
Citation: Bodai, L.; Borosta, R.;

Ferencz, Á.; Kovács, M.; Zsindely, N.

The Role of miR-137 in

Neurodegenerative Disorders. Int. J.

Mol. Sci. 2024, 25, 7229. https://

doi.org/10.3390/ijms25137229

Academic Editor: Katrin Beyer

Received: 30 May 2024

Revised: 25 June 2024

Accepted: 27 June 2024

Published: 30 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Role of miR-137 in Neurodegenerative Disorders
László Bodai 1,* , Roberta Borosta 1, Ágnes Ferencz 1, Mercédesz Kovács 1,2 and Nóra Zsindely 1,3

1 Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged,
Közép fasor 52, H-6726 Szeged, Hungary

2 Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52,
H-6726 Szeged, Hungary

3 Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52,
H-6726 Szeged, Hungary

* Correspondence: bodai@bio.u-szeged.hu

Abstract: Neurodegenerative diseases affect an increasing part of the population of modern societies,
burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis
of several of these disorders involves dysregulation of gene expression, which depends on several
molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short
non-coding RNA molecules that modulate gene expression by suppressing the translation of partially
complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in
neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays
in five prominent neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data
indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of
distinct disorders differently.

Keywords: miRNA; microRNA; miR-137; neurodegeneration; Alzheimer’s disease; Parkinson’s
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1. Introduction

microRNAs (miRNAs) are a class of endogenous, short (~22 nucleotides) non-coding
RNAs with a regulatory role [1]. miRNA encoding genes can be intergenic or they can be
embedded in the introns or exons of protein-coding or non-coding genes [1,2]. Although
the biogenesis of mature miRNAs from these genomic structures can follow different routes,
the formation of most conserved miRNAs follows the canonic pathway, which involves the
generation of a stem-loop structure containing primary transcript (pri-miRNA), followed
by processing of this transcript by RNase III enzymes. During maturation, the sequences
at the base of the stem-loop structure are released by the microprocessor complex in the
nucleus, after which the resulting precursor miRNA (pre-miRNA) is exported to the cytosol,
where another RNase III enzyme, Dicer, cleaves the loop structure generating an miRNA
duplex [2]. One of the strands of this duplex, the guide strand, is then incorporated in
the RISC ribonucleoprotein effector complex, which can regulate target genes by either
translational repression or by cleavage of their mRNA products, depending on the degree
of complementarity between the guide miRNA and the targeted mRNA [1,3]. miRNAs
most commonly target the 3′-untranslated region (3′-UTR) of mRNAs, for translational
repression, a seven-base pair complementarity between the miRNA 5′ seed region and
the 3′-UTR of the targeted mRNA is sufficient [4,5]. Current annotations list 2654 mature
miRNAs, each of which can target several mRNAs; therefore, it is not surprising that the
number of human protein-coding genes regulated by miRNAs is predicted to be higher than
60%, meaning that miRNAs play a substantial role in the regulation of gene expression [6,7].

Neurodegenerative disorders are devastating diseases that substantially degrade the
quality of life and often have fatal consequences. In some of the most common types of
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these disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), age is a
major risk factor; therefore, their prevalence and burden on society steadily increases as life
expectancy increases globally [8–10]. Although the etiology of different neurodegenerative
disorders varies, there are some similarities in their pathology, such as the accumulation
of misfolded proteins or dysregulation of gene expression [11–14]. An increasing body of
data indicates the role of miRNA-dependent post-transcriptional gene regulation in the
pathogenesis of neurodegenerative diseases [15].

2. The Structure and Function of miR-137

miR-137 is a conserved microRNA, whose orthologs can be found in a variety of
evolutionarily distant animals, including mouse (mmu-miR-137), Drosophila (dme-miR-
137), and C. elegans (cel-miR-234) [16,17]. The human MIR137 gene is located in the 1p21.3
(98046070-98046171 [-]) chromosomal position, embedded in the 61 kbp long non-coding
RNA gene called the MIR137 host gene [6,18]. Its dominant mature miRNA product is the
23-nucleotide-long hsa-miR-137-3p (Figure 1), which gave 97% of the miR-137-specific
sequence reads in the 71 sequencing experiments compiled by miRBase and has 1235 pre-
dicted gene targets in the miRDB database [19,20]. In contrast, the hsa-miR-137-5p species
was represented by only 3% of miR-137-specific sequence reads and has only 21 predicted
targets. These together suggest that miR-137-3p is the sole biologically relevant product
of the miR-137 gene. miR-137-3p was found to be highly expressed in neuroblastoma and
adrenocarcinoma cells, and also in the adult brain, where the highest levels of expression
were detected in the hippocampus and in cortical regions [6,20–22].
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Figure 1. (A) The sequence of the hsa-miR-137 miRNA precursor, (B) its stem-loop structure,
(C) and the sequence of the mature hsa-miR-137-5p and hsa-miRN-137-3p miRNAs [20]. Red and
green colors mark the sequence of the -5p and -3p species, respectively.

The targets of miR-137 are mostly involved in cellular, metabolic, and developmental
processes, biological regulation, and response to stimulus (Figure 2). Some of the gene
ontology biological process (GO BP) terms, in which miR-137-3p regulated genes are most
over-represented (at FDR ≤ 0.001), are embryonic camera-type eye formation, regulation
of activin receptor signaling pathway, ventricular cardiac muscle tissue morphogenesis,
cardiac muscle cell differentiation, neuronal action potential, regulation of dendrite de-
velopment, and protein dephosphorylation. miR-137-5p-regulated genes do not show
significant enrichment in any GO BP category [23].
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Figure 2. Classification of miR-137-regulated genes to biological processes. Predicted target genes of
(A) hsa-miR-137-3p or (B) hsa-miR-137-5p [19] are classified into Panther v18.0 GO-Slim Biological
Process categories. On panel A, GO categories with ≥10 genes are shown.

Several studies indicate that miR-137 plays a role in cell differentiation. In neuronal
stem cells, the transcription of miR-137 is regulated by DNA methylation, the DNA methyl-
CpG-binding protein MeCP2, and the transcription factor Sox2, which regulates stem cell
renewal and neurogenesis [24]. During neuronal differentiation, miR-137 regulates the bal-
ance of neuronal stem cell proliferation and differentiation by downregulating epigenetic
factors, such as the histone demethylase LSD1/KDM1A and the histone methyltransferase
EZH2 and is also required for proper synaptogenesis and neuronal transmission [24–26].
Its effects are not limited to neurons, however, and it was also associated with the differen-
tiation of embryonic stem cell-derived endothelial cells, differentiation of osteoblasts, and
early erythroid commitment [27–29].

Due to its widespread regulatory roles, miR-137 was associated with several disorders,
including various tumors, gestational diabetes, schizophrenia, and neurodegenerative
disorders, the latter of which is in the focus of this review [30–35].

3. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent form of dementia, whose hallmark
features are amnestic impairment, hippocampal atrophy, and the presence of extracellu-
lar, amyloid beta-containing (Aβ) senile plaques and hyperphosphorylated tau protein-
containing intracellular neurofibrillary tangles in the nervous system [36].

The expression level of miR-137 seems to show region-specific differences in the brains
of AD patients. While ~five-fold downregulation was detected in the frontal cortex of
sporadic AD patients [37], no change was reported from the analysis of post-mortem
samples of the dorsolateral prefrontal cortex [38], the parietal lobe [39], the inferior frontal
gyrus, the superior and middle temporal gyrus [40,41], the anterior temporal cortex, or
the cerebellum [42]. Analysis of blood sera provided ambiguous results: some studies
indicated that the level of miR-137 was downregulated in AD patients and in amnestic
patients with mild cognitive impairment (MCI) [43,44], while other studies did not find a
significant difference in the concentration of circulating miR-137 [45–47].

Dysregulation of miR-137 might influence AD pathology by altering the protein lev-
els of its target genes, including CACNA1C (Calcium Voltage-Gated Channel Subunit
Alpha1 C), PTN (Pleiotrophin), SPTLC1 (serine palmitoyltransferase long-chain base sub-
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unit 1), MAGL (monoacylglycerol lipase), USP30 (Ubiquitin-specific peptidase 30), and
KREMEN1 (Kringle-Containing Transmembrane Protein 1) (Table 1), thereby modulating
processes such as tau phosphorylation, apoptosis, mitochondrial, neuroinflammation, and
the endocannabinoid system [37,44,48–51].

Table 1. Direct interacting partners of miR-137 identified in neurodegenerative disorders.

Abbreviation Name Biological Role 1 Interaction
Effect

Interaction Implicated
in 2 Ref.

CACNA1C Calcium Voltage-Gated
Channel Subunit Alpha1 C

subunit of a
voltage-dependent L-type

Ca2+ channel

downregulated by
miR-137-3p AD [51]

MAGL Monoacylglycerol lipase

hydrolyzes
monoacylglycerides,
including the brain
endocannabinoid,

2-arachidonoylglycerol

downregulated by
rno-miR-137 AD [49]

PTN Pleiotrophin

a neurotrophic factor
involved in neural
development and

inflammation

downregulated by
miR-137-3p AD [50]

SPTLC1 Serine palmitoyltransferase
long-chain base subunit 1

subunit of serine
palmitoyltransferase, a

rate-limiting enzyme in de
novo ceramide synthesis

downregulated by
miR-137 AD [37]

USP30 Ubiquitin-specific peptidase
30

mitochondrial
deubiquitinase enzyme

downregulated by
miR-137 AD [44]

3

KREMEN1 Kringle-Containing
Transmembrane Protein 1

Wnt antagonist, prevents
glycogen synthase kinase-3

beta sequestration

downregulated by
miR-137-3p AD [48]

NIX/BNIP3L

NIP3-Like Protein X/
Bcl-2/adenovirus E1B

19-kDa-interacting
protein 3-like

mitophagy receptor downregulated by
miR-137-3p PD [52]

OXR1 Oxidation resistance 1

positively affects oxidative
stress resistance, has

protective effects
against ROS

downregulated by
miR-137-3p PD [53]

HTT Huntingtin
affects vesicular trafficking,

transcription, and apoptosis,
mutated in HD

downregulated by
miR-137-3p HD [54]

SNHG1 Small nucleolar RNA host
gene 1 ceRNA depletes miR-137-3p AD [48]

SNHG19 Small nucleolar RNA host
gene 1 ceRNA depletes miR-137-3p AD [55]

OIP5-AS1 Opa-interacting protein 5
antisense RNA 1 ceRNA depletes miR-137-3p PD [52]

GAS5 Growth arrest-specific 5 ceRNA depletes miR-137-3p MS [56]

1 ceRNA: Competing endogenous RNA. 2 AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s
disease, and MS: multiple sclerosis. 3 The referenced paper reports the interaction of the 3′-UTR of USP-30 and
miR-137-5p, but the presented sequence corresponds to miR-137-3p.

The dysregulation of miR-137 is influenced by altered expression of competing en-
dogenous RNAs (ceRNAs) (Table 1). Two miR-137-targeting ceRNAs, small nucleolar RNA
host gene 1 (SNHG1) and SNHG19 were identified in cell culture models of AD [48,55].
SNHG19 was upregulated in Aβ25–35-treated SH-SY5Y neuroblastoma cells, while its direct
target, miR-137, was downregulated [55]. Aβ25–35 treatment also increased the expression
of SNHG1 in SH-SY5Y and cultured human primary neuron cells, and its RNAi-mediated
knock-down suppressed the negative effects of Aβ on both cell types [48]. Importantly, this
coincided with the upregulation of miR-137-3p, which is one of its direct targets. The neu-
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roprotective effects of SNHG1 knock-down on Aβ-induced phenomena were attenuated
by miR-137 inhibitors or by overexpression of KREMEN1 (Kringle-Containing Transmem-
brane Protein 1), a direct target of miR-137-3p that functions as a Wnt antagonist, and
was shown to contribute to synapse loss in a cortico-hippocampal transgenic murine cell
culture model of AD [48,57]. These data indicate that SNHG1 upregulation contributes to
Aβ pathology by weakening the miR-137-mediated suppression of KREMEN1.

Treatment of SH-SY5Y cells with Aβ1–42 peptide induces apoptosis, increases tau
phosphorylation, and upregulates the protein level of the mitochondrial deubiquitinase
USP30, a verified miR-137 target [44,51]. In this in vitro model, transfection of miR-137-5p
mimics downregulated Aβ-induced apoptotic cell death and the level of tau phosphoryla-
tion [44,51]. The anti-apoptotic effects of miR-137-5p could be suppressed by overexpression
of USP30, suggesting that miR-137-5p might influence Aβ pathology by downregulating
USP30 [44]. This hypothesis was strengthened by observation in a chemically (D-galactose
and AlCl3) induced murine model of AD, in which increased levels of Aβ1-42, USP30, and
hyperphosphorylated tau proteins, atrophy of hippocampal and cortical neurons and spa-
tial learning and memory deficits could be observed. Treatment with miR-137-5p agomir
led to decreased Aβ1-42, USP30 and hyperphosphorylated tau levels, had a protective effect
on hippocampal and cortical neurons, and ameliorated learning and memory problems.
Overexpression of USP30 suppressed the positive effects of miR-137-5p on neuronal atrophy,
learning, and memory, indicating that its effects are at least partially USP30-dependent [44].

High-fat diet is identified as a potential risk factor for AD [58,59], and human and
animal studies indicate that miR-137 modulates high-fat diet-associated risk by directly reg-
ulating the expression of the SPTLC1 subunit of serine palmitoyltransferase, a key enzyme
of sphingolipid biosynthesis [37]. The expression level of miR-137 was downregulated in
primary rat astrocytes treated with palmitate and also in brain cortices and blood sera of
wild-type mice fed a high-fat diet for 5 months [37,43]. In the cortex, this change coincided
with increased expression of SPTLC1 and SPTLC2 proteins, but not their corresponding
mRNAs, indicating a post-transcriptional regulatory effect [37]. In AD patients, analysis of
cortical samples found elevated ceramide and sphingomyelin levels and increased amounts
of SPTLC1 and SPTLC2 proteins, while miR-137 and miR-181c were downregulated [37].
Similarly, miR-137 was also downregulated in the cortices of transgenic TgCRND8 mice
that express a double mutant form of APP 695 (carrying both the Swedish and the In-
diana mutations, KM670/671NL1 and V717F, respectively) and were fed with high-fat
chow for three months [60]. The regulatory relation between miR-137, SPTLC1, and Aβ

was proven in primary astrocytes from TgCRND8 mice. In these cells, miR-137 and miR-
181c overexpression led to reduced levels of endogenous Aβ and SPTLC1 protein, while
co-transfection of SPTLC1 with miR-137/181c restored Aβ levels [37]. Thus, these data
suggest that miR-137 protects against high-fat diet-related AD risk by antagonizing serine
palmitoyltransferase expression that leads to the negative regulation of Aβ.

miR-137 also had a neuroprotective role in chemically induced rat AD models by mod-
ulating neuroinflammation and the endocannabinoid system [49,50]. miR-137 modulates
neuroinflammation by antagonizing the expression of Pleiotrophin (PTN), a proinflamma-
tory neurotrophic factor that is enriched in senile plaques in AD brains [50,61,62]. RNAi-
mediated knock-down of PTN, a proven direct target of miR-137-3p, ameliorated increased
neuronal apoptosis and damage of pyramidal cells in the hippocampus of rats treated with
propofol, an intravenous anesthetic. Intriguingly, similar neuroprotective effects could be
also achieved by miR-137 mimics in rat hippocampus and in human neuroblastoma cells
where it coincided with normalization of the propofol-induced elevated levels of phospho-
rylated forms of PTN and its receptor, PTPRZ [50]. miR-137 also had a neuroprotective
effect in a streptozotocin-induced rat AD model, which is characterized by memory impair-
ment [49]. Overexpression of miR-137-3p or miR-let-7a in the hippocampal CA1 regions, in
the central amygdala, or the medial prefrontal cortex of rats ameliorated streptozotocin-
induced memory impairment while concurrently reducing the mRNA level of their direct
target, the monoacylglycerol lipase-encoding MAGL [49]. Monoacylglycerol lipase is the
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main enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonylglycerol,
whose expression was shown to be correlated with disease progression in the hippocampi
of AD patients [63,64]. These results led to the suggestion that miR-137 can improve AD
pathology by downregulating the degradation of endocannabinoids.

4. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
after AD, which is characterized by loss of dopaminergic neurons in the substantia nigra,
dysfunction of the basal ganglia, and intracellular aggregates of α-synuclein protein, called
Lewy bodies. Although most cases are sporadic, more than 100 genetic loci were associated
with susceptibility to PD [65].

The expression level of miR-137 was investigated both in neuronal tissues and blood
plasma, but these studies provided ambiguous results. In the prefrontal cortex (Brodmann
Area 9), miR-137 was downregulated in PD patients younger than 72.5 years, while there
was no significant difference in older patients [66]. In contrast, the quantity of miR-137
was found to be unaltered in post-mortem substantia nigra samples of PD patients [67]
and in the amygdala of advanced PD cases [68]. In the blood plasma of PD patients, the
level of miR-137 was found to be elevated based on TaqMan low-density miRNA card
measurement, but this result could not be verified on a larger cohort of 35 patients and
25 healthy controls by RT-qPCR [69]. A targeted RT-qPCR analysis of plasma levels of
miR-137-3p in even larger cohorts of 60 sporadic patients and 60 controls found that mir-
137-3p was upregulated in PD samples, but there was no association with accompanying
depression and the severity of motor symptoms [70].

The level of miR-137-3p and the molecular processes it modulates can be affected
by dysregulated ceRNAs, such as the imprinted long non-coding RNA (lncRNA) Opa-
interacting protein 5 antisense RNA 1 (OIP5-AS1) that was downregulated in a 1-methyl-4-
phenylpyridinium (MPP+)-induced SH-SY5Y cell model of PD [52] and is also implicated
in a plethora of other disease conditions [71]. OIP5-AS1 binds miR-137-3p, and excess
OIP5-AS1 depletes miR-137-3p in PD cells. In these cells, overexpression of OIP5-AS1
also results in increased viability and reduced expression of proinflammatory factors [52].
This positive effect, at least in part, can be attributed to the upregulation of the mitophagy
receptor NIX, a direct target of miR-137-3p [52,72]. Upregulation of OIP5-AS1 was shown
to deplete miR-137-3p in PD cells, which leads to the upregulation of NIX. Simultaneous
addition of miR-137, however, negated this effect and led to NIX downregulation, resulting
in increased ROS level and reduced mitochondrial membrane potential [52]. Therefore,
the downregulation of OIP5-AS1 in PD cells might contribute to pathology by indirectly
leading to NIX downregulation.

Results from chemically induced animal and cell culture models indicate that miR-
137 has a negative impact on PD pathology by promoting oxidative stress and apoptosis.
Oxidation resistance 1 (OXR1), a protein that provides protection against oxidative stress-
induced DNA damage and neurodegeneration [73], is a direct target of miR-137-3p [53].
The level of OXR1 was found to be downregulated in a chemically induced (via 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration) mouse model of PD, and
over-expressing it alleviated behavioral symptoms, neuronal apoptosis, and neuronal loss
in the substantia nigra pars compacta of PD mice and reduced oxidative damage in an
MPP+-induced primary neuronal cell culture PD model [53]. Treating PD neurons with
PD mice serum-derived exosomes, which contain elevated levels of miR-137, decreased
OXR1 levels, increased apoptosis, and oxidative damage, while simultaneous inhibition of
miR-137 with an antagomir reversed these effects. Similarly, on the one hand, transfection
of PD neurons with a miR-137 mimic promoted apoptosis, decreased the levels of OXR1
and Bcl-2 proteins, and increased the levels of 4-hydroxynonenal, cleaved-Caspase-3,
and Bax; on the other hand, miR-137 inhibition had opposite effects [53]. These results
argue that miR-137 has a negative effect on PD pathology by inhibiting OXR1 and thereby
promoting oxidative stress and apoptosis. A supporting observation is that uric acid-primed
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mesenchymal stem cells (MSCs), in which miR-137-5p is downregulated, provide stronger
neuroprotective effects (increased viability, reduced ROS generation, reduced levels of
cleaved Caspase-3, cytochrome c, and Bax, and increased Bcl-2 levels) to MPP+-treated
SH-SY5Y neuroblastoma cells in co-culture than control MSCs [74].

Investigations in Drosophila found that miR-137-3p was among the five miRNAs
upregulated in a genetic disease model based on expression of α-synuclein A30P [75].
Notably, several direct targets of miR-137 that encode neurotransmitter receptors, such
as the dopamine receptor encoding D2R, the metabotropic γ-aminobutyric acid receptor
encoding GABA-B-R3, and the N-methyl-D-aspartate (NMDA) receptor encoding Nmdar2,
were downregulated in PD flies, suggesting that miR-137 dysregulation might lead to faulty
neurotransmission.

5. Huntington’s Disease

Huntington’s disease (HD) is a rare, inherited neurodegenerative disorder that most
prominently causes the loss of striatal medium spiny neurons and leads to motor, cognitive,
and psychiatric symptoms [76]. HD is caused by a dominant gene-of-function mutation
in the huntingtin (HTT) gene that results in an aggregation-prone mutant huntingtin (Htt)
protein with an abnormally long polyglutamine repeat [77]. As mutant Htt lies at the root of
HD pathogenesis, factors that are able to modulate its production, stability, or aggregation
might have a pivotal influence on pathology.

In HD, the most important role of miR-137 might be regulating the expression of
HTT itself. HTT was found to be under the control of several miRNAs that regulate its
translation, including miR-137-3p, mir-148a, and mir-214 [54]. miR-137-3p has an 8-mer
binding site (a perfect seven-nucleotide match to positions 2–8 of the miRNA seed-sequence,
followed by an adenine) at the 3′-UTR of huntingtin mRNA, which is highly conserved
among vertebrates according to TargetScan predictions [54,78]. Experiments performed
in HEK293T cells showed that overexpression of miR-137-3p led to decreased levels of
endogenous huntingtin mRNA and protein [54]. Furthermore, miR-137-3p reduced the
activity of a luciferase reporter gene construct with a single HTT-derived miR-137 binding
site in HEK293T cells. These observations proved that miR-137-3p is indeed a negative
regulator of HTT expression.

The level of miR-137 was analyzed in several brain regions in post-mortem patient
samples. While significant changes in its abundance were not found in the prefrontal
and frontal cortex [79,80], in dorsal caudal striatum samples of advanced (Vonsattel grade
4 [81]) HD patients miR-137 was among the 62 downregulated miRNAs [80]. This study
also found that transcriptional targets of the REST (RE1-Silencing Transcription Factor)
transcriptional repressor were enriched among the miRNAs downregulated in HD. REST
is a known contributor to HD pathology that accumulates in the nucleus and represses its
target genes in the disease state [82,83]. MIR137 itself is a REST target [84], implying that its
downregulation in the HD striatum, along with the downregulation of several other REST
target miRNAs, might be the consequence of incorrect regulation of REST activity [80].
The connection between REST and miR-137 in HD pathology is further supported by
experiments performed in the Hdh109/109 mouse knock-in striatal cell culture model, which
demonstrated that miR-137 is a relevant direct transcriptional target of REST in HD. In
Hdh109/109 cells, miR-137 was shown to be significantly downregulated, which coincided
with increased REST occupancy of the putative REST binding site (RE1) in the transcription
regulatory region of miR-137. shRNA-mediated knock-down of REST in Hdh109/109 cells
resulted in upregulation of miR-137 to levels comparable to those measured in healthy
control Hdh7/7 cells [85]. The data presented above describe a regulatory circuit that involves
Htt, REST, and mir-137 (Figure 3). In this, the presence of mutant Htt leads to increased
nuclear translocation of REST and increased repression of REST target genes, including
miR-137. Reduced miR-137-3p levels then result in increased translation of mutant Htt due
to weaker negative control that can further aggravate pathology.
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Figure 3. Model of the Htt—REST—miR-137 regulatory circuit in HD. In healthy individuals, wild-
type Htt sequesters REST in the cytoplasm, thereby allowing higher levels of miR-137 expression,
which leads to the suppression of Htt translation. In HD, mutant Htt loses its ability to inhibit the
nuclear transfer of REST. REST represses the transcription of the MIR137 gene, which results in lower
miR-137 levels and consequent increase in the translation of the mutant Htt protein.

miR-137-3p was also significantly downregulated in a Drosophila model of HD, while
its predicted targets were enriched among upregulated mRNAs, suggesting a causal link
between the altered level of miR-137-3p and transcriptional dysregulation in the disease
model. The putative contribution of miR-137 downregulation to HD pathology was sup-
ported by the observation that overexpression of miR-137 ameliorated several symptoms of
HD flies including reduced lifespan and impaired motor activity [86]. Altered regulation of
miR-137 was not detected in every animal model, however. A small-scale study analyzing
changes in the miRNA transcriptome of several rodent models via miRNA microarray
measurements did not find a significant change in miR-137 levels in striatal samples of a
3-nitropropionic acid-induced rat HD model, R6/2 mice, and YAC128 mice [87].

6. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that affects
both the upper and lower motor neurons in the central nervous system. Around 20 genes
have been associated with ALS; these are involved in molecular processes such as RNA
metabolism, protein quality control, and axonal transport [88].

miR-137 was found to be dysregulated in a murine ALS model, but this finding was
not corroborated in human subjects. In a genetic murine model of ALS, which is based
on the low-level expression of a glycine-93 to alanine mutant form of human superoxide
dismutase (G93A-SOD1), miR-137 was found to be upregulated in the spinal cord, and
in the case of miR-137-3p, this change became more pronounced after longer disease
progression [89]. In 95-day-old mice, corresponding to an earlier stage of the disease, both
mmu-miR-137-5p and mmu-miR-137-3p were upregulated more than two-fold. In 108- and
122-day-old mice, corresponding to later disease stages, mmu-miR-137-3p was upregulated
more than 13-fold and 8-fold, respectively, while there was no difference in the abundance
of mmu-miR-137-5p based on microarray analysis [89].
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Despite the results from the murine model, miR-137 was not among the dysregulated
miRNAs identified in post-mortem spinal cord samples of sporadic ALS patients [90].
Similarly, miR-137 was not among the top 20 upregulated or downregulated miRNAs in
post-mortem samples derived from the motor cortex of ALS patients [91].

miR-137 was also not among the dysregulated miRNAs in leukocytes isolated from the
blood of Chinese [92] or Italian [93] sporadic ALS patients based on microarray analysis. It was
also not identified among the differentially expressed miRNAs in peripheral blood [94,95] or
serum, or plasma samples of sporadic ALS patients [96–99], in circulating small extracellular
vesicles of ALS patients [100,101], and in skeletal muscle biopsies of ALS patients [102].
Microarray analysis did not find a significant change in miR-137 levels in blood serum
samples of Caucasian patients having the familial form of the disease (having mutations in
the SOD1, FUS, or C9orf72 genes) either [103].

7. Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease, whose risk is influenced by both
genetic and environmental factors. The pathological hallmark of MS is perivenular inflam-
matory lesions that lead to oligodendrocyte damage and demyelination and, finally, axonal
damage [104]. miR-137 was not found among the miRNAs dysregulated in the white
matter in MS [105,106]. However, bioinformatic analysis of data integrated from research
articles, miRNA profiling datasets, and in silico predictions identified miR-137 as one of
the members of an MS-specific miRNA regulatory network and found it to be significantly
upregulated ~four-fold in blood sera of MS patients in validation experiments analyzing
samples of 33 MS patients and 30 controls by RT-PCR [107]. Additionally, bioinformatic
analysis identified two putative miR-137 target genes, NDUFV3 (NADH/ubiquinone oxidore-
ductase subunit V3) and C3orf38 (chromosome 3 open reading frame 38), that are deregulated
in MS. Controversially, reversed changes were observed in another study analyzing sera
samples of 108 MS patients and 104 controls [108]. In the MS cohorts, miR-137 was signifi-
cantly downregulated ~25-fold, while the level of growth arrest-specific transcript (GAS5),
a ceRNA targeting miR-137-3p, was upregulated two-fold, and MS risk was associated with
specific variants of miR-137 and GAS5 [108]. Upregulation of GAS5 was shown to have
a negative effect on neuronal survival in another study analyzing ischemic brain injury
by repressing miR-137-3p, which consequently leads to the over-activation of the Notch1
signaling pathway [56].

8. Development of miR-137 Biosensors

Several research groups reported alteration in the levels of circulating miR-137 in
neurodegenerative disorders, including AD, PD, and MS [43,44,69,70,107,108] (Table 2).
Although these reports are often contradicted by other studies, the potential applicability
of miR-137 as a biomarker in these disorders urged several research groups to develop
sensitive methods for its detection. These nanobiosensors rely either on hybridization
chain reaction (HCR) or on electrochemical detection and do not need RNA extraction
and amplification.

The nanobiosensor developed by Delkhahi et al. combines HCR amplification with
colorimetric detection of gold nanoparticles (AuNPs) into a sensitive (with detection limits
of 0.25 nM and 10 nM in buffer and in serum, respectively) and selective enzyme-free
method. In this, the presence of miR-137 leads to dsDNA formation that changes the
aggregation property and spectrum of AuNPs [109]. Later, an even more sensitive enzyme-
and label-free HCR-based nanobiosensor was developed for miR-137 detection with a
sensitivity of 0.05 nM in buffer and 2 nM in serum. This nanobiosensor detects miR-137
via fluorescence measurement after a cascade of hybridization events between miR-137
and oligonucleotide probes that eliminates the quenching of SYBR Green I fluorescence by
graphene oxide nanoparticles [110].

Electrochemical detection requires more specialized instrumentation but is even more
sensitive. In these sensors, miR-137-specific antisense oligonucleotide capture probes were
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attached to gold nanowires [111], gold nanostar particles [112], or gold nanourchins [113]
on the surface of the sensing electrode, and the change in the electrochemical properties
after miR-137 hybridization was determined via voltammetry. These nanobiosensors are
highly selective and can detect miR-137 in the fM concentration range, the most sensi-
tive characterized by detection limits of 1.7 fM and 20 fM in buffer and human serum,
respectively, and a linear quantitation range of 5 fM–750 fM [111].

Table 2. Expression of miR-137 in tissues of neurodegenerative disease patients.

Disease Tissue Expression Change 1

Alzheimer’s
disease

frontal cortex [37] downregulated

dorsolateral prefrontal cortex [38] NC

parietal lobe [39] NC

inferior frontal gyrus [41] NC

superior temporal gyrus [40,41] NC

middle temporal gyrus [40] NC

anterior temporal cortex [42] NC

cerebellum [42] NC

whole blood [47] NC

plasma [46] NC

serum [43,44] downregulated

serum [45] NC

Parkinson’s
disease

prefrontal cortex [66] downregulated (<72.5 years), NC
(>72.5 years)

substantia nigra [67] NC

amygdala [68] NC

plasma [69] upregulated/NC

plasma [70] upregulated

Huntington’s
disease

prefrontal cortex [79] NC

frontal cortex [80] NC

dorsal caudal striatum [80] downregulated

Amyotrophic
lateral

sclerosis

spinal cord [90] NC

motor cortex [91] NC

skeletal muscle [102] NC

leukocytes [92,93] NC

whole blood [94,95] NC

plasma [98,101] NC

serum [96,97,99,100,103] NC

Multiple
sclerosis

white matter [105,106] NC

serum [107] upregulated

serum [108] downregulated
1 NC: no change compared to healthy control.

9. Conclusions

The body of knowledge accumulated so far suggests that miR-137 is dysregulated in
several neurodegenerative disorders and might be involved in their pathogenesis (Table 3).
Its effects are not alike in different disorders, suggesting that it might rather play disease-
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specific than general neuroprotective roles. In ALS and MS, the role of miR-137 is not
well supported or controversial. However, in AD, PD, and HD, modulating miR-137
levels can alter pathology. In AD, it has a positive effect by modulating Aβ levels, tau
phosphorylation, mitochondrial function, neuroinflammation, the endocannabinoid system,
and the effects of a high-fat diet. In contrast, miR-137 seems to have a negative effect on PD
pathology by affecting mitochondria, oxidative stress, and apoptosis. Its most direct effect
might be on HD pathology as it directly targets the HTT mRNA. These studies raise the
possibility of the application of miR-137 agomirs and antagomirs as therapeutical agents
and miR-137 biosensors for diagnostic purposes. Further research is necessary due to the
low number of confirmatory studies and often small sample sizes.

Table 3. Pathomechanisms affected by miR-137 in neurodegenerative disorders 1.

Disease 2 Model Pathomechanism Modifying Effects Related Factors 3 References

AD

Aβ25–35-treated SH-SY5Y
and HPN cells

miR-137-3p represses KREMEN1 and has a
positive effect on pathology by contributing to
increased cell viability, reduced apoptosis, and
increased mitochondrial membrane potential.

SNHG1, SNHG19,
KREMEN1 [48,55]

Aβ1–42-treated SH-SY5Y
cells and chemically

induced AD mice

miR-137-5p reduces Aβ deposition, tau
phosphorylation, and apoptosis by

downregulating USP30.
USP30 [44,51]

APP/PS1
double-transgenic

AD mice

Downregulation of miR-137 coincides with
upregulation of its target, CACNA1C. CACNA1C [51]

AD patient cortex,
TgCRND8 mice

miR-137 protects against high-fat diet-related
AD risk by suppressing serine

palmitoyltransferase expression that leads to
lowered Aβ levels.

SPTLC1 [37,60]

propofol-treated rats and
SK-N-SH cells

miR-137-3p reduces neuronal apoptosis and
restores cell proliferation by suppressing the
proinflammatory neurotrophic factor PTN.

PTN [50]

streptozotocin-treated rats
miR-137-3p ameliorates memory impairment by

downregulating MAGL (monoacylglycerol
lipase), an endocannabinoid-degrading enzyme.

MAGL [49]

PD

MPP+-induced SH-SY5Y
cell model

Suppression of miR-137-3p by OIP5-AS1 leads
to upregulation of the mitophagy receptor NIX,
which contributes to reduced ROS levels and

normalization of the mitochondrial
membrane potential.

OIP5-AS1, NIX [52]

MPP+-induced rat
primary neuronal cell

miR-137-3p decreases OXR1 levels and
increases oxidative damage and apoptosis. OXR1 [53]

α-synuclein
A30P-expressing

Drosophila

Several neurotransmitter receptor targets of
upregulated miR-137-3p are downregulated.

D2R, GABA-B-R3,
Nmdar2 [75]

HD

HEK293T cells miR-137-3p negatively regulates
HTT translation. HTT [54]

murine Hdh109/109

striatal cells
miR-137 is involved in REST-dependent

transcriptional dysregulation. REST [85]

1 The table contains pathomechanisms that were experimentally explored/validated in the specific disorders.
2 AD: Alzheimer’s disease, PD: Parkinson’s disease, and HD: Huntington’s disease. 3 ceRNA names are underlined.
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