| Algorithm 1. Nash-MTL |
| Input: - initial parameter vector, –differentiable loss functions, –learning rate |
| Output: |
| for t = 1,…, T do |
| Compute task gradients |
| Set the matrix with columns |
| Solve for to obtain |
| Update the parameters |
| end for |
| return |
| Algorithm 1. Nash-MTL |
| Input: - initial parameter vector, –differentiable loss functions, –learning rate |
| Output: |
| for t = 1,…, T do |
| Compute task gradients |
| Set the matrix with columns |
| Solve for to obtain |
| Update the parameters |
| end for |
| return |