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Abstract: Stout beer was selected as the research object to screen angiotensin-converting enzyme (ACE)
inhibitory peptides. The peptide sequences of stout beer were identified using ultra-performance liquid
chromatography-quadrupole-Orbitrap mass spectrometry with de novo, and 41 peptides were identified
with high confidence. Peptide Ranker was used to score the biological activity and six peptides with
a score ≥ 0.5 were screened to predict their potential ACE inhibitory (ACEI) activity. The toxicity, hy-
drophilicity, absorption, and excretion of these peptides were predicted. In addition, molecular docking
between the peptides and ACE revealed a significant property of the peptide DLGGFFGFQR. Further-
more, molecular docking conformation and molecular dynamics simulation revealed that DLGGFFGFQR
could be tightly bound to ACE through hydrogen bonding and hydrophobic interaction. Lastly, the ACEI
activity of DLGGFFGFQR was confirmed using in vitro evaluation and the IC50 value was determined
to be 24.45 µM.

Keywords: beer polypeptide; angiotensin converting enzyme; virtual screening; molecular docking

1. Introduction

Hypertension is one of the most common chronic diseases with the highest incidence
rate and it is also an important risk factor for cardiovascular disease (CVDs) [1,2]. On
19 September 2023, the World Health Organization published its inaugural Global Hyper-
tension Report, which stated that the prevalence of hypertension had steadily increased
over the past 2–3 decades, with the number of adults with hypertension doubling from
650 million in 1990 to 1.3 billion in 2019 [3]. The angiotensin-converting enzyme (ACE)
plays a pivotal role in the renin-angiotensin system. ACE cleaves the C-terminal histidine
and leucine residues of the decapeptide angiotensin I, transforming it into the effective
vasoconstrictor angiotensin II and causing an increase in blood pressure [4,5]. Therefore,
hypertension can be controlled by inhibiting ACE activity. Food-derived ACE inhibitory
(ACEI) peptides are a class of peptides with antihypertensive activity. Unlike traditional
antihypertensive drugs, they are non-toxic, have no adverse effects, and do not influence
normal blood pressure [6,7]. They have the potential to replace antihypertensive drugs;
therefore, the exploration of food-derived ACEI peptides is gradually becoming a research
focus [8].

Traditional methods to identify peptide components involve the combination of ultra-
filtration separation with purification methods such as volume-exclusion chromatography
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and ion-exchange chromatography [9]. These techniques can be used to isolate and char-
acterize the individual components that have high activity. However, this method is not
only challenging to perform but also provides inefficient results, limiting the number of
peptides that can be obtained at a given time. Additionally, there is a risk of losing some
highly active components during separation, which hinders high-throughput screening
efforts. Proteomics and mass spectrometry techniques have advanced significantly. In
silico screening eliminates the need for tedious separation and purification processes and
allows batch processing of many polypeptides via rapid screening. A combination of
bioinformatics and online databases can be used to screen several peptide sequences for
potential bioactivity. This method is rapid, highly efficient and inexpensive, making it
especially suitable for screening ACEI peptides [10].

Recently, several ACEI peptides have been identified and evaluated in brewed wine.
Wu et al. discovered a polypeptide in Chinese Baijiu for the first time, which indicated an
ACE inhibitory effect with an IC50 of 446 mmol/L [11]. Guo et al. confirmed the potential
antioxidant and active ACEI peptides isolated from Guangdong glutinous rice wine and
found significantly increased ACEI activity (30.89%) [12]. Moreover, Yin et al. identified two
peptides, LPVGP and FPLQPHQP, from Qingke Baijiu, which had an inhibition with ACE
(IC50 = 9.05, 5.03 µM) [13]. Beer is one of the most globally consumed fermented beverages
that traditionally comprises four ingredients, including malted barley, water, hops, and
yeast [14,15]. It is rich in nutrients, has a low alcohol content and can dissolve various
peptides, amino acids, vitamins, and some enzymes (either raw or in the process) [16].
Numerous epidemiological studies have reported the protective effects of beer against
CVDs [17]. A study reported that light-to-moderate beer drinkers were 57% less likely
to develop CVDs than abstainers [18]. Ronan et al. reported that ale, lager, and stout
could significantly inhibit platelet-activating factor-induced human platelet aggregation
in vitro [19]. It has been observed that beer contains 2–6 mg/mL of protein/peptide [20],
primarily derived from the water-soluble protein and insoluble barley protein in the raw
material; some peptides are also produced by yeast metabolism during fermentation [21].
However, there has been little research on bioactive peptides in beer.

Stout beer, also known as dark beer, is generally black or brown in color and is
prepared using special malts such as burnt and black malt as brewing materials [22,23].
This beer has unique malt and burnt-malt flavors, offering a mellow and slightly sweet
taste [24]. Stout beer is rich in nutrients and its amino acid content is 3–4 times higher
than that in other types of beers [25]. This study aims to identify peptides in stout beer,
screen for bioactive peptides with ACEI activity through in silico screening and verify the
activities of the identified peptides in vitro. Furthermore, molecular docking and molecular
dynamics simulation (MD) were used to study the interaction between the peptide and
ACE. This study could serve as a valuable reference for the development of beer with
certain bioactivity.

2. Materials and Methods
2.1. Materials and Reagents

Stout beer was purchased from a market in Kunming, China. Synthesized peptides
were obtained from Shanghai Synpeptide Co., Ltd., (Shanghai, China). An ACE activity
determination kit was obtained from Sigma-Aldrich (Saint Louis, MO, USA). Trifluoroacetic
acid and acetonitrile were purchased from Merck (Darmstadt, Germany).

2.2. Sample Preparation

The stout beer samples were filtered, degassed, and then concentrated from 300 mL to
50 mL. After concentration, the samples were extracted three times with ethyl acetate [26].
The aqueous phase obtained after extraction was subsequently used for peptide analysis.
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2.3. Isolation and Identification of Peptides

The peptides in stout beer were analyzed using ultra-performance liquid chromatography-
quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS2) [27].

The UPLC conditions were as follows: InfinityLab Poroshell 120 EC-C18 (2.1 × 100 mm,
1.9 µm); column temperature of 30 ◦C; mobile phase A: acetonitrile with 0.1% formic acid;
mobile phase B: ultrapure water with 0.1% formic acid. The injection volume was 2 µL and
the flow rate was 0.2 mL/min. Gradient elution was 5% A from 0 to 1 min, 10% A from
1 to 2.5 min, 25% A from 2.5 to 12.5 min, 52.5% A from 12.5 to 20 min, 95% A from 20 to 22 min,
and 5% A from 22 to 30 min.

The following conditions were used for mass spectrometry: ESI+ ion source; the
primary mass spectrometer resolution was 70,000, and the secondary mass spectrum was
35,000; the spray voltage was 3.2 kV; the capillary temperature was 350 ◦C; the drier tem-
perature was 350 ◦C; the data acquisition range was m/z 100–1000; the mass spectrometry
data scanning mode was full MS-dd MS2.

The obtained mass data were analyzed using Peaks Studio 8.0 software. Only peptides
with an average local confidence (ALC) score ≥ 85% were considered for further analysis.

2.4. Screening of Bioactive Peptides In Silico

In silico digestion was performed to compare the selected peptides with known ACEI
peptides in the BIOPEP database (http://www.uwm.edu.pl/biochemia/index.php/en/
biopep) (last accessed on 4 April 2024) and the AHTPDB database (http://crdd.osdd.net/
raghava/ahtpdb/) (last accessed on 4 April 2024).

Peptide Ranker (http://bioware.ucd.ie/compass/biowareweb/Serverpages/Peptideranker)
(last accessed on 8 April 2024) was utilized to predict the possible bioactivities of the peptides.
Peptides with a score ≥ 0.5 indicated potential biological activity [28]. In this study, a threshold
of 0.5 was established for activity evaluation.

The BIOPEP application (http://www.uwm.edu.pl/Biochemia/biopep/start_biopep.
php) (last accessed on 10 April 2024) contains a bioactive peptide sequence database and a
program. The program can be used to construct potential bioactivity profiles of peptides,
calculating quantitative descriptors to measure their potential values. In this study, the
“Activity” and “Profiles of potential biological activity” functions were used to search for
potential biological activity and possible active sites.

2.5. Toxicity and Solubility Prediction

ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/) (last accessed on 12 April
2024) is a unique and valuable in silico method used to predict the toxicity of peptides and
proteins. The Expasy database (https://web.expasy.org/protparam/) (last accessed on
14 April 2024) was used to calculate the hydrophilicity and hydrophobicity indices of the
amino acids in peptides, which were assessed and represented using the grand average of
hydropathy value (GRAVY). A low GRAVY value indicates strong hydrophilicity, which is
conducive to solubility, and vice versa [29].

2.6. Absorption and Excretion Properties Analysis

The prediction of absorption and excretion properties is essential in contemporary drug
design and screening. In this study, AdmetSAR (http://lmmd.ecust.edu.cn/admetsar1)
(last accessed on 15 April 2024) was used to predict the properties of peptides. Furthermore,
the primary evaluation indicators selected in this study indicated the blood–brain barrier
(BBB), human intestinal absorption (HIA), and cytochrome P450 inhibitory promiscuity
(CYP 450) [30]. The peptide codes were translated into simplified molecular input line
entry specifications using PepSMI (https://www.novoprolabs.com/tools) (last accessed on
18 April 2024).

http://www.uwm.edu.pl/biochemia/index.php/en/biopep
http://www.uwm.edu.pl/biochemia/index.php/en/biopep
http://crdd.osdd.net/raghava/ahtpdb/
http://crdd.osdd.net/raghava/ahtpdb/
http://bioware.ucd.ie/compass/biowareweb/Serverpages/Peptideranker
http://www.uwm.edu.pl/Biochemia/biopep/start_biopep.php
http://www.uwm.edu.pl/Biochemia/biopep/start_biopep.php
https://webs.iiitd.edu.in/raghava/toxinpred/
https://web.expasy.org/protparam/
http://lmmd.ecust.edu.cn/admetsar1
https://www.novoprolabs.com/tools
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2.7. Molecular Docking
2.7.1. Preparation of Small Molecules

Peptide segment structures were built using the “Build Protein” function in SYBYL-X
2.1.1 software, followed by optimization with parameters set to Max Iterations 5000 and
Gradient 0.005 to ensure energy minimization [31].

2.7.2. Preparation of Protein Structure

The crystal structure of ACE (PDBI: 108A) was downloaded from Protein Data Bank
(http://www.rcsb.org/pdb) (last accessed on 20 April 2024). The enzyme was processed
using the “Surflex-Dock” function in SYBYL-X. The ligand molecule from the original
receptor-ligand complex crystal structure was separated from the receptor pocket, water
molecules and other small molecules were removed, and the protein was hydrogenated
and charged. A docking interface was set within 5 Å of the ligand center.

2.7.3. Molecular Docking

The peptide segments were flexibly docked with ACE using the “Surflex-dock” func-
tion in SYBYL-X. Peptides were docked into ACE using molecular visualization. The
total score (T-Score), consensus score (C-Score), and number of hydrogen bonds were
used to evaluate the docking results. A C-Score ≥ 4.0 indicated successful docking, and
a T-Score ≥ 6.0 indicated superior docking [32]. Based on the evaluation criteria, optimal
conformation was selected.

2.7.4. 2D Structure Visualization

The LigPlot program was used to analyze the 2D interaction of the receptor-ligand
complex, the interaction between proteins and the ligand complex was determined, and the
hydrophobic bond, hydrogen bond and bond length under docking posture were analyzed.

2.8. MD Simulation

The simulation of the peptides and the ACE was performed according to a previous
report [33,34]. In the preprocessing of small molecules, Gaussian 16 W was used for the
hydrogenation of small molecules, whereas AmberTools 22 was used to impose GAFF
on the small molecule force field. Amber99sb-ildn was used as the force field, and a
TIP3P water model as the solvent. Na+ ions were used to neutralize the charge. The
simulation system adopts the steepest descent method to minimize the energy; the coupling
constant was 0.1 ps and the duration was 100 ps. The following conditions were employed:
temperature: 300 K, pressure: 1 atm, time: 100 ns, isothermal and isobaric system. The
root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), the solvent-
accessible surface area (SASA), changes in the radius of gyration, and the number of
hydrogen bond changes during MD simulation were determined.

2.9. Determination of ACEI Activity In Vitro

ACEI activity determination was determined using an assay kit. Briefly, 10 µL of
ACE and 40 µL of the inhibitor were added to the microplate and mixed thoroughly, then
50 µL of the substrate was added to start the reaction. The fluorescence was detected at
an excitation wavelength of 320 nm and an emission wavelength of 405 nm at 37 ◦C for
30 min. The ACE activity of the peptide was calculated as follows:

ACEI activity = [(KStd − KSample)/KStd] × DF × 100%

where KSample means the slope of the sample curve after subtracting the blank. (RFU/min);
KStd means the slope of the standard curve after subtracting the blank (RFU/min); DF
means the dilution factor.

http://www.rcsb.org/pdb
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2.10. Statistical Analysis

Each experiment was conducted in triplicate, the data were presented as mean ± standard
deviation. SYBYL-X 2.1.1 software was utilized for evaluating the molecular docking visualiza-
tion. LigPlot 1.4.5 software was employed to illustrate the 2D interactions. MD simulation data
analysis was performed using GROMACS 2022.3 software.

3. Results and Discussion
3.1. Identification of Peptides

During the brewing process, most proteins are enzymatically metabolized into small
molecule polypeptides or single amino acids and are ultimately found in the final beer
product. Previous studies were primarily focused on the proteomic composition of beer.
Mahya et al. have reviewed the types of proteins in beer [35]. Gianluca and co-authors
analyzed the protein and peptide components of two Italian barley malt beers and indicated
that Z4-barley protein, ns-LTP1 and two barley albumins are predominantly found in
beer [36,37].

In this study, peptides in stout beer were identified using UPLC-Q-Orbitrap-MS2, and a
total of 41 peptides with ALC ≥ 85% were selected (Table 1). The peptides PMAPLPRSGPE
and DLGGFFGFQR from Italian beer, LPQQQAQFK, STEWHLD, PPPVHD, LVLPGELAK,
LAVMQQQQQQ, PPPVHDTD, PPVPHDTD, LPEDAKVE, HAVSEGTKAVT, LPGELAK,
PMAPLPRSGEP, TVSGF, LNFDPNR, LALDTRVG, LDTRVGV, and RVALVY from draft beer,
which were previously identified, also appeared in our results [37,38]. The polypeptides
present in beer primarily originate from malt protein. Previous studies have shown that
the soluble protein content in malt water-soluble protein decreased significantly with an
increase in roasting degree [39]. The main raw material of stout beer includes roasted
burnt malt, and because roasted stout beer has fewer peptides than other beers [40]. The
41 peptides consisted of 4–14 amino acids, with a molecular weight less than 1600 Da,
consistent with the structure of bioactive peptides [41]. Malt typically contains 8–14%
protein, and is composed primarily of 18 different amino acids, of which Glu (2.9%), Pro
(1.2%) and Leu (1.0%) are the most abundant [38]. Among the 41 peptides identified in
this study, 18 contained Glu, 17 contained Pro, and 28 contained Leu, which is consistent
with findings from previous studies. Moreover, the obtained peptides were entered into
the active peptide database BIOPEP and ACEI peptide database AHTPDB and it was
revealed that two of them were the already known peptides LNFDPNR and LPQQQAQFK
(IC50 = 38.58, 26.45 µM) [42]. Therefore, the remaining 39 peptides were selected for the
current study.

Table 1. Peptides of stout beer.

No Peptide RT Tag
Length ALC (%) Mass References

1 ALDTRVGV 15.67 8 94 829.4658
2 LPQQQAQFK 13.86 9 93 1086.5823 Tian et al. [41]
3 STEWHLD 17.12 7 93 886.3821 Tian et al. [41]
4 TDVRLS 10.05 6 93 689.3708
5 MFALPVPSQPVD 18.84 12 91 1299.6533
6 VAVAREVAVG 14.41 10 91 969.5607
7 FDRLQ 11.86 5 91 677.3497
8 PPPVHD 4.48 6 91 660.3231 Tian et al. [41]
9 LASQLGLGGLSSL 19.07 13 90 1214.6870
10 QAAVGGQVVEK 12.17 11 90 1084.5876
11 KELWSMEK 16.11 8 90 1049.5215
12 TAAGSL 10.38 6 90 518.2700
13 LVLPGELAK 18.33 9 90 938.5800 Tian et al. [41]
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Table 1. Cont.

No Peptide RT Tag
Length ALC (%) Mass References

14 EALE 6.20 4 90 460.2169
15 TALTVVRN 14.20 8 90 872.5079
16 LAVMQQQQQQ 13.55 10 89 1200.5920 Tian et al. [41]
17 DLGGFFGFQR 18.99 10 89 1142.5508 Picariello et al. [37]
18 SPKMAKNVD 13.08 9 89 988.5012
19 DNLQGLTKP 15.37 9 89 984.5240
20 PPPVHDTD 4.46 8 89 876.3977 Tian et al. [41]
21 PPVPHDTD 4.30 8 89 876.3977 Tian et al. [41]
22 ELQTSVR 9.78 7 89 831.4450
23 LPEDAKVE 13.19 8 88 899.4600 Tian et al. [41]
24 HAVSEGTKAVT 4.73 11 87 1098.5669 Tian et al. [41]
25 SSQGLELSHVFHKS 16.89 14 87 1554.7791
26 LPGELAK 14.22 7 87 726.4276 Tian et al. [41]
27 AHQQQVPVEVMR 18.09 12 86 1420.7246
28 PMAPLPRSGEP 15.91 11 86 1150.5803 Picariello et al. [37]
29 TVSGF 15.41 5 86 509.2485
30 SSLF 18.10 4 86 452.2271
31 LNFDPNR 15.74 7 86 874.4297 Tian et al. [41]
32 PPPVHDFMNE 4.41 10 86 1181.5176
33 ELRVR 10.55 5 86 671.4078
34 EVNNVGQSGLMD 16.34 12 85 1261.5608
35 ATPCCAEELER 16.22 11 85 1220.5166
36 VAVARTPTVG 14.57 10 85 969.5607
37 EAGY 3.79 4 85 438.1750
38 LALDTRVG 16.39 8 85 843.4814 Tian et al. [41]
39 PMAPLPR 15.47 7 85 780.4316
40 LDTRVGV 15.14 7 85 758.4286 Tian et al. [41]
41 RVALVY 16.05 6 85 719.4330 Tian et al. [41]

3.2. Process of Selecting Stout Beer Peptides
3.2.1. Activity Score and Prediction

Peptide Ranker is a neural-network-based biopeptide activity prediction server. For
each peptide, the score is between 0 and 1 [42]. The higher the peptide ranker score,
the greater the possibility of biological activity. The Peptide Ranker scores of 39 pep-
tides are shown in Table 2. The activity evaluation threshold was set at 0.5, based
on which six peptides were screened, including DLGGFFGFQR, PMAPLPR, SSLF, PP-
PVHDFMNE, FDRLQ, and PMAPLPRSGEP with scores of 0.8736, 0.8565, 0.8145, 0.7050,
0.5909, 0.5780, respectively.

The potential biological activities of six peptides were predicted using the “Activity”
function of BIOPEP, and the results showed that all peptides were potential ACE inhibitors.
The active sites of the selected peptides were predicted using the function “Profiles of
potential biological activity” and the results were as follows: GF, FG, GG, LG, FQ in
peptide DLGGFFGFQR; PLP, PR, PL, AP, MAP in peptide PMAPLPR; LF in peptide SSLF;
PP, DF, PPP in peptide PPPVHDFMNE; RL, LQ in peptide FDRLQ; PLP, PR, PL, GEP,
AP, GE, SG, MAP in peptide PMAPLPRSGEP (Table 3). A previous study found that
peptides containing Tyr, His, Phe, Arg, and Trp are characteristic of ACEI peptides [43].
The six peptides screened by BIOPEP exhibited these characteristics.
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Table 2. Peptide Ranker scores of stout beer.

No. Peptide Peptide
Ranker Score No. Peptide Peptide

Ranker Score

1 DLGGFFGFQR 0.8736 21 SPKMAKNVD 0.1683
2 PMAPLPR 0.8565 22 TAAGSL 0.1628
3 SSLF 0.8145 23 LALDTRVG 0.1545
4 PPPVHDFMNE 0.7050 24 LVLPGELAK 0.1488
5 FDRLQ 0.5909 25 VAVARTPTVG 0.1275
6 PMAPLPRSGEP 0.5780 26 EVNNVGQSGLMD 0.1166
7 LASQLGLGGLSSL 0.4581 27 ALDTRVGV 0.1162
8 SSQGLELSHVFHKS 0.4439 28 RVALVY 0.1076
9 PPPVHD 0.4175 29 ELRVR 0.0990
10 PPPVHDTD 0.2941 30 VAVAREVAVG 0.0900
11 STEWHLD 0.2941 31 QAAVGGQVVEK 0.0833
12 TVSGF 0.2924 32 LPEDAKVE 0.0763
13 MFALPVPSQPVD 0.2698 33 LDTRVGV 0.0728
14 ATPCCAEELER 0.2616 34 TDVRLS 0.0723
15 PPVPHDTD 0.2565 35 HAVSEGTKAVT 0.0701
16 AHQQQVPVEVMR 0.2268 36 LAVMQQQQQQ 0.0597
17 LPGELAK 0.2245 37 TALTVVRN 0.0575
18 DNLQGLTKP 0.2083 38 ELQTSVR 0.0521
19 KELWSMEK 0.1888 39 EALE 0.0483
20 EAGY 0.1687

Table 3. Bioactivity prediction of active amino acid sequence of peptide.

No. Peptide Activity Active Amino Acid Sequence

1 DLGGFFGFQR ACE inhibition GF, FG, GG, LG, FQ
2 PMAPLPR ACE inhibition PLP, PR, PL, AP, MAP
3 SSLF ACE inhibition LF
4 PPPVHDFMNE ACE inhibition PP, DF, PPP
5 FDRLQ ACE inhibition RL, LQ

6 PMAPLPRSGEP ACE inhibition PLP, PR, PL, GEP, AP, GE, SG,
MAP

3.2.2. Evaluation of the Properties of the Selected Peptides

Currently, peptides are being used to treat diseases; however, peptide-based therapy
is limited by its toxicity profile. Therefore, it is necessary to predict the toxicity of polypep-
tides before commencing in-depth studies. ToxinPred is a useful tool to distinguish toxic
peptides from the non-toxic ones. Here, the screen peptides were non-toxic, indicating their
suitability as food-derived ACEI peptides (Table 4).

Table 4. Evaluated properties of stout beer.

9 Peptide Toxin GRAVY

Absorption Excretion

BBB HIA
CYP450

Inhibitory
Promiscuity

1 DLGGFFGFQR Non-Toxin −0.050 0.9493 0.7473 −0.9658
2 PMAPLPR Non-Toxin −0.257 0.9332 −0.5054 −0.9958
3 SSLF Non-Toxin 1.250 0.9037 0.7437 −0.9888
4 PPPVHDFMNE Non-Toxin −0.960 0.7896 0.6805 −0.9657
5 FDRLQ Non-Toxin −0.980 0.6429 0.7473 −0.9870
6 PMAPLPRSGEP Non-Toxin −0.736 0.9399 −0.4929 −0.9953

Good water solubility is the basis of orally bioactive peptides. The physiological
activity of bioactive peptides is closely related to the hydrophobic/hydrophilic properties
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of the amino acid chains. The GRAVY value reflects the solubility of the peptides and
ranges from −2 to 2. Positive values indicate that the peptide is hydrophobic, and negative
values indicate hydrophilicity. The GRAVY value of SSLF was 1.250 and that of the
other five peptides ranged from −0.050 to −0.980, indicating that SSLF is hydrophobic,
whereas DLGGFFGFQR, PMAPLPR, SSLF, PPPVHDFMNE, FDRLQ, PMAPLPRSGEP
are hydrophilic.

Absorption and excretion parameters play a crucial role in the identification of food-
derived bioactive peptides [44]. Therefore, the properties of the six identified peptides were
assessed using the AdmetSAR program (Table 4). The ability of chemicals to cross the BBB is
important for the development of central nervous system drugs. Here, it was observed that
all six peptides had positive BBB values, suggesting their BBB-penetrating potential and
ability to enter the central nervous system. HIA results showed that DLGGFFGFQR, SSLF,
PPPVHDFMNE and FDRLQ were HIA+, indicating that they have favorable permeability
and absorptive properties. The HIA values of PMAPLPR and PMAPLPRSGEP were
negative, indicating that they were not well absorbed after oral administration. CYP 450
is one of the most important enzymes in drug metabolism. Several CYP450 enzymes are
involved in the metabolism of various endogenous and exogenous compounds, including
active peptides and other dietary products. We analyzed the interactions between the
selected peptides and CYP 450 enzymes to determine their metabolic characteristics. The
results revealed that CYP 450 enzymes do not affect the efficacy and safety of peptides.
Therefore, based on the evaluation of the properties of peptides, we selected three peptides
DLGGFFGFQR, PPPVHDFMNE, FDRLQ for further analyses.

3.3. Molecular Docking

Molecular docking is widely used to study molecular interactions and predict binding
patterns and forces. To further identify peptides with high ACEI activity, molecular docking
was used to simulate and assess the binding capacity of the three peptides with ACE
(Table 5). All three peptides had good binding ability with ACE, and the T-Score of
DLGGFFGFQR was ≥10. Combining the characteristic findings from the peptide property
analysis and the molecular docking score, DLGGFFGFQR was selected from among the
three peptides owing to its strong binding ability to ACE.

Table 5. Molecular docking score.

Peptide T-Score C-Score Number of Hydrogen Bonds

DLGGFFGFQR 10.96 4.0 9
PPPVHDFMNE 9.22 4.0 5

FDRLQ 8.98 4.0 11

3.4. Molecular Docking Conformation Analysis

Molecular docking is a computational chemistry method that aims to predict binding
patterns and affinity between proteins and small molecules. To understand the interactions
between ACE and the peptides, DLGGFFGFQR was docked into the binding site of ACE
(Table 6). The ACE active center includes 12 amino acid residues, which were Ala354,
Gln281, Glu162, Glu384, Glu411, His353, His383, His387, His513, Lys511, Tyr520, and
Tyr523 [45]. The ACE- DLGGFFGFQR binding site complex was predicted by SYBYL-
X and the best conformations are shown in Figure 1. Figure 1a shows the surface of
the ligand-protein molecule. Figure 1b is a 3D structure model of ACE-DLGGFFGFQR,
whereas Figure 1c,d are the 3D and 2D models of the amino acid residue interaction binding
mode. It was observed that DLGGFFGFQR formed eight hydrogen bonds with amino acids
Cys352, Gln369, Val380, Pro407, His410, Gly408, and Gly414 in ACE, and the residues may
enhance the ability of ACE to immobilize peptides and enhance stability, which may lead to
increased inhibition. Based on relevant experimental reports and the findings related to the
catalytic mechanism of ACE, it could be inferred that the results were similar to those for
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hemorphins [46]. Furthermore, DLGGFFGFQR formed 27 hydrophobic interactions with
ACE and the action sites exhibited were different. Previous research showed that caffeic
acid interacts with Asp377, Thr372, Thr166, Cys370, Pro163 at the ACE active site [47],
corroborating our observations. This similarity suggested that the peptide was more tightly
bound to ACE and may therefore be a more potent inhibitor.

Table 6. Action mode of DLGGFFGFQR and ACE.

Peptide Interaction Mode ACE Residue

DLGGFFGFQR

Hydrogen bond

Cys352(3.11Å), Gln369(3.00Å),
Val380(2.62Å), Pro407(3.09Å),
His410(3.06Å), Gly408(2.33Å),

Gly414(3.03Å)

Hydrophobic interaction

Thr166, Lys343, Val148, Thr150, Asp377,
Val351, Pro163, Ala149, Gln160, Trp185,
Phe512, Ser147, Tyr146, Thr372, Cys370,
Lys368, Ile367, Ala381, Leu161, Ser355,
Arg522, Ala356, Gly386, Ile413, Ala412,

Met385, Ser526
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3.5. MD Simulation Analysis

MD simulation indicated the interactions between the molecules at the atomic level of
microscopic changes for dynamic analysis. The results of MD simulation for the complexes
of DLGGFFGFQR and ACE are shown in Figure 2. The change in trend of RMSD of protein
and ligand is an important characteristic indicating whether the simulation has reached a
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state of stability. The effect of DLGGFFGFQR-ACE receptor was more obvious between
0–40 ns and RMSD fluctuated widely, interfering with the overall structure. After 40 ns,
RMSD was more stable around 2.5 Å. (Figure 2a).
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RMSF is the mean value of the atomic position changes over time and can be used
to characterize the flexibility and motion intensity of protein and amino acids during the
simulation process. Amino acid residues with high values of RMSF have high variability
and are also the center of the receptor structure region [48]. The amino acid residues in
the 130–200 region were significantly affected by the interaction between DLGGFFGFQR
and ACE (Figure 2b). At the same time, the RMSF value of this region was significantly
higher than that of other regions, indicating that it may be an important area for DLG
GFFGFQR to affect ACE and that amino acid fluctuations in this region would affect protein–
peptide interactions. The molecular docking result showed that DLGGFFGFQR could form
hydrophobic interactions with ACE via amino acid residues including Thr166, Val148,
Thr150, Pro163, Ala149, Gln160, Trp185, Ser147, Tyr146, and Leu161. These two findings
were in concordance.

The radius of gyration was used to characterize protein structure density. No signifi-
cant changes in the radius of gyration were noted after the binding of the protein to the
peptide (Figure 2c). SASA is used to assess the surface area of a protein molecule exposed
to the solution and assess the interactions between them and the stability of the protein
structure. The SASA of the ACE receptor decreased after binding (Figure 2d). Hydrogen
bonding and hydrophobic interactions play an important role in preserving protein confor-
mation. Figure 2e shows the changes in the number of hydrogen bonds, which tend to be
stable after 40 ns.

Based on the above results, it could be concluded that DLGGFFGFQR and ACE had
stable interactions. Moreover, the binding of the peptide caused protein compaction
and decreased the surface area. Several hydrogen bonds were formed between the
small molecules.

3.6. In Vitro Analysis of ACEI Activity

In this study, DLGGFFGFQR was screened from stout beer using virtual screening
and molecular docking. At the next stage, to further verify the actual inhibitory activity of
the screened peptide, DLGGFFGFQR was analyzed to identify its in vitro bioactivity. The
IC50 of DLGGFFGFQR was 24.45 ± 0.35 µM. Previous studies have reported the isolation
of numerous ACEI. The ACEI activity of DLGGFFGFQR was more potent than that of
VGLFPSRSF [49] and GRVSNCAA [50] and weaker than that of YGIKVGYAIP [51] and
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DHSTAVW [52]. Activity verification indicated that the peptide obtained via screening
methods exhibited significant ACE inhibition effects. Therefore, this study has demon-
strated a rapid screening method for ACEI peptides from stout beer. Further in vitro
simulation of oral gastrointestinal digestion is necessary to fully understand the action
of peptides.

4. Conclusions

In this study, stout beer was selected to screen for bioactive peptides using a rapid
method. Using this method, 41 peptides were identified, and 6 potential biological activity
peptides were selected using in silico tools. Through ADMET prediction and molecular
docking, DLGGFFGFQR was assessed to have high ACEI activity. Through exploring the
hypotensive mechanisms of DLGGFFGFQR by molecular docking and MD simulation
analysis, it was found that the peptide could effectively dock with ACE. Finally, the in vitro
activity was verified. This study exhibited a useful method to screen for ACEI peptide with
excellent biosafety, thereby providing a theoretical basis for further product innovation and
research development of functional beer.
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