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Abstract: Food recommendation systems are becoming increasingly vital in modern society, given
the fast-paced lifestyle and diverse dietary habits. Existing research and implemented solutions often
rely on user preferences and past behaviors for recommendations, which poses significant issues.
Firstly, this approach inadequately considers the nutritional content of foods, potentially leading to
recommendations that are overly homogeneous and lacking in diversity. Secondly, it may result in
repetitive suggestions of the same types of foods, thereby encouraging users to develop unhealthy
dietary habits that could adversely affect their overall health. To address this issue, we introduce a
novel nutrition-related knowledge graph (NRKG) method based on graph convolutional networks
(GCNs). This method not only enhances users’ ability to select appropriate foods but also encourages
the development of healthy eating habits, thereby contributing to overall public health. The NRKG
method comprises two key components: user nutrition-related food preferences and recipe nutrition
components. The first component gathers nutritional information from recipes that users show
interest in and synthesizes these data for user reference. The second component connects recipes
with similar nutritional profiles, forming a complex heterogeneous graph structure. By learning
from this graph, the NRKG method integrates user preferences with nutritional data, resulting in
more accurate and personalized food recommendations. We evaluated the NRKG method against
six baseline methods using real-world food datasets. In the 100% dataset, the five metrics exceeded
the performance of the best baseline method by 2.8%, 5.9%, 1.5%, 9.7%, and 6.0%, respectively. The
results indicate that our NRKG method significantly outperforms the baseline methods, including
FeaStNet, DeepGCN, GraphSAGE, GAT, UniMP, and GATv2, demonstrating its superiority and
effectiveness in promoting healthier and more diverse eating habits. Unlike these baseline methods,
which primarily focus on hierarchical information propagation, our NRKG method offers a more
comprehensive approach by integrating the nutritional information of recipes with user preferences.

Keywords: food; heterogeneous graph; graph neural networks; recommendation systems

1. Introduction

Food recommendation systems [1–3] have traditionally been based on individual
tastes, often lacking diversity. This can lead to unhealthy eating habits [4–6], as an over-
reliance on a narrow range of foods can result in nutritional imbalances and deficiencies in
essential vitamins and minerals. Consequently, to ensure comprehensive nutrient intake
and maintain a healthy diet, it is crucial for food recommendation systems to promote
dietary diversity, encouraging users to try a wide variety of foods. A diverse diet is essential
for providing the necessary nutrients to maintain overall health.

In parallel with these dietary concerns, the rapid development and widespread adop-
tion of information technology have increased the demand for personalized recommenda-
tions. Traditional food recommendation methods, which often rely on manual expertise
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or simple rule-based approaches, fail to meet the diverse needs of modern users. There-
fore, leveraging technologies such as machine learning [7–9] and data mining [10–12] to
construct personalized food recommendation models based on user preferences, historical
behaviors, and food attributes has become a prevalent trend.

Based on the above, food recommendation systems play a crucial role in enhancing
user experience by delivering personalized suggestions tailored to individual preferences.
However, the current emphasis on personalization raises concerns regarding the potential
impact on food diversity and the promotion of healthy eating habits. An excessive reliance
on user historical data may inadvertently limit the variety of recommended foods and,
in some cases, encourage unhealthy dietary choices. This study alleviates the critical gap
in the existing literature by exploring how to balance the benefits of personalized food
recommendations with the promotion of diverse and healthy dietary practices. We inves-
tigate whether integrating many nutrients into personalized recommendation methods
can effectively mitigate these challenges. By doing so, this research aims to contribute
novel insights into optimizing food recommendation systems to not only enhance user
satisfaction but also foster healthier eating behaviors.

To mitigate these challenges, we propose a novel nutrition-related knowledge graph
food recommendation method based on graph convolutional networks (GCNs). Specifically,
we extracted seven key nutrients from recipe information—calories, total fat, saturated
fat, sodium, protein, sugar, and carbohydrates—and standardized these to derive recipe
nutritional components. Subsequently, we calculated the similarity between recipes based
on their nutrient profiles, linking similar recipes to form a nutrition-related food similarity
graph. By analyzing user–recipe interaction data, we identified recipes that users rated
highly and calculated the average nutrient values of these recipes to establish user nutrition-
related food preferences. This process culminated in the construction of a heterogeneous
undirected graph comprising users, recipes, recipe nutritional components, user recipe
ratings, and the nutrition-related food similarity graph. By applying attention mechanisms
to recipes and their nutritional components, and integrating user preferences, we derived
embeddings for both recipes and users. Ultimately, food recommendations were generated
by learning through GCNs within the heterogeneous graph [13–15], combining user and
recipe embeddings.

The contributions of our research are as follows:

• First, we introduce the concept of “recipe nutritional components,” enabling a sys-
tematic analysis of the nutritional value of recipes. This allows us to provide users
with more accurate and comprehensive nutritional information, helping them better
understand the nutritional content of their food and manage their dietary health.
Additionally, this feature offers more options for users with special dietary needs or
restrictions. Details are shown in Table 1;

Table 1. The evidence of contribution 1.

Detail Evidence

Propose recipe nutritional components. In Section 4.2, a detailed account is presented.

Comprehensive nutritional information is
provided to users.

Seven nutritional components of each recipe are extracted from the
dataset.

Enhanced dietary management for users. Users can select recommended recipes based on their current physical
condition and the nutritional components of the recipes.

• Second, we introduce the concept of “user nutrition-related food preferences.” By ag-
gregating each user’s average nutritional preferences, we can tailor recipe recommen-
dations to help them achieve their health goals. These personalized recommendations
can be adjusted based on the user’s health status, goals, taste preferences, and dietary
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habits, providing recipe suggestions that better meet their needs and enhancing their
satisfaction and loyalty to the recommendation system. Details are shown in Table 2;

Table 2. The evidence of contribution 2.

Detail Evidence

Propose user nutrition-related food preferences. In Section 4.3, a detailed account is presented.

Tailored recipe recommendations. Recipes can be recommended based on users’ nutritional preferences.

Aggregated user nutritional preferences. After extracting the nutritional components of the recipes, they
are combined with the user.

• Third, we propose a novel nutrition-related knowledge graph food recommenda-
tion method based on a GCN. This method integrates recipe nutritional components
and user nutrition-related food preferences to construct a complex heterogeneous
graph model, capturing richer and more comprehensive information. Compared to
traditional methods, our approach improves the efficiency and accuracy of recom-
mendations, offering more personalized and precise food recommendation services.
Details are shown in Table 3;

Table 3. The evidence of contribution 3.

Detail Evidence

Propose a novel nutrition-related knowl-
edge graph food recommendation method
based on a GCN.

In Section 4, we provide an overview of the entire methodology.

Capturing richer and more comprehensive
information.

By extracting nutritional components from recipes, calculating the
similarity between recipes, and incorporating user nutritional
preferences, the methodology learns more useful information.

Improved efficiency and accuracy of
recommendations.

In Section 5.4, a detailed comparison with other methods shows
significant improvements in ACC and precision metrics.

• Finally, we evaluated our method using a real-world food recommendation dataset
(formerly GeniusKitchen). The experimental results clearly demonstrate that our
method outperformed six baseline methods, highlighting its superior performance
and potential. Details are shown in Table 4.

Table 4. The evidence of contribution 4.

Detail Evidence

Superior performance compared to six
baseline methods.

In Section 5.4, our method shows improvements over the baseline on
all five evaluation metrics.

Demonstrated potential and effectiveness. In Section 6, we illustrate the superiority of our method through
two examples.

2. Related Work

This section reviews three key areas relevant to our work. First, we discuss collab-
orative filtering and content-based recommendation methods, which are foundational
techniques in recommendation systems. Collaborative filtering leverages user behavior
and interaction data to make personalized recommendations, while content-based methods
use item features and descriptions to match user preferences. Second, we examine the
application of graph neural networks in recommendation systems. These advanced models
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can capture and represent the intricate relationships between users and items, leading
to more accurate and nuanced recommendations. Finally, we explore food-based recom-
mendation methods, which tailor recommendations based on user tastes, food attributes,
and nutritional needs, making them particularly effective for scenarios involving dietary
preferences and personalized nutrition.

2.1. Collaborative Filtering and Content-Based Recommendations

Collaborative filtering and content-based recommendation methods are widely used
strategies in recommendation systems. They generate personalized recommendations [16]
by analyzing user behaviors, preferences, and item features.

Collaborative filtering relies on user behavior data and item data to suggest items
that may interest users. It can be categorized into two types: item-based [17] and user-
based [18]. Item-based collaborative filtering makes recommendations by comparing the
characteristics and relationships among items, while user-based collaborative filtering does
so by comparing the preferences and behaviors of users.

In contrast, content-based recommendation methods [19] suggest items similar to
those users have previously liked by analyzing the attributes and features of items and
user preferences. These methods primarily use item attributes such as tags, keywords,
and descriptions, combined with users’ historical behavior data, to recommend items that
align with their interests.

For instance, He et al. [20] introduced a recommendation system framework called
Neural Collaborative Filtering (NCF), which leverages neural networks to learn from
data. Unlike traditional collaborative filtering that uses inner products, NCF uses neural
networks to learn any function, thereby enhancing the expressiveness and generalization of
matrix factorization. To boost the non-linearity of NCF, they proposed using a multi-layer
perceptron to learn the interactions between users and items.

Moreover, Wang et al. [21] proposed a novel method called Neural Graph Collabo-
rative Filtering (NGCF). This approach propagates embeddings on graph data using the
graph structure of users and items, effectively integrating collaborative signals into the
entire embedding process. It also captures high-order connections in the user-item graph
structure, addressing a significant limitation of traditional methods that do not adequately
consider collaborative signals during the embedding process.

2.2. Graph Neural Network-Based Recommendations

Graph neural networks (GNNs) have emerged as a powerful tool for recommendation
systems due to their ability to model complex relationships between users and items. GNNs
leverage graph structures to propagate information and learn embeddings that capture the
intricate interactions within the data.

For example, Zhang et al. [22] introduced a POI recommendation method known as
the Hybrid Structure Graph Attention Network (HS-GAT). This method preprocesses data
from multiple sources and creates two diverse graph datasets using users, user attributes,
user POIs, and POI attributes. After merging the diverse graph data using dual graph
attention operations, it constructs homogeneous graphs for user-POI and POI relationships.
Finally, through the graph attention network (GAT), it incorporates the user embedding
matrix and POI embedding matrix into the homogeneous graph to learn information and
obtain the ultimate user and POI embeddings.

Similarly, Yin et al. [23] proposed a Generalized Collaborative Filtering (GCF) frame-
work and simultaneously utilized deep graph neural networks for predicting links on
bipartite graphs through information propagation, addressing the sparsity issue in recom-
mendation systems. GCF aims to map users and items into a low-dimensional vector space.
This mapping embeds geometric relationships that reflect the dynamic preferences between
users and items. They also validated that traditional matrix factorization methods such as
SVD and SVD++ can be interpreted within the GCF framework using node embeddings
from graph neural networks. Moreover, they integrated attention mechanisms to handle
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the challenge of varying input sizes for each node in bipartite graphs, thereby enhancing
the system’s ability to predict user–item interactions in sparse data scenarios.

2.3. Food-Based Recommendations

Food-based recommendation methods are specifically designed to cater to users’
tastes, food attributes, and nutritional needs. These methods are particularly suitable for
scenarios related to food and dietary preferences, offering personalized recommendations
that promote healthier eating habits.

For example, Ge et al. [24] introduced a new food recommender system that offers
personalized recipe suggestions based on users’ ratings and tags. Their algorithm intro-
duces tag-based matrix factorization and they designed a new HCI interaction applied to a
mobile platform for recommending food recipes, which provides insights into preferred
ingredients or the characteristics of foods favored by users. Their research highlights the
significant role of tags in recommendation algorithms, which not only aid in modeling
users and meals but also underscore how the judicious allocation and management of tags
can be a crucial factor for the success of recommendation systems.

Chen et al. [25] proposed a novel method for recommending healthy foods that take
into account users’ personalized health needs and dietary preferences. Initially, they con-
structed a collaborative recipe knowledge graph, which includes user–recipe interactions,
recipe–ingredient associations, and other food-related information. Next, they developed
a mechanism to evaluate the consistency between recipes and users’ health preferences,
assessing the health alignment of recipes with users’ dietary preferences. Finally, based on
these two components, they developed a health-aware food recommendation model using
knowledge graph embeddings and multi-task learning techniques. This model employs
a graph convolutional network to capture the semantic relationships between users and
recipes in the collaborative knowledge graph. By integrating the losses from these two
learning tasks, the model effectively learns user requirements in terms of both preferences
and health, thereby improving the accuracy of recommendations.

Additionally, Gao et al. [26] argue that the complex relationships among ingredients,
recipes, and users are crucial for recommendation systems. Therefore, they developed
a method called FGCN that achieves precise recommendations through three types of
information propagation: between ingredients, between ingredients and recipes, and be-
tween recipes and users. The information propagation mechanism adopted by the model
extensively leverages the interactions among ingredients, recipes, and users. It employs
multiple embedding propagation layers to model high-order connections and enhances rep-
resentation learning, providing rich representations and more accurate recommendations.

Furthermore, Song et al. [27] proposed a self-supervised calorie-aware heterogeneous
graph network recommendation method (SCHGN) that enhances the relationships be-
tween ingredients by considering the calorie content of food. This method constructs a
heterogeneous directed graph representing the complex relationships among users, recipes,
ingredients, and calories to clearly present these relationships. Through self-supervised
ingredient prediction, the method explores the co-occurrence of ingredients in different
recipes. Using hierarchical message passing, SCHGN learns calorie-aware user representa-
tions and calculates comprehensive user-guided recipe representations through an attention
mechanism, thereby effectively capturing users’ preferences for the calorie content in food
and providing more accurate recommendations.

Lastly, Rostami et al. [28] developed a hybrid food recommendation system that
overcomes the limitations and shortcomings of previous food recommendation systems,
such as ignoring ingredients, time constraints, new users, new foods, and community
elements. In the first phase, the system uses graph clustering methods, and in the second
phase, deep learning methods are employed to cluster users and foods, thereby achieving
accurate grouping. Additionally, they adopted a comprehensive approach to address issues
related to time and user communities. Based on these operations, the system significantly
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improved the quality of recommendations, helping users to adjust their eating habits and
achieve healthier diets.

2.4. Summary

Tables 5 and 6 provide a comprehensive comparison of our proposed work with
several related works in the field. As illustrated, our method leverages a combination of
a graph convolutional network (GCN) and graph attention network (GAT), which have
not been extensively applied in previous works. While most related works use simpler
machine learning techniques or one neural network, our work stands out by integrating
multiple neural network models that incorporate both user preferences and a wide range
of nutritional components. Unlike previous studies that often overlook user dietary prefer-
ences and nutritional details, our method provides a holistic approach by considering user
nutrition-related food preferences and detailed nutritional components such as calories, to-
tal fat, saturated fat, sodium, protein, sugar, and carbohydrates. Additionally, our approach
utilizes a heterogeneous undirected graph structure, which enhances the capability of our
model to capture complex relationships within the data. This comprehensive and nuanced
methodology significantly improves the accuracy and relevance of the recommendations
provided by our system, offering a distinct advantage over existing methods.

In summary, the advancements in collaborative filtering, GNN-based methods, and spe-
cialized food-based recommendation approaches form the foundation of our research,
guiding the development of a more accurate, diverse, and health-conscious food recom-
mendation system.

Table 5. Comparison of machine learning and neural network methods and their application domains
in related work.

Related Work Machine Learning Neural Network Application Domain

He et al. [20] ✓ Deep neural network E-commerce
Wang et al. [21] ✓ Graph neural network E-commerce
Zhang et al. [22] ✓ Graph attention network E-commerce

Yin et al. [23] ✓
Graph convolutional network

Graph attention network E-commerce

Ge et al. [24] ✓ × Food
Chen et al. [25] ✓ Graph convolutional network Food
Gao et al. [26] ✓ Graph convolutional network Food
Song et al. [27] ✓ Graph neural network Food

Rostami et al. [28] ✓ × Food

Our ✓
Graph convolutional network

Graph attention network Food

Table 6. Comparison of nutritional components, user preferences, and heterogeneous graph usage in
related work.

Related Work Nutritional Components User Preferences Heterogeneous Graph

He et al. [20] × × ×
Wang et al. [21] × × ×
Zhang et al. [22] × Point of interest Heterogeneous directed graph

Yin et al. [23] × Geometric relationships in the space ×
Ge et al. [24] × User food ingredient preferences ×

Chen et al. [25] Sodium, fat, sugar, saturated fat User dietary preferences ×
Gao et al. [26] × × ×
Song et al. [27] Calories User calorie preference Heterogeneous directed graph

Rostami et al. [28] × × ×

Our Calories, total fat, saturated fat, sodium,
protein, sugar, carbohydrates User nutrition-related food preferences Heterogeneous undirected graph
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3. Preliminary Knowledge and Problem Definition

In this section, we introduce the problem definition of our research and provide the
necessary background knowledge to understand our study better. We have listed all the
essential notations used in this study along with their definitions. They are presented in
Table 7. The notations and the table itself were defined and compiled by us. Through Table 7,
the meaning of each symbol can be clearly understood, which is crucial for comprehending
the subsequent formulas and analyses in this study.

Table 7. List of essential notations.

Essential Notation Description

U = {u1, u2, ..., uM} Set of users
R = {r1, r2, ..., rN} Set of recipes
Θ User–recipe interaction matrix
G Heterogeneous undirected graph data
ϑ Recipe nutritional components
T User recipe ratings
κ Nutrition-related food similarity graph
P User nutrition-related food preferences
ũ User embedding
r̃ Recipe embedding
Z Recipe information table

3.1. Problem Statement

To address the problem more clearly, we first summarize the drawbacks identified in
the related works. This summary provides a comprehensive overview of the limitations
present in existing research, emphasizing the need for our proposed approach. The main
drawbacks are presented in Table 8.

Table 8. Drawbacks of related work.

Related Work Drawbacks
Ge et al. [24] Nutritional components not considered; nutritional balance is disregarded solely based on user

preferences.
Chen et al. [25] Nutritional components included are fewer (four types); high costs for data acquisition and maintenance.
Gao et al. [26] Nutritional components not considered; only explored internal knowledge associations among

ingredients, recipes, and users, neglecting external knowledge such as ingredient–disease relationships.
Song et al. [27] Nutritional components included are fewer (one type); considering only food calories could lead to

unhealthy recommendations.
Rostami et al. [28] Nutritional components not considered; comprehensive use of graph clustering, deep learning, and

multiple information sources may lead to high system complexity, impacting scalability and
maintenance costs.

By presenting this table, we aim to highlight the gaps in the current literature, thereby
justifying the necessity of our research. The identified major drawbacks include the lack of
consideration for various nutritional components and unhealthy recommendations due to
an over-reliance on user preferences. These points underscore the areas where our study
aims to contribute improvements. Our goal was to enhance recommendations by incorpo-
rating various nutritional components, building upon users’ personalized preferences to
ensure not only greater precision but also improved healthiness.

3.2. Problem Definition

Our goal was to train a function F using the user–recipe interaction matrix Θ [29],
a heterogeneous undirected graph G, recipe nutritional components ϑ, user nutrition-
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related food preferences P , a recipe information table Z , and additional parameters Π.
This function aims to predict the likelihood of interaction between users and unfamiliar
recipes, ultimately providing more personalized recommendation services. The function
can be represented as follows:

ŷuv = F (u, r|Θ,G,P , ϑ,Z , Π), (1)

where ŷuv symbolizes the possibility of interaction, u stands for the user, and r denotes
the recipe.

3.3. User–Recipe Interaction Matrix and Recipe Information Table

Consider a total of M users, denoted as U = {u1, u2, ..., uM}, and N recipes, denoted
asR = {r1, r2, ..., rN}. The user–recipe interaction matrix Θ can be defined as:

Θ = {u, r|u ∈ U , r ∈ R}, (2)

where interactions between users and recipes are represented by (u, r). The actual label
yuv indicates whether there is engagement between the user and the recipe (yuv = 1 for
engagement; yuv = 0 for no interaction).

The recipe information table Z includes various details about recipes, such as descrip-
tions, ingredients, food quantities, nutritional components, and labels. In this research,
we utilized nutritional components to construct the recipe nutritional components ϑ, user
nutrition-related food preferences P , the nutrition-related food similarity graph κ, and the
heterogeneous undirected graph G.

3.4. Graph Neural Network

Graph neural networks (GNNs) are a specialized type of artificial neural network
designed to analyze graph data within machine learning models [30–32]. Graph data
comprise nodes (vertices) and edges, with nodes representing entities and edges denoting
relationships between them. GNNs aim to understand these connections to perform tasks
such as link prediction, node classification, and graph classification. Unlike conventional
neural networks [33–35], GNNs consider the structure of nodes, enabling them to better
capture specific and widespread information when dealing with graph data.

GNNs typically have multiple layers, each updating node representations by gathering
information from nearby nodes. This aggregation operation can be implemented through
message passing or graph convolution, among other methods. The development of GNNs
has wide applications in fields such as recommendation systems, bioinformatics [36],
and social network analysis [37]. The update rules used in our research are as follows:

x′i = W1xi + W2 ∑
j∈N (i)

ej,i · xj. (3)

where x′i represents the updated features of node i, ej,i denotes the weight of the edge
connecting node j to node i, xi and xj are the feature vectors corresponding to node i and
node j, respectively, W1 and W2 are the weight matrices to be learned, and N (i) represents
the collection of neighboring nodes of node i.

4. Proposed Method

In this section, we provide a detailed explanation of our model, illustrated in Figure 1.
We first present the general framework and design principles, including the data processing
flow and model architecture. Then, we explain the graph construction process, detailing
how nodes are connected and their main content. Following that, we discuss the process of
information aggregation and update, explaining how to effectively integrate information
from various nodes and update model parameters. Lastly, we introduce the optimization
and algorithm section, describing the optimization methods and algorithmic processes we
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adopt for better training and tuning of our model. This lays the theoretical foundation for
subsequent experiments and the result analysis.
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Figure 1. Overall architecture.

4.1. Model Overview

During the heterogeneous undirected graph G construction phase, we obtain the nu-
tritional components of each recipe from the recipe information table Z , including calories,
total fat, saturated fat, sodium, protein, sugar, and carbohydrates, as the feature data θ of
the recipe. Then, we standardize these features to transform them into a standard normal
distribution with a mean of 0 and a standard deviation of 1, obtaining recipe nutritional
components ϑ. Next, we use the similarity function to evaluate the analogousness between
different recipes, thereby establishing a nutrition-related food similarity graph κ. Refer
to Figure 2 for details. Finally, we construct heterogeneous undirected graph data G con-
taining a user set U , a recipe setR, recipe nutritional components ϑ, user recipe ratings T ,
and a nutrition-related food similarity graph κ.

Nutrition-related Food Similarity GraphNutrition-related Food Preference Graph
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Figure 2. Nutrition-related user food knowledge graph.
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During the construction of the user nutrition-related food preferences P , we iterate
through the user–recipe interaction matrix Θ; during this process, if a user u rates a recipe
r as 5 points, we consider that recipe r as the user’s preferred recipe. If a user u has never
rated a recipe with 5 points, we consider the first recipe they interacted with r (regardless
of the rating) as their preferred recipe and only that recipe. After iterating through the
entire user–recipe interaction matrix Θ, each user u will have a collection of preferred
recipes r. Then, we calculate the average nutritional components for each preferred recipe
r, obtaining the average nutritional components for each user’s preferred recipes as user
nutrition-related food preferences P .

During the aggregation and update phase, we first apply an attention operation
to the recipe vectors r and recipe nutritional components ϑ to obtain the final recipe
embeddings r̃. We then use concatenation of user vectors u and user nutrition-related food
preferences P to obtain the final user embedding ũ. We perform GCN operations on the
recipe embeddings r̃ and the user embeddings ũ in the heterogeneous undirected graph to
learn information. The final prediction result is obtained by multiplying user embeddings
ũ and recipe embeddings r̃. Parameters are updated by comparing the prediction result
with the actual result. This process is repeated until the algorithm converges.

4.2. Graph Construction

We first obtain all unique recipes based on the user–recipe interaction matrix Θ. Then,
we extract the information of each recipe from the recipe information table Z . We take out
seven types of nutrients for each recipe r, including calories, total fat, saturated fat, sodium,
protein, sugar, and carbohydrates, forming a matrix of nutritional features for all recipes,
which is the recipe’s feature data θ. We standardize the feature data matrix θ, transforming
the data into a standard normal distribution with a mean of 0 and a standard deviation of 1:

xstd =
x− µ

σ
, (4)

where xstd represents the standardized feature value, µ denotes the mean of the feature, σ
stands for the standard deviation of the feature, and x represents the original feature value.

The standardized feature data matrix, ϑ, represents the recipe nutritional components.
The process is shown in Figure 3.

 Recipe information table

Recipe 1 information

Recipe 2 information

...

Recipe N information
...

Calories Total fat Sugar Sodium

Protein Saturated fat Carbohydrates

...

Standardization

Recipe nutritional components

Figure 3. Recipe nutritional components.

We use a similarity function to gauge the nutritional similarity between recipes:
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cos =
rA · rB

(
√

rA · rA) · (
√

rB · rB)
, (5)

where rA and rB represent the nutrients of recipes A and B, respectively. We define a
threshold of 0.98 to determine similarity. If the cosine similarity cos of two recipes exceeds
0.98, they are considered similar and added to the nutrition-related food similarity graph
κ. After evaluating all recipes, we transpose the matrix to obtain the final nutrition-related
food similarity graph κ, which contains all pairs of recipes with similar nutrients:

κ =

[[
r1 r2 r3 ... rn

]
,[

r5 r7 r8 ... rm
]], (6)

where r1 and r5 represent a similar relationship.
We use the user set U , recipe setR, recipe nutritional components ϑ, user recipe ratings

T , and nutrition-related food similarity graph κ to construct heterogeneous graph data.
The final heterogeneous undirected graph data are G.

4.3. User Nutrition-Related Food Preferences

We traverse the user–recipe interaction matrix Θ. If a user u rates a recipe r with a
score of 5, the recipe r is added to the user’s preferred recipe collection λ:

λu = {rp1, rp2, ..., rpn}, (7)

where λu represents the preferred recipe collection for a specific user, and rp represents one
of the user-preferred recipes.

For users who never rate a recipe as 5, the first recipe they interacted with r (regardless
of the rating) is considered as their preferred recipe:

λu = {rp1}, (8)

After completing the traversal of the user–recipe interaction matrix Θ, all users will
have a preferred recipe collection λ. We extract the seven nutrients corresponding to each
recipe from the recipe information table Z and calculate the average value of each nutrient
for all recipes in the preferred recipe collection λ, resulting in:

P =


u1 :

[
c1 c2 c3 ... c7

]
,

u2 :
[
c1 c2 c3 ... c7

]
,

...
un :

[
c1 c2 c3 ... c7

]
, (9)

where c represents one of the seven nutrients after averaging operations. This gives us the
user nutrition-related food preferences P , representing the nutrients preferred by each user
based on their preferred recipes (Figure 4).

4.4. Aggregation and Update

We first use the function f to merge the recipe nutritional components ϑ with the
recipe vector r to obtain a new recipe vector rϑ:

rϑ = f (r, ϑ), (10)

where the function f denotes element-wise multiplication.
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Figure 4. User nutrition-related food preferences.

Next, we concatenate rϑ with the recipe vector r to obtain rr
ϑ:

rr
ϑ = concat(rϑ, r), (11)

We then feature concatenate rϑ with recipe nutritional components ϑ to obtain rϑ
ϑ.

rϑ
ϑ = concat(rϑ, ϑ), (12)

We then element-wise add rr
ϑ and rϑ

ϑ to obtain γ:

γ =
(

rr
ϑ + rϑ

ϑ

)
, (13)

We perform attention operations on rr
ϑ, rϑ

ϑ, and γ to obtain the recipe embedding r̃:

r̃ = MA
(

rr
ϑ, rϑ

ϑ, γ
)

, (14)

where MA is a multi-head attention mechanism. Its calculation formula is as follows:

MA(Q, K, V) = concat(head1, head2, ..., headh)WO, (15)

headi = Attention(Qi, Ki, Vi), (16)

Attention(Q, K, V) = softmax
(

QKT/
√

dk

)
V, (17)
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where WO represents the output weight matrix, the input query matrix is Q, the key matrix
is K, and the value matrix is V. They are transformed linearly to obtain Q′ = QWQ,
K′ = KWK, and V′ = VWV , where WQ, WK, and WV are weight matrices. Then, Q′, K′,
and V′ are respectively split into h heads, namely, Q1, Q2, ..., Qh, K1, K2, ..., Kh, V1, V2, ..., Vh,
where each head has a dimension of:

dk = dmodel/h. (18)

For each group of users u entering the model, we first traverse the total user nutrition-
related food preferences P to query the nutritional components p preferred by each user.
Then, we combine these preferred recipe nutritional components into the user nutrition-
related food preferences batch Ps for this batch of users.

Ps =


p1,
p2,
...
pn

, (19)

pi = {c1 c2 c3 ... c7}, (20)

where ci represents the mean value of a certain nutrient component.
Then, the user vector u is concatenated with the user nutrition-related food preferences

batch Ps to obtain the user embedding ũ.

ũ = concat(u,Ps), (21)

The final adoption of the GraphConv layer is utilized to learn and update the features
of the user embedding ũ and recipe embedding r̃ on the heterogeneous undirected graph G,
predicting the relevance by combining the features of users and recipes. The final predicted
result S ũ

r̃ is obtained by putting the recipe embedding r̃ and user embedding ũ into the
function f .

S ũ
r̃ = f (ũ, r̃), (22)

Then, updating the parameters by comparing the predicted label with the true label. The
above process is repeated until the algorithm converges.

4.5. Optimization and Algorithm

The final prediction label ŷ is obtained by compressing S ũ
r̃ to the range of 0–1 using

the sigmoid function σ.

ŷ = σ(S ũ
r̃ ) =

1

1 + e−S
ũ
r̃

, (23)

The comprehensive loss function is:

L(y, ŷ) = − 1
N

N

∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)]. (24)

where N represents the sample size, yi is the actual label of the i th sample, ŷi is the
predicted label of the i th sample, and log denotes the natural logarithm.

The primary steps of the algorithm are outlined below: First, a function named
“Obtain-user-preference-nutritional-components” is defined, and its role is to obtain the
user nutrition-related food preferences Ps for the group of users based on the entire user
nutrition-related food preferences P .

During the iteration process of the NRKG algorithm, for each user–recipe interaction
pair (u, r), the following operations are carried out:

• The “Obtain-user-preference-nutritional-components” function is called to obtain the
user nutrition-related food preferences Ps;
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• The attention mechanism function Atten is used to weight the recipe r and its nutri-
tional components ϑ to obtain the recipe embedding r̃;

• The user u and user nutrition-related food preferences Ps are concatenated to obtain
the user embedding ũ;

• The graph convolution network function Gcn operates on the heterogeneous undi-
rected graph G to perform graph convolution on ũ and r̃, resulting in new representa-
tions ũ and r̃;

• The function f is then used to compute the predicted label ŷuv.

Ultimately, the algorithm parameters are adjusted using the gradient descent opti-
mization method. When the NRKG algorithm converges, it returns the prediction function
F . Details are shown in Algorithm 1.

Algorithm 1: NRKG
Input: User–recipe interaction matrix Θ; heterogeneous undirected graph G;

recipe nutritional components ϑ; user nutrition-related food preferences P ;
recipe information table Z ; additional parameters Π ;
training parameters: {Wi, bi}H

i=1,{u}u∈U , ϕ, {r}r∈R;
hyperparameters: Gcn(·), f (·),Atten(·), concat(·)

Output: Prediction function F (u, r|Θ,G,P , ϑ,Z , Π)

1 Function Obtain-user-preference-nutritional-components (u,P)
2 Ps = []
3 for u′ in u do
4 if u′ in P then
5 pu′ append in Ps

6 return Ps;

7 Function Gcn (G, H(0))
8 for l = 1 to L do
9 H(l) ← ϕ

(
W(l)

1 H(l−1) + W(l)
2 AH(l−1)

)
;

10 return H(L);

11 while NRKG not converge do
12 for u, r in Θ do
13 Ps ← Obtain-user-preference-nutritional-components (u,P);
14 r̃ ← Atten(r, ϑ);
15 ũ← concat(u,Ps);
16 H(0) ← initialize from ũ, r̃;
17 H(L) ← Gcn(G, H(0));
18 Extract ũ and r̃ from H(L);
19 Compute the predicted label ŷuv = f (ũ, r̃);
20 Update parameters with gradient descent optimization.

21 return F ;

5. Experiments

This section details the experimental setup, including the environment configuration,
dataset selection, and evaluation metrics. We also compare our method against various
baselines and present the results. Furthermore, we delve into the hyperparameter analysis
and conduct ablation studies to demonstrate the effectiveness of our approach.
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5.1. Experimental Settings and Datasets

For our experimental setup, we relied on a robust stack of tools and libraries, ensuring a
stable and reproducible environment. We utilized the PyTorch framework, a popular choice
for deep learning tasks, alongside Python 3.9.16 for scripting and Torch 1.13.1 + cu116 for
GPU acceleration. Additionally, we leveraged PyG 2.5.3 for graph neural network opera-
tions, Pandas 1.5.3 for data manipulation, and NumPy 1.23.5 for numerical computations.
By employing this suite of tools, we ensured compatibility and efficiency throughout the
experimentation process.

To assess the efficacy of our proposed method, we turned to real-world datasets, which
offer diverse and complex scenarios for evaluation. One such dataset is the Food Recom-
mender dataset (https://www.kaggle.com/code/aayushmishra1512/food-recommender
accessed on 5 May 2024) [38], sourced from Food.com (formerly GeniusKitchen). This
comprehensive dataset comprises an extensive collection of over one hundred and eighty
thousand recipes and seven hundred thousand recipe reviews spanning eighteen years.
With its rich repository of user engagements and recipe submissions, it serves as an ideal
testbed for recommendation system research.

In our experiments, we focused on a carefully selected subset of the Food Recom-
mender dataset, consisting of 10% of the interaction data. This subset encompasses
41,087 users, 63,544 recipes, and 113,236 interactions, providing a representative sample of
user behavior and preferences. To ensure a robust evaluation, we employed a standard split
strategy, dividing the dataset into training, validation, and test sets in a 6:2:2 ratio. This
partitioning scheme allowed us to train our model on a sizable portion of the data while
retaining separate subsets for validation and final evaluation, thus ensuring an unbiased
performance assessment.

5.2. Baselines

For comparison with our proposed method, we considered six baseline approaches:
FeaStNet, GraphSAGE, GAT, UniMP, DeeperGCN, and GATV2, each offering unique
strategies for recommendation tasks:

• FeaStNet [39] introduces a dynamic graph-convolution operator, which dynamically
creates associations between filter weights and graph neighborhoods using learned
features. This approach contrasts with traditional static coordinate-based methods,
offering a novel perspective on graph-based recommendation;

• GraphSAGE [40] leverages node feature data efficiently by embedding individual
nodes and aggregating neighborhood features, enabling the generation of node em-
beddings for new nodes with enhanced efficiency;

• GAT [41] utilizes masked self-attention layers to address limitations of prior methods
in handling graph-structured data. By allowing nodes to attend to neighborhood
features and assign varying weights without costly matrix operations, GAT achieves
expressive modeling of graph structures;

• UniMP [42] employs holistic message passing and a masking label prediction strategy
to prevent overfitting. By integrating label propagation and local features using Graph
Transformer networks, UniMP provides a robust approach for training and inference
in recommendation systems;

• DeeperGCN [43] introduces differentiable generalized aggregation functions and
employs normalization layers and pre-activation residual connections. This facilitates
effective training of deep graph convolutional networks, enhancing their performance
in recommendation tasks;

• GATV2 [44] introduces dynamic graph attention to overcome the limitations of static
attention in GAT. By enabling more expressive modeling of graph structures, GATV2
enhances the adaptability and performance of graph-based recommendation systems.

https://www.kaggle.com/code/aayushmishra1512/food-recommender
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These baseline methods provided a diverse set of approaches for comparison with our
proposed model, enabling a comprehensive evaluation of recommendation performance
across different methodologies.

5.3. Evaluation Metrics

In simpler terms, AUC is a metric that assesses how well a binary classification model
can distinguish between positive and negative classes. The closer the AUC value is to
1, the better the model performance; conversely, a lower value indicates poorer model
performance. The formula can be expressed as:

AUC =
1
2

k−1

∑
i=1

(TPRi + TPRi+1) · (FPRi+1 − FPRi), (25)

The total number of positive and negative samples is denoted by k. The true positive rate
of the i-th sample, sorted by the predicted probability, is denoted as FPR, and the false
positive rate is denoted as TPR.

Precision evaluates the accuracy of positive instances, indicating the ratio of true
positive instances to all positive instances. The specific calculation is as follows:

Precision =
True Positives

True Positives + False Positives
, (26)

Accuracy assesses the overall model effectiveness in accurately forecasting both pos-
itive and negative classes, indicating the proportion of correct predictions. The specific
calculation is as follows:

Accuracy =
True Positives + True Negatives

Total Predictions
, (27)

Recall is a metric that assesses whether a model can correctly identify all positive
instances. It demonstrates the proportion of true positive instances in all positive instances
after being processed by the model. The specific calculation is as follows:

Recall =
True Positives

True Positives + False Negatives
, (28)

F1 is a single metric, but it combines two other metrics: precision and recall. It
evaluates the overall performance of a model by combining precision and recall. The specific
calculation is as follows:

F1 = 2× Precision× Recall
Precision + Recall

. (29)

5.4. Comparative Experiment

Through Tables 9 and 10, we observe that FeaStNet, DeeperGCN, GraphSAGE, GAT,
UniMP, GATV2, and our proposed method exhibited varying degrees of performance
across different proportions of the Food dataset.

Our method demonstrated a slight disadvantage in the recall and F1 metrics compared
to the FeaStNet method on the 10% dataset. Additionally, our method’s recall metric
(0.6784) was marginally lower than that of the FeaStNet method (0.6800) on the 50% dataset.
This discrepancy may stem from our proposed user nutrition-related food preferences
module and recipe nutrition component module not fully leveraging their advantages due
to insufficient information. The subsequent performance further validated this hypothesis.
However, our proposed method showcased significant advantages in metrics such as AUC,
accuracy (ACC), precision, recall, and F1 on the 80% and 100% datasets. Particularly in
the 100% dataset, these metrics exhibited notable improvements of 2.8%, 5.9%, 1.5%, 9.7%,
and 6.0%, respectively.
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Table 9. Different methods had varying performance metrics on datasets of 10% and 50% proportions.

Model

Food

10% 50%
AUC ACC Precision Recall F1 AUC ACC Precision Recall F1

FeaStNet 0.8849 0.8072 0.8490 0.7473 0.7949 0.7998 0.7267 0.7500 0.6800 0.7133
DeeperGCN 0.8285 0.7326 0.8480 0.5667 0.6794 0.8243 0.7317 0.8013 0.6162 0.6967
GraphSAGE 0.8644 0.7827 0.8478 0.6890 0.7602 0.8391 0.7343 0.8142 0.6073 0.6957

GAT 0.8557 0.7959 0.8534 0.7147 0.7779 0.8396 0.7120 0.7962 0.5697 0.6642
UniMP 0.8630 0.7851 0.8443 0.6992 0.7649 0.8618 0.7600 0.8258 0.6591 0.7331
GATV2 0.8586 0.8037 0.8535 0.7332 0.7888 0.8551 0.7211 0.8061 0.5824 0.6762

Ours 0.8950 0.8145 0.9274 0.6824 0.7863 0.8723 0.7789 0.8490 0.6784 0.7542

Table 10. Different methods had varying performance metrics on datasets of 80% and 100% proportions.

Model

Food

80% 100%
AUC ACC Precision Recall F1 AUC ACC Precision Recall F1

FeaStNet 0.8231 0.7198 0.7861 0.6041 0.6832 0.8045 0.7079 0.7211 0.6780 0.6989
DeeperGCN 0.8259 0.7436 0.7909 0.6624 0.7210 0.8247 0.7521 0.8052 0.6651 0.7285
GraphSAGE 0.8594 0.7658 0.8170 0.6851 0.7452 0.8613 0.7712 0.8301 0.6820 0.7488

GAT 0.8575 0.7477 0.8088 0.6487 0.7200 0.8685 0.7621 0.8255 0.6648 0.7365
UniMP 0.8713 0.7750 0.8378 0.6819 0.7519 0.8686 0.7796 0.8244 0.7106 0.7633
GATV2 0.8624 0.7519 0.7976 0.6751 0.7312 0.8718 0.7687 0.8057 0.7082 0.7538

Ours 0.8916 0.8131 0.8487 0.7621 0.8031 0.8967 0.8169 0.8427 0.7798 0.8098

The exceptional performance of our method is primarily attributed to our proposed
user nutrition-related food preferences module and recipe nutrition component module.
These modules not only thoroughly explore user preferences for recipes but also accurately
capture the nutritional characteristics of recipes, thereby enhancing the recommendation of
recipes tailored to users’ tastes and nutritional requirements. Consequently, our method
excelled across different proportions of the dataset and achieved optimal performance with
100% data, further confirming the effectiveness and reliability of our approach. In con-
clusion, our proposed method exhibited promising application prospects and superior
performance in food recommendation systems.

5.5. Loss Function Analysis

We assessed our proposed method against several others by examining the changes in
their training loss during the training process. By contrasting the training loss trends of
different methods, we gained insights into their efficiency and generalization capabilities
during optimization. Through visualizing the variations in training loss, we could clearly
observe the performance of each method during training and extract valuable insights from
the comparison.

According to Figure 5, we can observe the training loss performance of five different
methods within 183 epochs. From the figure, it is evident that our proposed method exhibited
a lower training loss, whether on an 80% dataset or a 100% dataset in the initial stage,
converged rapidly, and maintained a relatively stable downward trend. In comparison, our
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method showed a lower training loss in each epoch compared to other methods, reflecting its
advantages concerning model convergence speed and efficiency. In the initial few epochs of
the 100% dataset, our method reached a loss of 0.5456 in the first epoch, while GAT, DeepGcn,
FeaStNet, and GATV2 reached losses of 0.6618, 0.6299, 0.6765, and 0.6667 respectively.
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(a) 10% dataset
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(b) 50% dataset
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(c) 80% dataset
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(d) 100% dataset

Figure 5. Training loss.

Furthermore, as the training progressed, our method was able to reach lower loss
levels more quickly. By the 169th epoch, the loss of our method was 0.0580, while the
losses of GAT, DeepGcn, FeaStNet, and GATV2 were 0.2949, 0.0715, 0.2993, and 0.2883,
respectively. This indicates the effectiveness and robustness of our method in the model
optimization process.

These results clearly illustrate the capability of our proposed method in the training pro-
cess, laying a strong foundation for the further exploration and analysis of experimental results.

5.6. Ablation Experiment

We validate the effectiveness of our proposed module, assess the impact of each
component on the model’s performance, and analyze and discuss the findings.

According to Figure 6, we compared multiple variants of our proposed model to
assess the effect of adding different modules on model performance. First was NRKG-G,
which is the original algorithm without any additional modules. Then came NRKG-U,
where we added a module for user nutrition-related food preferences. Next was NRKG-R,
where we added a module for recipe nutritional components. Finally, there was NRKG,
which incorporates both the user nutrition-related food preferences module and the recipe
nutritional component module.
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Figure 6. Different modules had different effects on NRKG.

According to the performance on the 80% dataset and 100% datasets based on five
metrics (AUC, ACC, precision, recall, and F1), NRKG-G exhibited the lowest performance
across all metrics, indicating poorer performance when no additional information was input
into the model. NRKG-U showed improvement over NRKG-G across all metrics, especially
notable in AUC and F1, suggesting a positive impact of incorporating the user nutrition-
related food preferences module on model performance. Similarly, NRKG-R demonstrated
a significant improvement over NRKG-G, particularly in AUC and F1, indicating a positive
impact of incorporating the recipe nutritional component module on model performance.
The final NRKG method performed the best across all metrics, especially achieving high
scores in terms of AUC and F1 scores on the 100% dataset with 0.8967 and 0.8098, and on
the 80% dataset with 0.8916 and 0.8031, respectively, further validating the effectiveness of
simultaneously incorporating both the user nutrition-related food preferences module and
the recipe nutritional component module.

In summary, both the user nutrition-related food preferences module and the recipe nu-
tritional component module were useful, and our proposed final NRKG method achieved
significant performance improvements across multiple metrics, demonstrating its effective-
ness and superiority.

5.7. Hyparameter Analysis

In this subsection, we evaluate and discuss the hyperparameters of the model by
comparing the impact of hidden channel numbers, the impact of aggregate neighbor
numbers, and the impact of the number of aggregation layers. By selecting and adjusting
the hyperparameters and analyzing the research results, we optimized the performance
and training process of the model, improving the model’s capacity for generalization and
its speed of training. The work in this subsection helped to deepen our comprehension
of the impact of model hyperparameters on model execution and the training process,
providing important references for further optimizing the design and training of the model.

5.7.1. Impact of the Number of Hidden Channels

According to Figure 7, we can see that, as the number of hidden channels rose, both
the 80% dataset and the 100% dataset models showed certain trends in AUC, F1, and ACC
metrics. Initially, on the 100% dataset, with the increase in hidden channels from 8 to
16, the AUC significantly improved from 0.7949 to 0.8967, and the F1 score and ACC
also exhibited a similar trend, increasing from 0.7052 to 0.8098 and from 0.7408 to 0.8169.
However, further increases did not lead to additional performance gains. Although the
AUC remained relatively high at 32 hidden channels (0.8752), it slightly decreased at 64
and 128 hidden channels to 0.8598 and 0.8444, respectively. Moreover, the F1 score slightly
improved after increasing to 32 hidden channels but decreased slightly at 64 and 128 hidden
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channels to 0.7766 and 0.7716, respectively. The ACC also showed a downward trend,
with values of 0.7906 and 0.7848, respectively.
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(c) AUC and F1 on 80% dataset
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Figure 7. The impact of different hidden channel sizes on AUC, F1, and ACC metrics.

On the 80% dataset, the same results were obtained. All metrics initially improved,
with the AUC metric starting to decrease after the number of hidden channels reached
16, while the F1 and ACC metrics began to decline after the number of hidden channels
reached 32.

This indicates that increasing the number of hidden channels can improve model
performance to a certain extent, but excessive increases may cause performance to saturate
or even decline, likely due to the model overfitting the data beyond a certain point. There-
fore, when selecting the number of hidden channels, it is necessary to find an equilibrium
between model intricacy and performance to fully utilize the model’s expressive capacity
while avoiding overfitting.

5.7.2. Impact of the Number of Neighbors

According to Figure 8, it is evident that, as the number of neighbors increased on the
100% dataset, the model’s performance showed the propensity to first increase and then
decline in the AUC, F1, and ACC metrics. Specifically, when the number of neighbors was
five, the AUC, F1, and ACC metrics were 0.8967, 0.8098, and 0.8169, respectively, which
were 8.1%, 16.5%, and 8.3% higher than when the number of neighbors was one. A notable
performance boost can be observed, but as the quantity of neighbors continued to increase
to 10, 15, and 20, the AUC, F1, and ACC metrics gradually decreased to 0.8889, 0.7993,
and 0.8091, respectively.
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Figure 8. The impact of different neighbor numbers on AUC, F1, and ACC metrics.

On the 80% dataset, it was a different scene. All metrics reached their maximum values
when the quantity of aggregating neighbors was set to five, and then decreased. There was
a slight increase when the quantity of aggregating neighbors was set to 15, but the trend
went down again when the quantity of aggregating neighbors was set to 20.

These trends indicate that, when choosing the appropriate number of neighbors,
it is necessary to balance the model’s complexity and performance. When the model
selects too few neighbors, it may lead to underfitting during training. However, when the
model chooses too many neighbors, it may result in overfitting during training. Therefore,
in practical applications, it is important to choose the most favorable number of neighbors
to accomplish better performance.

5.7.3. Impact of the Number of Aggregation Layers

According to Figure 9, we can see that, as the aggregation layers increased, the perfor-
mance of the model showed different trends. First, on the 100% dataset, in terms of AUC,
as the aggregation layers increased, the AUC value gradually decreased, indicating a weak-
ening of the model’s predictive ability. At the same time, the ACC was higher when there
were one and two aggregation layers, but showed a decreasing trend as the aggregation
layers increased. However, precision and recall fluctuated at different aggregation layers.
Precision and recall reached their highest values when there were two aggregation layers,
but slightly decreased when there were three and four aggregation layers.

On 80% of the dataset, there were slight differences. The trends with one, two,
and three layers were generally similar to the 100% dataset, but with four layers, the AUC,
ACC, recall, and F1 metrics improved compared to three layers.
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Figure 9. The impact of different numbers of aggregation layers on metrics.

Considering the performance trends of various metrics, we can conclude that, when
choosing the number of aggregation layers, it is necessary to balance the changes in various
metrics to achieve a balanced performance. In the current dataset, when there were two
aggregation layers, the model performed well concerning accuracy, precision, and recall,
so it can be considered a suitable choice. However, it is significant to note that different
datasets and projects may have an impact on the choice of aggregation layers, so further
optimization and adjustment may be needed in practical applications.

6. Case Study

This section provides a detailed overview of two case studies aimed at further eluci-
dating the effectiveness and superiority of our proposed method. Firstly, we demonstrate
the visualization of embeddings and compare the aggregation of the original embeddings
with those processed by our method. Secondly, we delve into the impact of incorporating
user nutrition-related food preferences on the method’s accuracy. We present several user
instances for comparison and conduct detailed analyses of them. Through these case
studies, a clearer understanding of the advantages of our proposed method can be gained.

6.1. Visualization of Embedding

According to Figure 10, in our visualization results, we compared four different types of
embeddings: A represents original user embeddings; B represents original recipe embeddings;
C represents user embeddings concatenated with user nutrition-related food preferences P ;
and D represents recipe embeddings processed through an attention mechanism.

Upon observing the visualization results, we can see that the original user and recipe
embeddings (A and B) were relatively scattered in the visualization space, indicating a
weak or difficult-to-capture relationship between them. This may be because the original
embeddings did not fully consider the correlation between users and recipes.

However, the processed embeddings (C and D) were closer in the visualization space,
even showing clustering, which indicates that the processed embeddings more closely
captured the relationship between users and recipes. This reflects the advantage of our
method, which combines user-personalized preferences with recipe features, and utilizes
an attention operation to better acquire the correlation between them, thereby boosting the
performance and accuracy of the method.

In conclusion, by comparing the visualization results of different types of embeddings,
we can clearly see that the processed embeddings better reflected the relationship between
users and recipes, further validating the efficiency and advantage of our proposed method.
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Figure 10. Visualization of embedding.

6.2. User Nutrition-Related Food Preferences Analysis

To demonstrate the contribution of user nutrition-related food preferences to our
method, we selected several users from the test set to examine their user nutrition-related
food preferences and the nutritional composition of recipes they interacted with, and
we calculated the fit between the two sets of data. The method we employed involved
computing the correlation coefficient between the two sets of data—the Pearson correlation
coefficient. This indicator measures the strength of the relationship between two sets of
data. Its values range from −1 to 1. When the value is closer to −1, it indicates a negative
correlation between the two datasets. When the value is closer to 0, it suggests a weak
correlation between the two datasets. A value closer to 1 indicates a positive correlation
between the two datasets.

According to the information in Table 11, the first five users listed the nutritional
components of the recipes they interacted with and their own user nutrition-related food
preferences. The Pearson correlation coefficients ρ were all around 0.99, indicating a very
strong correlation. For the user David, we listed a recipe he did not interact with, and we
can see that the Pearson correlation coefficient ρ was 0.8101, which was lower compared to
the previous users, indicating a poor correlation.

Table 11. The compatibility between user nutrition-related food preferences and nutritional compo-
nents of recipes.

User Id User User Nutrition-Related Food Preferences Recipe Id Nutritional Components of Recipes ρ

480 Emily 453 39 59 19 39 45 11 7712 95 12 0 1 0 15 1 0.9833
775 Jack 555 66 55 17 25 50 8 162 259 24 51 3 14 9 8 0.9908

1484 Lily 319 31 31 14 21 43 6 7038 192 12 7 9 20 15 5 0.9947
346 Tom 509 36 109 20 29 53 19 741 195 9 56 10 7 17 10 0.9954
623 Sarah 407 23 47 37 40 20 17 4070 151 8 21 13 6 3 7 0.9972

3414 David 448 23 219 17 10 37 24 9402 461 38 5 90 96 72 3 0.8101

This reflects the contribution of the user nutrition-related food preferences proposed
by us to our method. There was a close relationship between the recipe preferences of
these users and the nutritional components they selected, which further validates the
effectiveness and importance of the user nutrition-related food preferences introduced in
our method.

7. Discussion

In this section, we comprehensively summarize our research, delving into the advan-
tages and outcomes achieved, as well as the potential impacts. Moreover, we also emphasize
some limitations within the research and propose directions for improvement. Through
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such enhancements, we gain a better understanding of the significance and constraints of
the research, providing valuable references and insights for future research endeavors.

7.1. Advantages and Achievements

Our research combines recipes that users interacted with, reflecting food preferences
while considering the seven essential nutrients found in all recipes—calories, total fat,
saturated fat, sodium, protein, sugar, and carbohydrates. This research aimed to balance
personalized food recommendations while promoting diverse and healthy dietary habits.
We proposed the concept of “recipe nutritional components” and introduced the concept of
“user nutrition-related food preferences”. Integrating these two concepts, we developed
a novel food recommendation method based on a GCN for nutrition-related knowledge
graphs. This method integrates recipe nutritional components with user-specific nutritional
food preferences, constructing complex heterogeneous graph models to obtain richer and
more comprehensive information. We validated the effectiveness of our method on the Food
Recommender dataset through experiments. When compared with baseline models such
as FeaStNet [39], DeepGcn [43], GraphSAGE [40], GAT [41], UniMP [42], and GATV2 [44],
our NRKG model demonstrated significant advantages across four datasets with different
proportions based on five metrics: AUC, ACC, precision, recall, and F1. Particularly
on the 80% and 100% datasets, our model outperformed all baseline models in terms of
performance. The advantage of our model can be attributed to the concepts we introduced:
recipe nutritional components and user nutrition-related food preferences. By integrating
nutritional components into recipes and highlighting users’ personalized food choices,
our method leverages these factors synergistically. This demonstrates the accuracy of
our recommendation method. Moreover, because all recipes incorporate a variety of
nutrients, it also encourages people to choose more nutritious recipes, promoting healthier
dietary habits.

Based on the above, our research yielded several notable advantages and achieve-
ments. We successfully developed a novel recommendation method that demonstrates
remarkable efficacy in predicting and recommending personalized food choices. Through
a meticulous analysis and interpretation of the results, we illustrated the potency and
efficiency of our approach, particularly in enhancing recommendation accuracy. By inte-
grating nutritional components into our recommendation system, we provided users with
more targeted and beneficial dietary advice, contributing to the promotion of healthier
eating habits. Furthermore, our findings underscore the potential benefits of incorporating
food nutritional components into recommendation methods, thereby paving the way for
advancements in personalized nutrition and dietary planning.

In practice, the approach we propose provides a more practical tool for food-related
applications [45]. This tool not only helps users choose healthier dietary habits based on per-
sonalized tastes but also significantly enhances user comfort and reliance on the application.

7.2. Limitations and Constraints

Despite the successes of our research, certain limitations must be acknowledged.
Firstly, our reliance on a single dataset may have introduced biases into our findings, limit-
ing the generalizability of our results. Future research should aim to validate our method
on datasets with larger scales and more diverse data to ensure robustness and reliability.
Secondly, the limited scope of nutritional components [46] considered in our method may
result in deviations in certain recommendations. Expanding the range of nutritional com-
ponents considered could enhance the nutritional balance of recommended recipes, thereby
improving the overall effectiveness of our method. Lastly, our recommendations do not
currently account for users’ special circumstances, such as dietary restrictions or allergies.
Incorporating these factors into our method would enable more tailored and personalized
recommendations [47], thereby enhancing user satisfaction and engagement.



Foods 2024, 13, 2144 25 of 27

7.3. Directions for Improvement

To address the aforementioned limitations and further enhance the relevance and
effectiveness of our research, several directions for improvement can be considered. Firstly,
future studies should focus on validating our method on diverse datasets to ensure its
robustness and generalizability across different contexts. Additionally, expanding the
range of nutritional components considered in our method could improve the accuracy
and relevance of recommendations, ultimately enhancing user satisfaction. Furthermore,
incorporating users’ special circumstances, such as dietary restrictions [48] or allergies [49],
into our recommendation system would enable more personalized and tailored recommen-
dations, thereby increasing user engagement and adherence.

Through these proposed enhancements, we aim to further advance the effectiveness
and reliability of our recommendation method, ultimately contributing to the advancement
of personalized nutrition and dietary planning. By addressing these limitations and explor-
ing new avenues for improvement, we can continue to make significant strides in the field
of food recommendation systems and personalized nutrition guidance.

8. Conclusions

This study addresses the challenge of providing personalized healthy food recom-
mendations by introducing the nutrition-related knowledge graph (NRKG) convolutional
network method. The NRKG method incorporates two novel modules, namely, user
nutrition-related food preferences and recipe nutritional components, within a GCN frame-
work. Through extensive experimentation on the Food Recommender dataset, we com-
pared the NRKG method with several baseline methods, including FeaStNet, GraphSAGE,
GAT, UniMP, DeeperGCN, and GATV2. Our results consistently demonstrated the superior
performance of the NRKG method across different dataset ratios.

The experimental findings highlight the NRKG method’s ability to offer more diverse
food choices, thereby enhancing users’ dietary experiences and improving their health
conditions. By accurately predicting user nutrient preferences, the NRKG method facilitates
more personalized dietary recommendations, catering to individual needs and preferences.
Moreover, this research introduces novel insights and methodologies for the advancement
and implementation of food recommendation systems, holding practical significance and
fostering further developments in the field.

We anticipate that this study will contribute positively to the design and enhancement
of future dietary recommendation systems, fostering advancements in personalized health
and nutrition guidance.
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