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Abstract: For this study, microwave vacuum drying (MVD) was combined with ultrasound-assisted
extraction to compare the effects of different ethanol volumes on ponkan extract and to evaluate
the total phenolic content (TPC), total flavonoid content (TFC), and total ascorbic acid content
(TAAC). High-performance liquid chromatography with photodiode array detection (HPLC-PDA)
was used to analyze the flavanone contents and antioxidant activity of ponkan (Citrus reticulata)
peels. The experimental results showed that the TPC and TFC increase with ethanol volume. Ethanol
extraction (75%) showed significant advantages by increasing the TPC to 17.48 mg GAE/g (DW)
and the TFC to 2.96 mg QE/g (DW) of ponkan extract and also exhibited the highest antioxidant
activity. The TAAC improved along with increased water content. Water extraction showed the
highest content (13.07 mg VitC/100 g, DW). The hesperidin content analyzed by HPLC-PDA was
102.95–622.57 mg/100 g (DW), which was the highest among the flavanones. Then, the ethanol
insoluble residue extracts were taken from the pectin with four different solvents, evaluating TPC,
TFC, and antioxidant activity. The TPC, TFC, and antioxidant capacity of pectin are significantly
lower than those of the peels. Combining MVD and 75% ethanol with ultrasound-assisted extraction
in the pre-treatment process can effectively eliminate polyphenols, flavonoids, and other compounds,
thus enabling the extraction of high-methoxyl pectin. The total dietary fiber (TDF) content of MVD
ponkan by-products was 25.83%. Ponkan by-products have the potential for the future development
of functional foods and supplements.

Keywords: microwave vacuum drying; phenols; flavonoids; pectin; dietary fiber; antioxidant activity

1. Introduction

Of the world’s nearly 80 million tons of citrus produced annually, the juice industry
generates a significant volume of by-products, such as exocarp, mesocarp, carpel, and
seeds, which collectively account for half of that weight each year [1]. These by-products
are mainly used as animal feed or directly discarded as environmental waste without
proper treatment [2]. Citrus peels contain a wide variety of bioactive compounds and
are regarded as a promising source of functional ingredients [3], such as phenolic acids,
flavanones, flavonoids, polymethoxylated flavones (PMFs), carotenoids, ascorbic acid, and
fibers [4]. They have antioxidant, antimicrobial, anticancer, antimutagenic, and antiallergic
properties [5]. Therefore, the citrus by-products of the juice industry are an important
source of phenolic compounds, which have potential significance as ingredients in dietary
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supplements, raw materials for cosmetics, natural additives in food, or applications in
food products [6].

Citrus peels have tremendous economic value due to their richness in flavonoids,
polyphenols, carotenoids, pectin, dietary fibers, sugars, essential oils, ascorbic acid, and
functional ingredients. Additionally, they contain high levels of sugars that are suitable for
fermentation to produce bioethanol [1]. Therefore, research emphasis has been placed on
reusing citrus by-products to enhance their value.

Microwave vacuum drying (MVD) is achieved by the combination of microwave
and vacuum systems, using microwaves to directly heat the center of the object, and,
through the vacuum decompression of the environment, significantly shorten the drying
time, improve the production efficiency and reduce oxidation of the material [7], prevent
the structure shrinkage of tissues [8], and avoid the deterioration in quality caused by
prolonged heating [9].

Ultrasound-assisted extraction (UAE) utilizes sound waves with a frequency higher
than 20 kHz to induce mechanical vibration in solids, liquids, and gases. It involves cycles
of expansion and compression during medium propagation [10]. Ultrasonic waves can
penetrate the cell wall, resulting in cell rupture within a shorter period of time. This process
increases the extraction volume [11] and lowers the operating temperature for extracting
heat-intolerant compounds [12,13].

The aim and novelty of this study were to dry ponkan by-products using MVD,
extract the functional ingredients with varying ethanol concentrations combined with UAE,
determine the phytochemical content in ponkan by-products, analyze the flavanone content
with HPLC-PDA, assess antioxidant activity, investigate the pectin extraction residue to
enhance ingredient yield, reduce extraction time, and promote environmental friendliness,
and analyze the physicochemical properties and antioxidant activity.

2. Materials and Methods
2.1. Raw Materials and Chemicals

Ponkan (Citrus reticulata) pomace contains exocarp, mesocarp, carpel, seeds, a small
amount of juice, and pulp. The pomace used in this study was provided by the Chia
Meei Food Industrial Corp. (Taichung, DaLi, capital of Taichung Prefecture, Taiwan). The
pomace from the juice extracted by the factory was stored in the factory’s refrigerator at
−20 ◦C. This pomace was used as the raw material for the experiment and was transported
to the laboratory using frozen logistics, during which it was also stored at −20 ◦C.

Acetic acid, amyloglucosidase, ascorbic acid, carbazole, 1,1-diphenyl-2-picrylhydrazyl
(DPPH), galacturonic acid, gallic acid, potassium persulfate, protease, quercetin dehydrate
98%, termamyl, hesperidin (≥99%), neohesperidin (≥95%) and naringenin (≥95%) (for the
HPLC analysis) were purchased from Sigma Aldrich (St. Louis, Missouri, USA). Boric acid,
2,2′-azino-bis (3-ethylbenz thiazoline-6-sulphonic acid), ethoxyethane, hydrochloric acid,
Kjeldahl tablets, sodium acetate, sodium di-hydrogen phosphate 2-hydrate, di-sodium hy-
drogen phosphate anhydrous, and sulfuric acid were purchased from PanReac Applichem
(Darmstadt, Germany). Trolox was purchased from Acros Organics B.V.B.A., Wakefield,
MA, USA. Acetone was purchased from J.T. Baker (Bridgewater, NJ, USA). Naringin hy-
drate (≥98%) (for the HPLC analysis) was supplied by Alfa Aesar (Ward Hill, MA, USA).
All the chemical reagents used were of analytical grade.

2.2. Ponkan By-Product Samples before Processing

Ponkan pomace was dried in an MVD oven (Microwave Vacuum Drying Oven, VP-
09AV, LanTai Microwave Equipment Co., Ltd., Shanghai, China) at 0.85 w/g power for the
vacuum, with the temperature set at 63–65 ◦C. The drying process continued until the water
activity reached 0.3 ± 0.05, as measured by a water activity meter (Pawkit Pocket, Smartec
Scientific Corp., Laurel, MD, USA). The moisture content in wet weight was maintained
below 5 ± 1%. The microwave vacuum-dried pomace was then ground into powder, sieved
through a 40-mesh sieve, and finally stored in desiccators. The ponkan pomace was also
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pre-chilled at −20 ◦C, freeze-dried for 48 h, ground into powder using a grinder, and then
filtered through a 40-mesh sieve, and was finally stored in a refrigerator at −20 ◦C. The
ponkan pomace was then cut into 1 cm3 cubes and dried at 50 ◦C for 48 h. Subsequently,
the pomace cubes were ground into powder with a grinder and filtered through a 40-mesh
sieve to produce hot-air-dried samples.

The yield was calculated as shown in the following equation [14]:

Yield (%) = Wdry × 100/Wwet (%).

Wdry is the dry weight (g) of the pomace; Wwet is the wet weight (g) of the pomace.
All sample values were determined in triplicate.

2.3. Proximate Analysis

The experiment was carried out according to the method of AOAC [15], which in-
volved oven-drying at 105 ◦C until a constant weight was achieved for moisture deter-
mination. The Kjeldahl nitrogen method and Soxhlet extraction method were used to
analyze crude protein and crude fat content, respectively. Ash content was determined
using an ashing furnace, while the acid–alkali cooking method was employed for crude
fiber analysis. Carbohydrate content was calculated using the deduction method. With
this method, the total weight of the sample is set at 100%. After deducting moisture, crude
protein, crude fat, and ash content, the carbohydrate content is then calculated.

2.4. Flavonoid Extraction

Different concentrations of ethanol (25%, 50%, 75%, and 95% v/v) were used to extract
the ponkan by-products, with water serving as the control group. A 1-gram sample dried
using a vacuum microwave was taken and mixed with 20 mL of water or ethanol solutions
of 25%, 50%, 75%, or 95% (v/v). The mixture was then subjected to extraction using an
ultrasonic shaking device at 28 kHz for 30 min, followed by centrifugation at 8000× g for
10 min. The resulting solution was filtered to eliminate solids, and the extracts were stored
in a refrigerator at −20 ◦C [16].

2.5. Analysis of Phytochemical Content
2.5.1. Total Phenolic Contents (TPC)

First, 0.01 mL of the extract was mixed with 0.99 mL of deionized water. Subsequently,
0.5 mL of Folin–Ciocalteu phenol reagent was added to the mixture and allowed to react for
3 min. Following this, 1.5 mL of 20% sodium carbonate was added and thoroughly mixed.
The reaction was carried out for 30 min at room temperature. Afterward, the absorbance
value was measured using a spectrophotometer (Molecular Devices, SpectraMax® ABS
Plus, San Jose, CA, USA) at 760 nm. Gallic acid (1 mL) at various concentrations was
used to construct a standardized curve for calculating the TPC of the samples, which was
expressed as mg GAE (gallic acid equivalents)/g of DW [17].

2.5.2. Total Flavonoid Content (TFC)

The determination of TFC was carried out using the colorimetric method with alu-
minum chloride, modified from the method reported in [18]. Quercetin was dissolved in
95% ethanol to create a standard quercetin solution. Subsequently, 50 µL of the extract or
standard solution was mixed with 10 µL of 10% aluminum chloride hexahydrate, followed
by 150 µL of 95% ethanol, 10 µL of 1 M potassium acetate, and 10 µL of 1 M potassium
acetate, in sequence. The extract or standard solution (50 µL) and 10% aluminum chloride
hexahydrate (10 µL) were added, followed by 150 µL of 95% ethanol and 10 µL of 1 M
potassium acetate. Ethanol (95%) was used as a control group, and the reaction mixture
was shaken and mixed homogeneously at room temperature for 40 min, protected from
light. The absorbance value was measured using a spectrophotometer (Molecular Devices,
SpectraMax® ABS Plus, San Jose, CA, USA) at 415 nm. The total flavonoid content was
expressed as mg QE (quercetin equivalents)/g of DW.
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2.5.3. Total Ascorbic Acid Content (TAAC)

TAAC was determined using the indophenol method, following the procedure out-
lined by Nielsen and Nielsen [19]. In this method, the extract was combined with a
metaphosphoric acid–acetic acid solution in a 1:1 (v/v) ratio to create a sample solution.
Ascorbic acid was then added to the metaphosphoric acid–acetic acid solution to serve
as the standard solution. Metaphosphoric acid–acetic acid solution (7 mL) was used as
a blank test. A standard group was prepared using 2 mL of ascorbic acid standard solu-
tion and 5 mL of metaphosphoric acid–acetic acid solution. The standard solution was
calibrated with indophenol (2,6-dichloroindophenol). The sample solution (10 mL) was
mixed with 5 mL of metaphosphoric acid–acetic acid solution to titrate with indophenol
standard solution. Double-distilled water (ddH2O; 10 mL) was used as a blank group. The
amount of titration was recorded and the total ascorbic acid content was calculated using
the following formula:

TAAC
(mg

mL

)
=

(a − b)× D.F × K
V

a: Number of mL of indophenol used in the sample juice;
b: Number of mL of indophenol consumed in the blank test;
D.F.: Sample dilution factor (juice diluted 1:1) = 2;
V: Sample volume;

K:
Weight of ascorbic acid (mg)× 2 (mL)

50 (mL)
Ascorbic acid standard solution titration volume (mL) − Blank titration volume (mL) .

2.5.4. Analysis of Flavanone Content by HPLC-PDA

The sample was filtered through a 0.22 µm microporous membrane. Then, 10 µL of the
extract was injected into the HPLC. The peaks were identified based on the retention time of
the standardized products (naringin, hesperidin, neohesperidin, and naringenin) and their
UV spectrum. The peak areas of the sample extract were then substituted into the standard
curve to calculate the flavanone content. A Sykam HPLC pump system (S1125 HPLC Pump
System, S5200 Autosampler, Radebeul, Germany) with a photodiode array (PDA) detector
was used. The main analyzing column was InertSustain C18 (250 mm × 4.6 mm, 5 µm
pore size). The mobile phase A was acetonitrile and the mobile phase B was water. The
gradient settings were as follows: 22% A and 78% B, held for 10 min, changing linearly to
61% A and 39% B (25 min), and then to 100% A (5 min). Then, it was returned to initial
conditions after 5 min and was held for 15 min. The flow rate of the mobile phase was
1.0 mL/min, and the sample injection volume was 10 µL. The observed wavelength was
280 nm [20]. The intra-day test involved injecting 5, 50, and 100 µg/mL of standardized
flavanone solution 3 times within 24 h at each concentration.

2.6. Measurement of Antioxidant Capacity
2.6.1. ABTS (2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulphonic Acid) Assay

The method was modified from that of Chew et al. [21], wherein 14 mM ABTS and
4.9 mM potassium persulfate were combined in a 1:1 ratio to create a masterbatch of ABTS
radicals. The reaction was then left to stand in the dark for 12–16 h. For the analysis, 1.9 mL
of ABTS radicals was mixed with 50 µL of the sample, resulting in an absorbance value
of 0.70 ± 0.05 at 734 nm with a 95% ethanol dilution. Then, 1.9 mL of ABTS radical was
added to 50 µL of the sample and left to react in the dark for 6 min. The absorbance value
was measured at 734 nm using a spectrophotometer (Molecular Devices, SpectraMax® ABS
Plus, USA). The percentage of free radical scavenging ability (%) was calculated as follows:

ABTS racial scavenging activity (%) =

(Acontrol − Asample

Acontrol

)
× 100%

Acontrol: The absorbance value of the control group;
Asample: The absorbance value of the sample.
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The control group was standardized using distilled water and various concentrations
of Trolox solution and ABTS radical scavenging capacity (%) was determined, with the
results expressed in µmole TE/g of DM.

2.6.2. DPPH Assay
Citrus peel extract (22 µL) was taken and 200 µL of a freshly prepared 95% (v/v)

ethanol solution of 150 µM DPPH was added to it. The mixture was then homogeneously
mixed and left to stand for 30 min at room temperature, protected from light. The ab-
sorbance of DPPH at 517 nm was measured using a spectrophotometer (Molecular Devices,
SpectraMax ®, ABS Plus, USA), and the radical scavenging ability (%) of DPPH was
calculated as follows [22]:

DPPH radical scavenging activity (%) =

(Acontrol − Asample

Acontrol

)
× 100%.

Acontrol: Absorbance value of the control group; Asample: absorbance value of the sample.
In the control group, distilled water was used as a substitute for the extract samples,

and we standardized the curve using different concentrations of Trolox solution and DPPH
radical scavenging capacity. Standardized curves were created using various concentrations
of Trolox solution and DPPH radical scavenging capacity. The results were expressed as
µmole Trolox equivalents (TE)/g of DM.

2.6.3. FRAP Assay

The FRAP assay was based on the method used by Benzie and Strain [23]. The FRAP
reagent consisted of a mixture of 0.1 M sodium acetate buffer (pH 3.6), 10 mM 2,4,6-tri(2-
pyridyl)-s-triazine (TPTZ), and 20 mM iron chloride (10:1:1 v:v:v). The extract (0.1 mL)
was added to 1.9 mL of the reagent and the absorbance value was determined using a
spectrophotometer (Molecular Devices, SpectraMax ® ABS Plus, USA) at 593 nm. The
change in absorbance at 593 nm, between the final reading selected and the 4 min reaction
reading, was calculated for each sample and was related to the change in absorbance of
a FeII standard solution tested in parallel. This was expressed as µmol Trolox equivalent
antioxidant capacity (TE)/g of dry weight (DW).

2.7. Pectin Extract

In a slight modification of the method described by Peng et al. [24], 10 g of sample
powder was washed twice with 63.3 mL of 95% ethanol to remove mono- and di-sugars [25]
and mixed with 31.7 mL of acetone. The suspension was filtered, and the residue was dried
at 40 ◦C to a constant weight to obtain a dried alcohol-insoluble residue (AIR). Referring
to the methods of Kliemann et al. [26] and Pasandide et al. [27], combining one factor at
a time [28], the experiment was designed as follows: the dry pomace was extracted with
solvents in the ratios of 1:20, 1:25, and 1:30 (w/v), and the pH values were adjusted to 1,
2, and 3 with 0.5 M of HCl, H2SO4, and citric acid, respectively, while the control group
was extracted aqueously with an equal volume of water instead of acid. Then, 0.5 M of
HCl, H2SO4, and citric acid were used to adjust the pH values to 1, 2, and 3, respectively,
while the control group was extracted in water by replacing the acid with an equal volume
of water. The mixtures were extracted by heating to 70 ◦C, 80 ◦C and 90 ◦C for 10, 20 and
30 min. The mixtures were centrifuged in a tabletop centrifuge (Kubota, RA-2024, Bunkyo,
Tokyo, Japan) and the supernatant and solids were collected separately. The filtrate was
cooled down to 4 ◦C and allowed to stand for 1 h. An aliquot of 95% ethanol was added to
the filtrate, followed by the addition of an aliquot of 70% acidic ethanol (0.5% HCl), then
washed with 95% ethanol to pH 7, filtered to remove the supernatant, and dried in a hot-air
oven for 2 h at 35 ◦C.

2.8. Total Dietary Fiber (TDF)
The assay was carried out according to the method outlined by the AOAC [29]. First,

1 g of the sample (S) was weighed in duplicate and added to 50 mL of pH 6.0 phosphate
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buffer. Then, 100 µL of Termamyl solution was added, and the mixture was placed in a
boiling water bath for 15 min. After cooling, 10 mL of 0.285 N NaOH solution was added,
and the pH value was adjusted to 7.5 ± 0.1. After cooling, 10 mL of 0.329 M phosphate
solution was added to adjust the pH value to 4.5 ± 0.2. Then, 5 mg of protease was added
and stirred at 60 ◦C for 30 min. After cooling, 10 mL of 0.329 M phosphoric acid was
added to adjust the pH to 4.5 ± 0.2. Amyloglucosidase (0.3 mL) was added and stirred
at 60 ◦C for 30 min. Ethanol (95%; 280 mL) was added and preheated to 60 ◦C, then the
mixture was allowed to stand at room temperature for 60 min to form a precipitate, then
the precipitate was dried and weighed (R). After weighing the fiber cups, the samples were
lubricated with 74% ethanol. The enzyme-treated samples were added to the fiber cups and
the residue was washed with 3 portions of 20 mL with 74% ethanol, 2 portions of 10 mL
with 95% ethanol, and 2 portions of 10 mL with acetone. Subsequently, the samples were
dried overnight at 70 ◦C. The first sample underwent Kjeldahl analysis, wherein the first
sample was analyzed for Kjeldahl nitrogen (P%), and the second sample was ashed and
weighed at 520 ◦C (A%). Calculations were made using the following formula:

TDF(%) =
R − (P%+A%)

100×R − Blank
S

× 100(%)

2.9. Statistical Analysis

Before analyzing the data collected from this research with a one-way ANOVA, it was
confirmed that the assumptions of normality, equal variances, and independence were
adequately met. The mean values of the experimental data were calculated by conducting
triplicate measurements, utilizing a one-way analysis of variance and Duncan’s multiple
range test to assess the degree of difference between the experimental data, assuming a
significance level of p < 0.05. Data were analyzed using the SPSS 22.0 (Statistical Product
and Service Solutions) package (SPSS Statistical Software, Inc., Chicago, IL, USA).

3. Results
3.1. Drying Results for Ponkan By-Products

The moisture content of ponkan by-products before drying was 64.38%, making it
difficult to preserve the fresh samples as this led to fruit-fly infestation. Therefore, the
samples were dried for storage in this study. The yield after microwave vacuum drying
(MVD) was 27.53%, while after freeze-drying (FD), it was 26.13%, and after hot air drying
(HAD), it was 27.91%. There was no significant difference between them. The shortest
drying time for one kilogram of ponkan by-products was with MVD (78.6 min), followed
by HAD (1718 min), and FD (4320 min). Additionally, there was no significant difference in
the water activity of FD and HAD, while MVD was slightly higher than both. According
to the study by Tapia et al. [30], a water activity level below 0.61 is considered to prevent
microbial proliferation.

3.2. Proximate Analysis of Ponkan By-Products

The moisture content of ponkan by-products was 64.38%, similar to the dried results.
The ash and crude fat contents were 4.20% and 0.62%, respectively, which aligns with
the findings of Boluda-Aguilar et al. [31], wherein moisture was identified as the major
component. The crude protein and crude fiber contents were 2.31% and 10.7%, respectively.
The total carbohydrate content was 28.49%, which differed from the findings of Kaushal
et al. [32]. This variance could be attributed to differences in geographic origin, harvesting
time, and other factors.

3.3. Results for the Phytochemical Content of Ponkan By-Products by Extractive Solvents

Figure 1 shows the TPC results (11.06–17.48 mg gallic acid equivalents (GAE)/g dry
weight (DW)) after extraction with five different concentrations of ethanol. In Figure 2,
the total flavonoid content (TFC) is presented. The 75% ethanol extract exhibited the
highest TFC (2.96 mg quercetin equivalents (QE)/g, DW), which was not significantly
different from that with 50% ethanol extract (2.90 mg QE/g, DW). In contrast, the 25%
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ethanol extract showed the lowest TFC (2.39 mg QE/g, DW), which was not significantly
different from both the control (2.42 mg QE/g, DW) and that of the 95% ethanol extract
(2.50 mg QE/g, DW). The lowest TFC of 2.39 mg QE/g of DW was obtained with the 25%
ethanol extract, which was not significantly different from the control group (2.42 mg QE/g,
DW) and the 95% ethanol extract (2.50 mg QE/g, DW). Figure 3 illustrates the TAAC, with
the highest value observed with water extraction (13.07 mg VitC/100 g, DW) and the lowest
with 95% ethanol extraction (9.76 mg VitC/100 g, DW). This difference can be attributed
to the water solubility of ascorbic acid, indicating that a higher solvent content in water
leads to better extraction results. According to previous studies, the TAAC of oranges was
12.78 mg VitC/100 mL [33] and that of sweet oranges was 10.13 mg VitC/100 mL [34].
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Figure 1. Total phenolic contents (mg GAE/g dry weight) for different ethanol volumes used for ex-
traction from Citrus reticulata by-products. All data are shown as means ± SD (n = 3). Different letters
represent significant differences (p < 0.05). TPC, total phenolic contents. GAE, gallic acid equivalents.
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Figure 2. Total flavonoid contents (mg QE/g dry weight) for different ethanol volumes used for ex-
traction from Citrus reticulata by-products. All data are shown as means ± SD (n = 3). Different letters
represent significant differences (p < 0.05). TFC, total flavonoid contents. QE, quercetin equivalents.
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Figure 3. Total ascorbic acid contents (mg Vit C/100 g dry weight) for different ethanol volumes used
for extraction from Citrus reticulata by-products. All data are shown as means ± SD (n = 3). Different
letters represent significant differences (p < 0.05). TAAC, total ascorbic acid contents. VitC, vitamin C.

3.4. Analysis of the Flavanone Content of Ponkan by HPLC-PDA

The naringin content ranged from 16.74 to 61.83 mg/100 g of DW, which was com-
parable to the findings of Shamloo et al. [35] who used methanol to extract sweet orange
(39.06 mg/100 g), and was similar to the results reported for ponkan peel extracted with 80%
acetone (58.138 mg/100 g) [36]. However, this was lower than the naringin content reported
by Ho and Lin [37] using DMSO/methanol (587 mg/100 g), which could be attributed to
the variations in extraction methods and locations. The hesperidin content ranged from
102.95 to 622.57 mg/100 g DW, which was similar to that found in the orange juice extracted
by ultrasonication-assisted 90% methanol extraction (546.7 mg/100 g, DW) [38]. The results
for the ultrasonically-assisted methanol extraction of Chaetomium cepa (5526.04 mg/100 g)
reported by Sun et al. [20] were higher than those in the present study, which may be due
to the difference in maturity and the fact that the method for reactive surfaces was not opti-
mized in the present study. Neohesperidin content ranged from 4.57 to 19.55 mg/100 g DW,
which was comparable to the findings for the methanol/DMSO/water extraction of sweet
orange (47 mg/kg) reported by Wang et al. [39]. The naringenin content varied from 0.72 to
6.69 mg/100 g DW, which was lower than the outcome of the methanol/DMSO/water
extraction of sweet orange (18.3 mg/100 g) by Wang et al. [39].

Table 1 presents the flavanone content of ponkan by-products extracted using various
ethanol concentrations. The extract of hesperidin exhibited the highest content, followed
by naringin, neohesperidin, and naringenin. Notably, the extract with 95% ethanol had
the highest concentration of naringenin. Due to its solubility in alcohol, the 95% ethanol
extract had the highest content, while the water extract had a lower content. Therefore, the
95% ethanol extraction yielded the highest flavonoid content, while the water extraction
was significantly less effective. This difference can be attributed to the fact that the four
compounds were soluble in alcohol, indicating that a higher alcohol concentration resulted
in better extraction outcomes.
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Table 1. Flavanone contents (mg/100 g, DW) for different ethanol volumes used for extraction from
Citrus reticulata by-products.

Solvents Naringin Hesperidin Neohesperidin Naringenin

H2O 16.74 ± 4.88 e 102.95 ± 12.54 e 4.57 ± 1.83 d 0.72 ± 0.16 c

25% EtOH 35.98 ± 1.83 d 329.67 ± 21.23 d 6.89 ± 2.31 c 1.14 ± 0.71 c

50% EtOH 43.20 ± 2.36 c 377.64 ± 14.29 c 7.37 ± 1.96 c 2.89 ± 0.59 b

75% EtOH 56.17 ± 3.32 b 496.73 ± 9.83 b 12.61 ± 2.21 b 2.76 ± 0.32 b

95% EtOH 61.83 ± 0.79 a 622.57 ± 34.50 a 19.55 ± 3.85 a 6.69 ± 1.08 a

All data are shown as means ± SD (n = 3). Different letters represent significant differences (p < 0.05).

3.5. Antioxidant Activity of the Extracted Solvent on Ponkan By-Products

Figure 4 and Table 2 show that the ABTS radical scavenging capacity of the control
group was 84.47%, or 122.16 µmol Trolox equivalent antioxidant capacity (TE)/g of DW.
There was no significant difference between the 25%, 50%, and 75% ethanol extracts
(86.84–89.63%). The lowest scavenging capacity was found for the 95% ethanol extract
(74.76%), with 97.841 µmol TE/g of DW. Anticona et al. [40] reported that the ABTS radical
scavenging capacity of UAE with hybrid ponkan was 18.1–30.4 mmol TE/100 g, which was
higher than the results of the present study. This difference could be attributed to variations
in the varieties, extraction methods, and extraction solvents used.
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Figure 4. ABTS radical scavenging activity (%) for different ethanol volumes of extraction from Citrus
reticulata by-products. All data are shown as means ± SD (n = 3). Different letters represent significant
differences (p < 0.05). ABTS: 2,2′-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid method.

Figure 5 and Table 2 demonstrate that there was no significant difference between the
75% ethanol extract and 95% ethanol extract samples, which measured 23.43 and 23.73 µmol
TE/g of DW, respectively. Both extracts outperformed the control group (22.65 µmol
TE/g, DW), indicating that the 75% and 95% of ethanol extract effectively enhanced the
antioxidant capacity. According to Zhang et al. [41], the DPPH values of ponkan were
29.04–50.46 µmol TE/g of DW, which were similar to the results of this study. The DPPH
free radical scavenging ability of ponkan, as extracted by UAE and 80% methanol, was
85.53–94.65%, while that of lime peel was 86.47–94.33% [42], exceeding the results of the
current study.
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Table 2. Antioxidant activities for different ethanol volumes of extract from Citrus reticulata peels, as
evaluated by the ABTS, DPPH, and FRAP methods.

Solvents/Treatment ABTS
(µmol TE/g DW)

DPPH
(µmol TE/g DW)

FRAP
(µmol TE/g DW)

H2O 122.16 ± 1.48 b 22.65 ± 0.27 b 48.93 ± 4.24 b

25% EtOH 135.09 ± 5.24 a 21.76 ± 0.08 c 56.56 ± 2.19 a

50% EtOH 128.09 ± 6.84 ab 22.36 ± 0.07 b 58.47 ± 3.25 a

75% EtOH 134.14 ± 2.29 a 23.43 ± 0.46 a 58.69 ± 3.84 a

95% EtOH 97.84 ± 4.45 c 23.73 ± 0.20 a 26.54 ± 2.23 c

All data are shown as means ± SD (n = 3). Different letters represent significant differences (p < 0.05). ABTS
radical scavenging activity, DPPH radical scavenging activity, and ferric reducing antioxidant power were
expressed as µmol Trolox equivalent antioxidant capacity (TE)/g of dry weight (DW). ABTS: 2,2′-azino-bis(3-
ethylbenzthiozoline-6)-sulphonic acid method. DPPH: 2,2-diphenyl-1-picrylhydrazyl radicals method. FRAP:
ferric reducing antioxidant power.
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Figure 5. DPPH radical scavenging activity (%) for different ethanol volumes of extraction from
Citrus reticulata by-products. All data are shown as means ± SD (n = 3). Different letters represent
significant differences (p < 0.05). DPPH: 2,2-diphenyl-1-picrylhydrazyl radicals method.

3.6. Effect of Extraction Conditions on the Pectin Yield and Results for the Phytochemical Content
of Pectin Using Extraction Solvents

Existing pectin extraction conditions require large amounts of solvents and may lead
to serious adverse environmental impacts, including energy consumption and poor water
utilization, while the use of hydrochloric acid may lead to corrosion of stainless steel,
necessitating a reconsideration of extraction methods to optimize pectin functionality and
bioactivity [43]. Pectin production and characterization are affected by the source of the raw
material, ripening stage, and extraction factors including pH, temperature, solvent type,
and time [44,45]; therefore, the one factor at a time approach was chosen to determine the
optimal solid–liquid ratio, pH, temperature, and time for pectin extraction. It is important
to analyze the phytochemical content of the extracted pectin because acid extraction or hot
water extraction can lead to co-extraction phenomena [46].

TPC and TFC

The TPC is shown in Figure 6, and the citric acid extraction of pectin (CEP) showed
the highest content (853.33 µg GAE/g DW), followed by the hydrochloric acid extraction of
pectin (HEP) (386.67 µg GAE/g DW), while the sulfuric acid extraction of pectin (SEP) and
water extraction of pectin (WEP) showed no significant difference. Wang et al. [47] reported
the TPC of grapefruit pectin extracted by an ultrasonication-assisted thermal hydrochloric
acid extraction technique to be 4210 µg GAE/g, and that of thermal hydrochloric acid-
extracted pectin to be 7.06 µg GAE/mg. Lin et al. [48] reported the TPC of commercial
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Citrus pectin to be 1770 µg GAE/g; all of these contents were higher than in the results of
the present study, which may be caused by different varieties or extraction methods.
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Figure 6. Total phenolic contents (µg GAE/g dry weight) of Citrus reticulata pectin with different
solvents used for extraction. All data are shown as means ± SD (n = 3). Different letters represent
significant differences (p < 0.05). TPC, total phenolic contents. GAE, gallic acid equivalents. HEP,
hydrochloric acid extraction of pectin. SEP, sulfuric acid extraction of pectin. CEP, citric acid extraction
of pectin. WEP, water extraction of pectin.

The TFC is shown in Figure 7, with the highest SEP being 1176.06 µg QE/g DW,
and with no significant difference among the other three (121.52–257.88 µg QE/g DW).
According to Lin et al. [48], the TFC of commercial Citrus pectin was 1080 µg QE/g DW,
which was similar to the SEP results in this study.
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Figure 7. Total flavonoid contents (µg QE/g dry weight) of Citrus reticulata pectin with different
solvents used for extraction. All data are shown as means ± SD (n = 3). Different letters represent
significant differences (p < 0.05). TFC, total flavonoid contents. QE, quercetin equivalents. HEP,
hydrochloric acid extraction of pectin. SEP, sulfuric acid extraction of pectin. CEP, citric acid extraction
of pectin. WEP, water extraction of pectin.
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3.7. Antioxidant Activity of Pectin Extract Solvents
3.7.1. DPPH

The DPPH radical scavenging ability of the pectin samples is shown in Table 3. The
best DPPH radical scavenging ability was found in WEP (0.219 µmol TE/g DW), while the
remaining three did not show any significant difference (0.004–0.043 µmol TE/g DW).

Table 3. The antioxidant activities of Citrus reticulata pectin with different solvents used for extraction,
as evaluated by the DPPH and FRAP methods.

Extraction
Solvents/Treatment

DPPH
(µmol TE/g DW)

FRAP
(µmol TE/g DW)

HEP 0.039 ± 0.029 b 13.03 ± 1.61 a

SEP 0.004 ± 0.005 b 9.79 ± 1.59 b

CEP 0.043 ± 0.037 b 6.44 ± 0.15 c

WEP 0.219 ± 0.022 a 15.04 ± 2.31 a

All data are shown as means ± SD (n = 3). Different letters represent significant differences (p < 0.05). DPPH
radical scavenging activity and ferric reducing antioxidant power were expressed as µmol Trolox equivalent
antioxidant capacity (TE)/g dry weight (DW). DPPH: 2,2-diphenyl-1-picrylhydrazyl radicals method. FRAP:
ferric reducing antioxidant power. HEP, hydrochloric acid extraction of pectin. SEP, sulfuric acid extraction of
pectin. CEP, citric acid extraction of pectin. WEP, water extraction of pectin.

3.7.2. FRAP

The FRAP ferric reducing antioxidant capacity of the pectin samples is presented in
Table 3. The best FRAP ferric reducing antioxidant capacity was found to be for HEP and
WEP, which were not significantly different from each other (13.03 µmol TE/g DW and
15.04 µmol TE/g DW), and the lowest was found to be for CEP.

3.8. Total Dietary Fiber (TDF) of Ponkan By-Products

The TDF content in Taiwanese Ponkan (25.70%) was similar to that reported by Chang
et al. [49]. The TDF content was similar to that reported by Oduntan and Arueya [50] for
sweet orange (27.69%). The residual TDF after pectin extraction was 13.39–17.02%, which
was lower than that of the ponkan by-products after MVD treatment. This difference can
be attributed to the extraction of soluble dietary fiber (SDF) in previous experiments. It was
inferred that the remaining portion should be insoluble dietary fiber (IDF), a finding similar
to that reported in the study by Oduntan and Arueya [50] (15.23%), a slightly higher figure
than that reported in the study by Chang et al. [49] (10.30%). The lowest TDF content was
found in the residue after citric acid extraction, while the highest was found in the residue
after water extraction, which may be related to the pectin extraction content.

4. Discussion
4.1. Drying Results for Ponkan By-Products

Although freeze-drying (FD) is the optimal choice for preserving nutrients and color,
the process is characterized by long drying times, high energy consumption, and high
costs [51]. Conversely, hot-air drying (HAD) is the most costly in terms of drying time,
leading to the degradation of flavonoids and phenolic acids, thereby diminishing the
antioxidant capacity of citrus. Additionally, HAD may cause oxidation and the pyrolysis of
polyphenols [52]. Since the aim of this study was to enhance the value of the by-products
and preserve their antioxidant components, MVD was selected for follow-up experiments
due to its lower time and cost requirements.

4.2. Results for the Phytochemical Content of Ponkan By-Products with Extractive Solvents

The reason for choosing ethanol over methanol as the extraction solvent is that the
total phenolic content (TPC) of ethanol extraction may be higher than that of methanol
extraction. This is because ethanol tends to form hydrogen bonds with the hydroxyl groups
of phenolic compounds, while methanol is less prone to hydrogen bonding [53,54].



Foods 2024, 13, 2129 13 of 19

The highest TPC was obtained with 75% ethanol, which is similar to the results of 80%
methanol-extracted grapefruit peel studied by Rahman et al. [55]. It is slightly lower than
that reported by Zhang et al. [56] with an 80% methanol extract of ponkan peel (22.80–32.76
mg GAE/g), but lower than that reported by Ghasemi et al. [57] (172.1 mg GAE/g, DW).
There was no significant difference between the 25% ethanol extract and 50% ethanol
extract, while the 95% ethanol extract had the lowest content.

The TFC of ponkan rind was reported as 5.2 mg QE/g of DW [57]. In contrast, the TFC
of ponkan rind extracted using ultrasound-assisted extraction (UAE) with 80% methanol
was found to be 1383 mg QE/100 g [39]. These values were higher than the results obtained
in this study, possibly due to variations in natural plants, different extraction conditions
such as temperature, time, the solvent-to-solid ratio, the type of solvent, and the additional
extraction techniques employed [58]. Londoño-Londoño et al. [13] used methanol as a
solvent to extract compounds at 60 kHz, at 40 ◦C, and for 30 min. They also utilized
methanol as a solvent, using the same frequency, temperature, and duration to extract
flavonoids from citrus peels. The yield thus obtained was 40.25 ± 12.09 mg/g, and the total
phenolic content was 19.59 ± 2.11 mg GAE/g of dry matter (DM).

The phytochemical content increased with the rising ethanol concentration. The 75%
ethanol extract exhibited the highest TPC at 17.48 mg GAE/g of DW and TFC at 2.96 mg
QE/g of DW. Conversely, a decreasing trend was noted for the 95% ethanol extract. Chan
et al. [59] found that pure solvents were unable to ensure an average polyphenol extraction
performance compared to aqueous solutions. They suggested that the low solubility
in pure solvents could be due to the strong hydrogen bonding between proteins and
polyphenols. However, the addition of water to the solvent increases solubility, weakening
the hydrogen bond [60]. Ethanol enhances the solubility of solutes, while water speeds up
their desorption from the sample [61]. Therefore, determining the optimal concentration
for extraction is crucial for maximizing the phytochemical content.

Factors affecting total ascorbic acid content (TAAC) in citrus fruits include production
factors, climatic conditions, fruit variety, handling procedures, and storage conditions [62].
Ascorbic acid retention is often utilized as an indicator of the overall nutritional retention
of food products because it is highly susceptible to oxidation [63] and to leaching into
water-soluble media during storage [64].

4.3. Analysis of the Flavanone Content of Ponkan by HPLC-PDA

Botanical nutrients such as flavonoids, anthocyanins, and phenolic acids have been
shown to have potential health benefits in the treatment of obesity, hypertension, cardiovas-
cular disease, and metabolic syndrome [65]. Naringin, neohesperidin, nobelitin, narirutin,
and hesperidin are among the most important flavonoids isolated from citrus fruits [66], of
which hesperidin and naringin are the most significant [66]. They exhibit strong antioxidant
and anti-inflammatory activities, both in vitro and in vivo.

4.4. Antioxidant Activity of the Extracted Solvent on Ponkan By-Products

Humans are exposed to various exogenous and endogenous oxidants, such as free
radicals and reactive oxygen species, from environmental and cellular metabolism. These
exposures can lead to lipid peroxidation, oxidation of the polypeptide backbone, and
DNA strand damage, which, in turn, can result in serious pathological conditions such as
diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases [67]. Oxidative
damage occurs not only in the human body but also in foods containing polyunsaturated
fatty acids, due to lipid peroxidation when exposed to air, light, and heat. This process
leads to deterioration, discoloration, and the loss of nutritional value [68]. Nowadays,
various synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated
hydroxytoluene (BHT) are commonly utilized in the food industry to prevent such losses.
However, their use in the food industry is questionable, due to potential health risks and
toxicity [69]. Studies have also investigated health issues arising from long-term intake [70].
Therefore, it is essential to explore natural antioxidants derived from plant sources.
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ABTS radical scavenging capacity is a common method used to measure the antiox-
idant capacity of foodstuffs in the food industry and in agricultural research [71]. The
addition of potassium persulfate to ABTS resulted in a blue ABTS radical solution with
a peak absorbance at 534 nm. When the ABTS radicals were reduced, the color changed
from blue to colorless, indicating that the lower the absorbance, the higher the scavenging
capacity of ABTS. The color changed from blue to colorless when the ABTS radicals were
reduced. This indicates that the lower the absorbance value, the better the ABTS radical
scavenging ability. Moreover, the ABTS radical scavenging ability is associated with the
number of hydroxyl groups in the polyphenol [72].

DPPH is one of the few stable and commercially available nitrogen-containing radicals
with a maximum absorbance at 517 nm. When DPPH is reduced, the color changes from
violet to colorless, indicating that the lower the absorbance, the better the scavenging ability
of the DPPH free radicals. The scavenging ability of the DPPH free radicals correlates with
the number of hydroxyls scavenged [73]. The primary antioxidant capacity of DPPH is
determined by its reaction with antioxidant components that provide hydrogen [74].

The antioxidant activity of plant extracts depends on their ability to chelate transi-
tion metal ions, especially Fe2+ and Cu2+ [75]. Metal chelating compounds and chelator
complexes exhibit antioxidant activity by reducing the redox potential and stabilizing
the oxidation state of metal ions [76]. Ferrozine and Fe2+ are chelated to form a miscible
complex (ferrozine-Fe2+) that is red in color and exhibits maximum absorbance at 625 nm.
When the extract is chelated with Fe2+, the content of ferrozine-Fe2+ decreases, resulting in
a lower absorbance value. The lower the absorbance value, the stronger the antioxidant
effect of ferric reduction. The DPPH radical scavenging capacity of commercially available
Citrus pectin was 3.91% [77]. The DPPH scavenging activity of pectin is also affected by
GalA content and molecular weight, with a high GalA content and low molecular weight
helping to eliminate more free radicals [78].

Table 2 displays the ferric reducing antioxidant power (FRAP) of the control group
at 48.93 µmol TE/g of DW. There was no significant difference observed between the
25%, 50%, and 75% ethanol extracts (ranging from 56.56 to 58.69 µmol TE/g, DW). The
95% ethanol extract exhibited the lowest value. These findings align with those of Zhang
et al. [41], who investigated the activity of 14 wild ponkan species, reporting values between
26.50 and 46.98 µmol TE/g of DW. The study suggested that limonin and naringin may
contribute to the enhancement of FRAP activity [79]. The FRAP ferric reducing antioxidant
capacity of commercially available Citrus pectin was found to be 4.21 µM TE/g DW [77],
which was lower than in the results of this study.

Polyphenols and flavonoids are considered impurities in pectin. Therefore, the TPC,
TFC, and antioxidant capacity of pectin extracted in this study were significantly lower than
that of ponkan by-products, suggesting that 75% ethanol is effective in removing impurities
to extract HMP. However, the antioxidant capacity of pectin is still present, which may
be due to the presence of antioxidant components other than phenolics and flavonoids.
According to previous studies, GalA has good antioxidant activity [77], and the carboxyl
group of galacturonic acid may act as a hydrogen donor and electron transfer agent to
promote free radical scavenging potential [80].

The ABTS radical scavenging ability (~89.63%) of ponkan peels showed better efficacy
than that of DPPH radical scavenging ability (~76.08%), which may be attributed to the
distinct scavenging mechanisms of ABTS and DPPH radicals [71]. Barreca et al. [81]
specifically mentioned that DPPH radical scavenging ability is attributed to the action of
flavonoids, so a low TFC results in relatively low DPPH radical scavenging ability. Even
so, the 75% ethanol extract has excellent antioxidant activity, which may be related to the
retention of more phenols, flavonoids, and carotenoids [82]. However, antioxidant activity
may not always correlate with phenolic content [57], as some phenols may not have good
radical scavenging ability [83].
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4.5. Total Dietary Fiber (TDF) in Ponkan By-Products

Increasing the intake of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF)
is effective in reducing the risk of cardiovascular disease, gastrointestinal disease, colon
cancer, glycemic response, and obesity [84]. Dong et al. [85] suggested that insoluble fibers
derived from fruits and vegetables may reduce the concentration of cholesterol in the blood.
Therefore, utilizing dietary fibers from plants has many health benefits. The TDF content
in Taiwanese ponkan (25.70%) was similar to that reported by Chang et al. [49]. The TDF
content in sweet orange (27.69%) was also similar to that found by Oduntan and Arueya [50].
A previous study has suggested that the fiber in oranges can add a soft texture to ice cream
and slow down the melting rate. Additionally, the sweet and sour nature of citrus and the
color of the pulp affect the quality of the ice cream. Therefore, adding oranges to ice cream
creates a new flavor and increases the nutrient content [86]. Dietary fiber consumption
reduces the risk of intestinal and gastrointestinal diseases, obesity, diabetes, cardiovascular
disease, and cancer. It also promotes physiological functions such as the lowering of
blood cholesterol levels and glucose decline [87]. Studies have shown that women need
an average of 21–25 g of fiber per day, while men need 30–38 g per day [88]. The residue
generated from this study could be used in ice cream in the future to enhance the value of
ponkan by-products.

5. Conclusions

Ponkan has good antioxidant activity. Its total phenolic content (TPC) and total
flavonoid content (TFC) increased with a rise in ethanol concentration. Particularly, the
75% ethanol extract exhibited the highest values (17.48 mg GAE/g, DW, and 2.96 mg QE/g,
DW) and demonstrated the strongest antioxidant activity. In contrast, the 95% ethanol
extract was less effective than the 75% extract. The total ascorbic acid content (TAAC)
increased with a rise in water content. The highest TAAC (13.07 mg VitC/100 g, DW) was
obtained with the water extract, while the lowest (9.76 mg VitC/100 g DW) was obtained
with the 95% ethanol extract. This difference may be attributed to the superior antioxidant
properties of ponkan by-products. The highest TAAC content was achieved with the water
extract (13.07 mg VitC/100 g DW), while the lowest was with the 95% ethanol extract
(9.76 mg VitC/100 g DW). This variation may be attributed to the fact that ascorbic acid is a
water-soluble compound. The HPLC-PDA analysis of flavanones revealed that hesperidin
was the most abundant, followed by naringin, neohesperidin, and naringenin. Due to its
solubility in alcohol, the 95% ethanol extract achieved the highest content, while the water
extract achieved a lower content.

The use of 75% ethanol can not only extract the most active ingredients of ponkan
by-products, potentially leading to the development of functional foods and natural antiox-
idants in the future, but it can also serve as a solvent before pectin extraction to optimize
utilization and minimize waste. The residue of the extracted pectin can be utilized as a
dietary supplement or added to ice cream to enhance the value of ponkan by-products. Al-
though microwave vacuum drying was chosen for these experiments due to cost and time
considerations, the active ingredients retained by freeze-drying and hot-air drying differ.
Therefore, exploring these active substances and physiological activities in the future is
warranted. In these experiments, only the pectin was extracted. In future experiments, we
can attempt to emulsify it or incorporate it into a jelly for various applications. The residue
from the extracted pectin has been documented as being used in ice cream production. This
could lead to the development of high-fiber ice cream with ponkan flavor in the future.
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