially infected cells. When these
receptors are not present or present in reduced numbers, there is less likelihood of activating
their cytokine response, which includes the release of interferon γ (IFN-γ), TNF-α, IL-10,
IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) [81]. By reducing
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or inhibiting the release of IFN-γ, it handicaps the subsequent adaptive immune system
response by not allowing for an increased major histocompatibility complex (MHC-1)
presence on neighboring cells and macrophages and not increasing the differentiation of
TH1 cells, which will later lead to the activation of CD8+ killer T-cells. By reducing IL-6
production, it impairs the humoral response by reducing the differentiation of B-cells into
plasma cells, which can then release antibodies into the bloodstream to activate systems
such as complement, opsonization, and neutralization. By reducing IL-10 production,
the immune system is limited in its ability to dial back the immune response after the
infection is eliminated [81]. This leads to increased recovery times and susceptibility to
further infection.

The adaptive immune response is also affected by hyperglycemic conditions induced
by DM. Research shows that several parts of the adaptive immune system have reduced
functionality compared to non-diabetics [82], starting with major changes to the leukocyte
recruitment process. Specifically, neutrophils seem to be the most affected group in this pro-
cess. When comparing diabetics to non-diabetics, there was a significant decrease in CXCL1
and CXCL2 cytokine production [82]. This means there is less recruitment of neutrophils from
blood to infected tissue, significantly reducing pathogen elimination and tissue healing. This
is further supported by data that show significantly reduced ROS production, overcoagu-
lation, and decreased degranulation in T2DM patients, which are all necessary parts of the
initial adaptive immune response when it comes to neutrophils [82–84]. By impairing these
essential first steps of the adaptive immune system, there is continued stress placed on the
rest of the immune system to combat and make up for the lack of pathogen elimination
and tissue healing. To make up for this lack of adaptive response, the body releases a
hyperinflammatory response. It risks extreme damage to itself to try at all costs to eliminate
the pathogen that is infecting it, despite what damage the host may incur. This is caused
by the delay of TH1 cell-mediated immunity, which is necessary for pathogen elimination
and the development of CD8+ cytotoxic T-cells (CTLs). This reduced ability of the innate
immune system to communicate to the adaptive immune system and then the adaptive
immune system’s impaired signaling to its other parts explains how detrimental DM can
be to the host infection response (Figure 3).
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How DM Affects Vaccine Uptake in the Elderly

Another area of consideration is the reduced vaccine uptake in DM patients. Vaccine
uptake requires the interaction between B-cells and naïve T-cells, which also gets impaired
in the aging process (Figure 3). As one ages, not only does the rate of lymphopoiesis de-
crease but the immune system begins to favor myeloid differentiation instead of lymphoid
differentiation [85]. This has the direct effect of shifting the immune system from one that is
a balance between memory cell lymphocytes and naïve cell lymphocytes toward one that is
more concerned with memory cell lymphocytes. Due to this shift, the flexibility that makes
the adaptive immune system so effective is lost and thus makes it much more difficult for
the elderly to generate novel high-affinity antibodies and T-cell receptors (TCR). Specifically,
it has been observed that the reduced IL-7 release and decreased VDJ recombination are the
cause of decreased humoral response effectiveness [86,87]. In the cell-mediated immune
response, that accumulation of previous infections or very severe infections can cause
significant deletions in the TCR diversity [88,89]. In addition to this diversity loss, it has
been observed that thymic involution and the hematopoietic progenitor cell decrease are
also responsible for the reduced creation of naïve T-cells, which are necessary to generate
a large TCR repertoire [90,91]. Given that the elderly struggle to maintain diversity in
their B-cell and T-cell receptors, and that they have a reduced production of naïve cells, it
should come as no surprise that these effects are increased in diabetics and occur at an even
younger age than expected for them [92]. In fact, because of the constant hyperglycemic
conditions and high leptin levels of diabetics, they have overly excessive T-cell activation
and expansion, which directly causes a reduction in their TCR repertoire and is responsible
for many of the comorbidities that are acquired post-DM diagnosis [93].

The real-life statistics show that specifically for hepatitis B, diabetics when vaccinated
had a 75.4% protection rate compared to the 82.0% of non-diabetics [94]. In addition,
it was also recommended that diabetics should try and receive vaccination at younger
ages to confer long-lasting immunity. When compared to non-diabetics at age 60 or
older, the diabetics had a seroconversion rate of 58.2% compared to the non-diabetics at
70.2% [94]. Because diabetic patients have further-aged immune systems than non-diabetics,
vaccinations before age 40 are recommended to confer better seroconversion rates compared
to non-diabetics [95]. In a study on booster vaccines for diabetics, they found that annual re-
vaccination was more required for diabetics than non-diabetics because even after receiving
the vaccination, their antibody levels decreased faster than for non-diabetics [96]. The
duration of T2DM also seems to be a contributing factor to vaccine uptake as it was shown
that individuals with T2DM for longer compared to T2DM individuals who had been less
affected by T2DM had higher seroconversion rates than long-term T2DM patients [97].
Even T1DM patients had higher seroconversion rates when compared to T2DM, and the
higher A1C levels observed in T2DM patients is a major contributing factor to how effective
vaccine seroconversion will be [98,99]. In conclusion, T2DM individuals and specially
aged T2DM individuals should increase their vaccination frequency and try to control or
decrease their A1C levels since both factors strongly affect one’s seroconversion rate and
effectiveness in fighting off infection post-vaccination (Figure 3). Receiving vaccination
at younger ages will also allow the individuals to take advantage of their more robust
immune system that is yet to suffer from having decreased hematopoiesis differentiation
and increased myeloid differentiation.

5. Latent Autoimmune Diabetes in Adults and Its Immunopathology
5.1. Latent Autoimmune Diabetes in Adults as a Heterogeneous Diagnosis

Latent autoimmune diabetes in adults (LADA) is a form of diabetes where patients do
not fit into the classical designations of type 1 diabetes (T1DM) or T2DM. The commonly ac-
cepted definition of LADA classifies patients with slowly progressive β-cell autoimmunity
in which blood glucose levels can be controlled without insulin treatment [100]. While these
patients initially appear to be phenotypically similar to T2DM patients, they present with
T1DM autoimmunity that manifests with varying levels of activity [101]. Just as expressed
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in patients with T1DM, LADA patients test positive for glutamic acid decarboxylase (GAD)
autoantibodies [102], but unlike patients with T1DM, it has been shown that LADA patients
have worse long-term glycemic control compared to T2DM patients [103]. In addition,
the presence of TCF7L2, a gene commonly predisposing individuals to T2DM, has been
found in patients with LADA [104]. There has also been evidence showing that the risk of
coronary artery disease, stroke, and cardiovascular mortality is similar in LADA and T2DM
patients [105]. Nevertheless, LADA includes a wide umbrella of different manifestations
of disease given its broad definition, and it has been shown to have great heterogeneity,
with studies distinguishing its wide manifestation of the genetic and immunological factors
found in both T1DM and T2DM [106]. Therefore, although there are no specific studies
examining LADA and its effect on ROS prevalence, it can be theorized that the similar
hyperglycemic environment seen in LADA as well as its sharing of T2DM genetic factors
would likewise cause ROS levels to be elevated in patients with LADA. This would entail
the possibility of LADA-induced inflammaging as outlined in the previous section. How-
ever, when looking into the pathophysiology of LADA, two distinct mechanisms of interest
could potentially be affected by or affect inflammaging, which will be further explored.

5.2. Type 1 Diabetes-like Pathological Mechanism

In T1DM, one of the main forms of autoimmunity against β-cells comes from CD8+ T-
cell activation and differentiation into autoreactive cells [107]. As characterized by Mallone
et al., many pre–pro-insulin (PPI) epitopes are targeted by autoreactive CD8+ T-cells strictly
in patients presenting with T1DM, which are present within β-cells, and they developed
assays enabling this identification between healthy and T1DM patients [108]. For LADA
patients, there have been a few physiological explanations to provide insight as to why
the T1DM autoimmunity seen in LADA patients is so delayed. In a study conducted by
Sachdeva et al., their group compared the activity of PPI-specific CD8+ T-cells derived from
LADA and T1DM patients’ blood samples [109]. They found that the quantity and activity
of the PPI targeting CD8+ T-cells were lower in LADA patients compared to T1DM patients,
and most importantly, this difference persisted when comparing older or younger T1DM
patients [109]. However, as the authors admit, the fact that the subjects in the LADA group
were very recently diagnosed and the heterogeneity of the disease mean that the findings
cannot allow for a conclusive mechanistic explanation [109]. There is a real possibility that
the PPI CD8+ T-cells could eventually reach the levels and activity of T1DM patients over
time, and it is also possible for a wide range of unscreened LADA patients to already have
this similar PPI CD8+ T-cell prevalence and activity. Nonetheless, many questions remain
about this mechanistic pathway for LADA patients. It is yet to be seen whether this mild
CD8+ T-cell activity is present at birth for these patients or if there is some specific trigger for
the autoimmune response later in life. Since there is evidence of LADA being independent
of body mass index [110], an unknown immunological response could possibly trigger the
autoimmune response later in life.

A possible explanation could be the natural inflammaging process. Interestingly, there
is evidence that the gut microbiota plays a role in both islet autoimmunity and inflam-
maging (Figure 4). As shown by Fransen et al., when the gut microbiota were inoculated
into young germ-free mice from older mice, they showed increased levels of several types
of helper T-cells and an increase in TNF-α [111]. Under these inflammatory conditions,
it has been shown that there is an increase in intestinal epithelial cell shedding, causing
gaps to form within the lining of the intestine, thus increasing intestinal permeability [112].
Moreover, a study conducted by Bosi et al. has shown an increase in intestinal perme-
ability preceding T1DM pathogenesis in humans [113], and in a study by Costa et al., the
pathogenesis of T1DM was induced in mice when streptozotocin was translocated into
pancreatic lymph nodes [114]. What this means for patients with LADA is that there is
a plausible mechanism for which the natural process of aging, and thus inflammaging,
initiates the onset of their autoimmune diabetes. Additional studies should be conducted
to characterize whether there is a change in intestinal permeability in LADA patients as
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well as increased intestinal inflammation. There should also be investigations into whether
these factors are influenced by the genetic susceptibility of LADA patients for T1DM.
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5.3. Alternate Type 2 Diabetes-like Pathological Mechanism

It has been well-established that a risk factor for the manifestation of T2DM is obe-
sity [115] and that the chronic low-grade inflammation associated with obesity drives
insulin resistance [116]. As described in the previous section, the TNF-α pathway can
directly lead to β-cell damage and death [21]; however, a less understood autoimmune
pathway could provide some more insight into the mechanism affecting obese patients
with LADA [117]. Tyrosine phosphatase IA-2 (IA-2) autoantibodies have been found to be
present in both LADA and T2DM patients [117,118], and it has been associated with an
increased incidence of insulin therapy for T2DM patients [118]. In the study conducted by
Tiberti et al., it was found that a subset of the IA-2 autoantibody, IA-2(256–760), was present
in 30% of patients positive for the GAD autoantibody and 3.4% of patients negative for the
GAD antibody and another IA-2 autoantibody, IA-2IC(605–979), in a population of LADA
patients [117]. The IA-2(256–760) autoantibody was shown to be the only antibody with a
positive correlation with BMI in T2DM patients in another study by Buzzetti et al. [119].
Additionally, only these strictly IA-2(256–760) autoantibody-positive T2DM patients pheno-
typically resembled patients who are obese with T2DM and have a longer time without
the need for insulin treatment over 7 years compared to GAD autoantibody-positive pa-
tients [119]. With all this in mind, it is possible to suggest that the low-grade inflammation
generated in obese individuals could trigger this alternate autoimmune pathway that is
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non-classical to the T1DM autoimmunity seen in T1DM and LADA patients. Considering
the variety of genotypes and phenotypes that fall under the umbrella of LADA, it seems
plausible that there could be an additional autoimmune pathway that can lead to LADA
that is phenotypically similar to T2DM. These findings highlight the need for further inves-
tigation into autoimmunity in T2DM. Furthermore, from what was discussed, there are
very complex pathological mechanisms in LADA that have the potential to interact with
each other and affect inflammaging. Likewise, it could be speculated that inflammaging
itself could be a factor in triggering autoimmunity in LADA patients, which could then
feedback into triggering more inflammaging due to the metabolic environment generated
by diabetes.

6. Implication for Treatment Choice for Diabetes

To solve the immune dysfunction that arises from diabetes, one common target is to
treat the diabetes-induced inflammation response. Inflammation is caused by the greater
oxidative stress burden that arises in a high glycemic state and is a common cause of
diabetes comorbidities [120]. However, several diabetes drugs that have beneficial effects
on oxidative stress [120], such as metformin and thiazolidinedione, unexpectedly may
induce immune senescence in T2DM patients [72,74]. Other classes of pharmaceutical ap-
proaches to diabetes [120] thus need to be considered. Several diabetes drugs that have been
shown to have beneficial effects on the Nrf2 oxidative pathway are liraglutide [121,122],
sitagliptin [123], and dihydromyricetin [124,125]. The effects of these drugs on immune
senescence have not been characterized.

In obese patients, a gastric bypass was shown to avoid the BMAT increase [77] that
induces immune senescence. Based on markers of oxidative stress, namely glutathione,
superoxide dismutase, and catalase, 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and
8-oxo-7,8-dihydroguanosine (8-oxoGuo), the data suggest that a gastric bypass is benefi-
cial in reducing oxidative stress [126] and thus may need higher prioritization in obese
T2DM patients.

7. Conclusions

Diabetes, especially T2DM, alters the immune response in a similar manner to that
found in the aging process. A similar phenomenon has also been reported on T1DM
patients; however, this has not been as well characterized. The current theory for this
pathology is the process of inflammaging, a chronic low-grade inflammation. Inflammaging,
along with other mechanisms, increases the senescence of bone marrow cells including
those that are involved in the immune response lineage. Interestingly, several drugs used to
treat diabetes, including metformin and thiazolidinedione, also induce similar senescence
responses. This side effect should thus be considered by patients and doctors when selecting
their diabetes treatment. The combined effect of the impaired immune system and side
effect of some diabetes drugs leads to increased vulnerability to infections, reduced vaccine
uptake, and damage to the β-cells, and may explain the atypical phenomenon of LADA.
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