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Background
Human peripheral blood mononuclear cells (PBMCs) are commonly studied in immu-
nology because they contain both innate and adaptive immune cells, are relatively easy 
and inexpensive to collect, and are readily preserved in biobanks. Interrogation of 
PBMCs offers a snap shot of the immune response with respect to epigenetic regulation 
of gene expression since many critical cell types are captured simultaneously. In contrast, 
studies with purified cell subsets are easier to interpret, but do not capture the overall 
immune response and require extensive laboratory resources to isolate cell subsets well. 

BioData Mining

Abstract
Background  Changing cell-type proportions can confound studies of differential 
gene expression or DNA methylation (DNAm) from peripheral blood mononuclear 
cells (PBMCs). We examined how cell-type proportions derived from the transcriptome 
versus the methylome (DNAm) influence estimates of differentially expressed genes 
(DEGs) and differentially methylated positions (DMPs).

Methods  Transcriptome and DNAm data were obtained from PBMC RNA and DNA 
of Kenyan children (n = 8) before, during, and 6 weeks following uncomplicated 
malaria. DEGs and DMPs between time points were detected using cell-type adjusted 
modeling with Cibersortx or IDOL, respectively.

Results  Most major cell types and principal components had moderate to high 
correlation between the two deconvolution methods (r = 0.60–0.96). Estimates of cell-
type proportions and DEGs or DMPs were largely unaffected by the method, with the 
greatest discrepancy in the estimation of neutrophils.

Conclusion  Variation in cell-type proportions is captured similarly by both 
transcriptomic and methylome deconvolution methods for most major cell types.
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For example, bulk transcriptional signatures from antigen-stimulated PBMCs before and 
after live malaria sporozoite immunization can predict protection against subsequent 
experimental malaria challenge [1]. A trade-off in using PBMCs for epigenetic and gene 
expression studies is that information about cell-type proportions is necessary to inter-
pret the source of differential responses, making the understanding of studies with het-
erogeneous cell populations challenging [2–5].

Cell-type composition can act as a confounder, mediator, precision variable, or bio-
marker of immune response analyses [2, 5, 6]. Each cell type is characterized by a unique 
gene expression and DNA methylation profile. Therefore, when cell-type heterogeneity 
is present, such as in peripheral blood, gene expression and DNA methylation profiles 
can be largely driven by the cell types present [2, 3]. For example, variation in cell-type 
proportions was identified as a confounding factor in the analysis of differential gene 
expression of placental tissues between preeclampsia cases and controls that caused 
false positive associations [2].

Cell-type heterogeneity can be addressed by different study designs. These include 
single-cell sequencing, negative or positive isolation of cell subsets, or cell-type adjusted 
modeling strategies of bulk samples [6]. These methods vary greatly in feasibility, cost, 
and biases. Single-cell technology remains inaccessible in many contexts due to its high 
cost when large sample sizes are required. Additionally, depth of coverage per gene in 
a single cell is often low, resulting in gene expression profiles that are subject to high 
levels of noise and missing data [7]. Alternatively, PBMCs can be purified into various 
cell subsets prior to analysis. Both of these methods are constrained by sample quantity, 
involve extra steps in processing that can alter cellular activation states, and do not fully 
eliminate heterogeneity [8]. Lastly, cell proportions can be estimated from bulk gene 
expression or DNA methylation using statistical inference approaches. There are many 
reference-based and reference-free deconvolution methods that estimate cell-type com-
position from RNA sequencing data, but fewer exist for use with epigenetic data [9–12].

Cell proportion estimates produced by deconvolution methods generally correlate well 
with estimates measured by flow cytometry [10]. However, validation and generalization 
of these deconvolution algorithms and reference matrices is inherently challenging. Arti-
ficial nucleic acid mixtures, computer- simulated mixtures, and/or flow cytometry are 
used as ground truth measurements to assess quality of cell-type proportion estimates 
under the assumption that all the cell types are represented [10, 11, 13]. It is question-
able how well reference-based cell proportion estimates perform across diverse human 
populations, age ranges, or immune states that are not represented in the validation 
comparisons. Current evidence based on some deconvolution methods [14] indicates 
less accurate estimates in females than males, older individuals, smokers, and neonates.

In the analysis described here, whole transcriptome RNA sequencing data and 
genome-wide DNA methylation data were collected from the same PBMC samples and 
independently used to infer cell-type proportions in Kenyan children before, during, 
and following uncomplicated febrile malaria. We addressed two major issues relevant to 
cell-type heterogeneity: (1) how estimated cell-type proportions derived from two inde-
pendent deconvolution methods correlate with each other, and (2) how cell proportion 
estimates derived from transcriptome data versus DNA methylation (DNAm) data influ-
ence the detection of differentially expressed genes and differentially methylated posi-
tions over time.
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Materials and methods
Peripheral blood mononuclear cell collection and processing

PBMC were isolated from anticoagulated whole blood of Kenyan children by hypaque 
ficoll density gradient centrifugation and cryopreserved at baseline before febrile malaria 
(“baseline” time point), during uncomplicated febrile malaria immediately preceding 
administration antimalarial drugs (“malaria” time point), and 6 weeks after recovery 
(“recovery” time point) as described previously [15]. An exploratory subset of 24 sam-
ples from 8 children were examined. All children had non-life-threatening uncompli-
cated malaria defined by fever (temp > 37.9°) and a positive blood smear for Plasmodium 
falciparum (Pf ) parasites. The study participants were all of Luo ethnicity, 5–8 years old, 
and included 3 males and 5 females. All children had negative blood smears for Pf and 
other Plasmodium species at baseline and recovery that were retrospectively confirmed 
negative by PCR for Pf 18 S ribosomal RNA gene. Cryopreserved PBMCs were thawed 
using the 10X genomics protocol (Fresh Frozen Human Peripheral Blood Mononuclear 
Cells for Single Cell RNA sequencing CG00039 revD, 10X Genomics). The studies were 
approved by the IRB of the Kenya Medical Research Institute (SSC Protocol 2207) and 
University Hospitals Cleveland Medical Center/Case Western Reserve University (#06-
11-22 and #20,190,666).

RNA and DNA were extracted from the same PBMC sample from each individual at 
each time point using the Allprep DNA/RNA mini kit (QIAGEN®). RNA and DNA qual-
ity were assessed with Agilent TapeStation ScreenTapes and quantified by Qubit assay 
prior to analyses. Whole genome RNA sequencing was obtained from paired, stranded 
100 bp read-lengths on an Illumina platform performed at the Cleveland Clinic Genom-
ics Core. DNAm data were obtained with the Infinium Methylation EPIC BeadChip 
Kit. EPIC assays were run at the Case Western Reserve University School of Medicine 
Genomics core facility. These combined assays consumed the entire nucleic acid sample 
due to small sample volumes from this pediatric population. Figure 1 depicts the general 
methods followed in this analysis.

Fig. 1  Steps for data collection and analyses. Purple lines go from the raw samples to the co-extraction step. Blue 
lines represent DNA-methylation-derived deconvolution methods and red lines represent transcriptome-derived 
deconvolution methods. For RNA, steps included Illumina whole transcriptome followed by deconvolution with 
the Cibersortx and the LM22 reference. For DNA, the EPIC chip was used to measure the DNA methylation across 
850 K probe sites and then used for deconvolution with the IDOL and the extended blood reference [11]. The 
results from each deconvolution were used as covariates to model the differential gene expression and differential 
methylation represented by the crossing red and blue lines going from deconvolution method to differential gene 
expression and DNA methylation
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Data processing

Transcriptomics: After visual inspection of fastQC plots [16], gene counts were calcu-
lated from raw fastq files using STAR for alignment and HTSeq for gene counts [17, 18]. 
All annotations and reference genomes used for gene-count calculations were obtained 
from GENCODE [19].

DNA methylation: The Minfi package in R was used to complete quality control, nor-
malization with FunNorm, BMIQ adjustment for probe-type, filtering off-target probes, 
and filtering of age-associated probes [20–22]. A batch correction was not applied to 
correct for slide-level differences since this could introduce bias given the slide design 
[23].

Deconvolution methods

Transcriptome: Transcriptome derived cell-type proportions were estimated using 
Cibersortx [13] and the LM22 reference panel [24] with B-mode batch correction in 
relative mode. LM22 was originally generated from previously published microarrays of 
purified cell subsets and included 22 immune cell types. The Cibersortx B-mode cor-
rects for cross-platform variation and extends the utility of LM22 to RNA-seq data [13]. 
LM22 has been validated for use in PBMCs [24].

Differences in cell-type proportion between time points were detected using the 
nonparametric paired Friedman test followed by Wilcoxon signed-rank tests with 
Bonferroni correction for multiple testing to obtain contrast-level resolution [25]. Non-
parametric tests were used to account for the non-normal behavior of proportional data.

DNA methylation: DNA methylation (DNAm) derived cell-type proportions were 
calculated using methods with the extended blood reference as previously described 
[11]. The reference panel was made with EPIC chip DNA methylation profiles of puri-
fied cell subsets from a mixed population and includes 12 immune cell types present in 
whole blood. Differences in cell-type proportion between time points were detected as 
described above for RNA-seq data.

Detecting differential gene expression and methylation between baseline, febrile malaria, 

and recovery

Unadjusted or cell-type adjusted linear mixed models were created to detect differen-
tially expressed genes (DEGs) or differentially methylated positions (DMPs) between 
baseline, malaria, and recovery with the limma package in R [26, 27]. Subject level gene 
expression or DNA methylation variation was accounted for by including a random 
effect [28]. For transcriptomic data, the limma-voom [29] transformation was used to 
adjust for the non-normality of gene count data. For the DNA methylation data, a logit 
transformation was applied to convert beta values that are bound by 0 and 1 to m-values 
[30].

Two approaches of adjusting for cell-type composition were used: (1) adding each esti-
mated cell proportion as a covariate or (2) adding the first two principal components of 
cell-type proportions as covariates. In the first approach, 5 separate models with adjust-
ments were constructed for only monocytes, naïve B cells, naïve CD4 T cells, CD8 T 
cells, or memory CD4 T cells to avoid overfitting. The second approach was included to 
capture a multidimensional cell-type adjustment with the small sample size. Centered 
and un-scaled principal components were calculated from the transcriptome-derived 
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or the DNA-methylation-derived matrix of cell-type proportion estimates using the 
singular value decomposition algorithm in the prcomp() function in R following meth-
ods previously described [2]. For each cell-type adjusted model, corresponding models 
were created using the estimates from the transcriptome or DNA methylation array, 
respectively.

Comparative statistics

Between cell-type proportion estimates: Pearson correlations between cell-type propor-
tion estimates from the two deconvolution methods were calculated for each cell subset. 
Linear regressions were fit to describe the shape of the association between decon-
volution methods. Owing to differences between cell types represented in reference 
matrices, some estimated proportions were added together to match the cellular catego-
rization when necessary (Supplementary Table S1). The differences between reference 
matrices are: the LM22 reference divided the CD4 memory T cells into activated and 
resting while the extended blood reference only estimated total CD4 memory T cells; 
CD8 T cells were divided into naïve and memory subsets in the extended blood refer-
ence and estimated as total CD8 T cells in LM22; NK cells were divided into activated 
and resting in the LM22 reference but only estimated as total NK cells in the extended 
blood reference. Additionally, the first and second principal components derived from 
each deconvolution approach were tested for correlation with Pearson method.

Differential gene expression and methylation analyses: The number of DEGs or DMPs 
was calculated at multiple P-value thresholds for each model and compared across mod-
els. Additionally, the logFC for gene expression or DNA methylation CpG locations were 
compared between deconvolution approaches for the genes with the 100 smallest p-val-
ues in any of the models between any of the 3 time points: baseline; during malaria; and 
recovery. These comparisons resulted in 779 high-interest genes (supplementary data-
set 1). Similarly, 1356 high-interest CpG locations were identified as those with the 100 
smallest p-values among any of the 3 time points or any of the differential methylation 
models (supplementary dataset 2). Genes or CpG locations were considered “deconvo-
lution-sensitive” when the orthogonal distance between the estimated point and the 1:1 
line was in the lower 0.15 percentile or higher than the 99.85 percentile, which repre-
sents extreme events in the dataset. These percentile values are equivalent to those more 
than 3 standard deviations (sd) from a normally distributed variable. The distribution of 
the orthogonal distances is over-dispersed and follows a Laplace’s distribution with µ = 0 
and b = sd/2, meaning that the sd measurement is an underestimate of true variance. 
Distribution percentiles were therefore used to select deconvolution sensitivity.

Results
Deconvolution estimates and changes in cell-type composition at baseline, during malaria, 

and at recovery

Transcriptome-derived deconvolution estimates detected three statistically significant 
changes in cell-type proportions across time points (Fig. 2a, Supplementary Table S2). 
First, CD8 T cell proportions differed by timepoint (p-value = 0.01). At baseline, CD8 T 
cells averaged 11.96% of cells, dropped to 7.47% during malaria, and returned to 11.61% 
at recovery. Similarly, memory resting CD4 T cells showed a drop in cell proportion dur-
ing malaria from 19.09% at baseline to 13.85%, and then returned to 19.28% at recovery 
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(p-value = 0.03). Lastly, in spite of overall low proportions, there was a statistically signif-
icant increase in M0 macrophages during malaria, starting at 0.03%, increasing to 0.33%, 
and returning to 0.01% (p-value = 0.02). Monocytes, natural killer cells, naïve B cells, 
and naïve CD4 T cells showed no detectable changes; all were estimated to be between 
10% and 33%. The remainder of the cell types included in LM22 estimated proportions 
between 0% and 4.33% (Supplementary Figure S1).

DNA-methylation-derived deconvolution estimates (Fig. 2a, Supplementary Table S3) 
also had three cell types with detectable differences across time points. Consistent with 
the RNA-derived proportions, there was a reduction of the memory CD8 T cells dur-
ing malaria with the average percent cells dropping from 10.40% at baseline to 4.55% 
during malaria and returning to 8.51% at recovery (p-value = 0.01). Natural killer cell 
proportions also differed with the average cell percent dropping from 9.04 to 5.60% at 
baseline versus malaria and returning to 7.69% at recovery (p-value = 0.01). Lastly, neu-
trophils had an increase during malaria from baseline measure of 2.78–10.38%, followed 
by a decrease at recovery to 4.48% (p-value < 0.01). The cell types that had proportions 
greater than 10%, but did not show significant shifts, were monocytes, naïve B cells, 

Fig. 2  a. Cell percent estimates derived from the transcriptome (column labeled “RNA-derived”) and DNA methy-
lome (column labeled “DNAm-derived”). Black bars indicate a statistically significant change in cell-type proportion. 
b. Scatter plots and linear model fits of association between cell proportion estimates from transcriptome-derived 
methods and DNAm-derived methods. The Pearson correlation value r is labeled in correlation plots. Each indi-
vidual is labeled a different color
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memory CD4 T cells, and naïve CD4 T cells. Cell types with lower average estimates 
(Supplementary Figure S1) included regulatory T cells (total average across time points 
4.00%), memory B cells (total average 6.91%), naïve CD8 T cells (total average 8.25%), 
eosinophils (undetected), and basophils (total average 0.24%).

Correlation between transcriptome-derived and DNAm-derived cell proportion estimates

Monocytes were the most correlated cell type between the two deconvolution methods 
with a Pearson correlation coefficient of 0.96 (p-value < 0.001; Fig.  2b, Supplementary 
Table S4). Other highly correlated cell types were naïve B cells and naïve CD4 T cells, 
each with a correlation coefficient of 0.82 (p-values < 0.001). Natural killer and CD8 T 
cell proportions were less correlated with 0.78 and 0.60 coefficients, respectively (p-val-
ues < 0.001) The cell-types that were not significantly correlated (p-value > 0.05) were 
neutrophils, memory CD4 T cells, memory B, regulatory T cells, and eosinophils. The 
subsets that were estimated as lower in the DNAm-derived deconvolution were mono-
cytes, naïve B cells, and natural killer cells. The cell subsets that had higher DNA-meth-
ylation-derived estimated proportions compared to RNA sequencing were naïve CD4 T 
cells and CD8 T cells. The most striking discrepancy of cell-type percent estimates was 
for neutrophils, which ranged between 0 and 0.56% in the transcriptome-derived decon-
volution compared to 0.9–22.1% in the DNAm-derived proportions. There was a high 
correlation between the transcriptome-derived and DNAm-derived first and the sec-
ond principal components (Fig. 3). The Pearson coefficients were 0.90 and 0.85 (p-val-
ues < 0.001) for the first and second principal components, respectively. Additionally, the 
top loading vectors for both transcriptome-derived and DNAm-derived principal com-
ponents identified monocytes, naïve CD4 T cells, and CD8 T cells as top contributors to 
cellular variation (Supplementary Figure S2).

Effect of deconvolution approach on differential gene expression analysis

The number of differentially expressed genes varied by time point, cell-type adjustment, 
p-value threshold, and deconvolution approach (Fig.  4a). Adjusting differential gene 
expression for monocytes, naïve CD4 T cells, CD8 T cells, or the principal components 

Fig. 3  Correlation between the first and second principal components from RNA-derived and DNAm-derived 
deconvolution methods. Dotted lines represent the identity line. The percent of total variation captured by each 
respective principal component is in parentheses. The Pearson correlation coefficients left to right were 0.90 and 
0.85 (both correlations have a p-value < 0.001). The x-axes represent the values for the first (PC1) and second (PC2) 
that were calculated with the transcriptome-derived deconvolution. The y-axes represent the values for the first 
(PC1) and second (PC2) from the DNAm-derived deconvolution
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resulted in the most variation in the number of DEGs compared to other cell-type 
adjusted models. Less variation was observed in the number of DEGs detected in mod-
els adjusted for naïve B, natural killer, or memory CD4 T cell proportions. Monocyte-
adjusted models showed the most consistency across deconvolution approaches, with 
nearly identical numbers of DEGs between the two methods, an increase in the num-
ber of DEGs for the baseline to recovery comparison, and a decrease for the malaria 
to recovery comparison. Adjusting for transcriptome-derived naïve CD4 T cell pro-
portions resulted in the smallest number of DEGs in the baseline to recovery contrast 
and the largest number in the baseline to malaria or malaria to recovery compared to 
any other model. However, this pattern with naïve CD4 T cell adjustment differed from 
the DNAm-derived adjusted numbers. Lastly, the largest discrepancy in the number of 
DEGs observed between the deconvolution methods came from adjustment with CD8 
T cells. In the baseline to recovery contrast, DNAm-derived adjustment detected dou-
ble the number of DEGs as the transcriptome-derived correlate. However, there was an 
increase in the number of DEGs with both adjustment sources relative to the unadjusted 
model. Conversely, when comparing malaria to the baseline or recovery, there was a 

Fig. 4  a. The number of differentially expressed genes detected by each model is on the y-axis at multiple p-value 
thresholds. The models are indicated by cell-type adjustment labeled across the top, contrast labeled along the 
right side, and deconvolution approach labeled along the x-axis. Transcriptome-derived and DNAm-derived cell-
type adjustments are marked by RNA and DNAm, respectively. As colors become darker, the significance threshold 
becomes lower. b. Venn diagrams showing the overlap in DEGs detected with p-value < 0.003 from the unadjusted, 
transcriptome-derived principal components, and the DNAm-derived principal components models

 



Page 9 of 16Hannon et al. BioData Mining           (2024) 17:21 

dramatic reduction in the detection of DEGs when using the DNAm-derived CD8 T cell 
estimates that was not observed in the corresponding transcriptome derived model. The 
multi-cell-type adjusted models that used the top 2 principal components of cell-type 
proportions as covariates decreased the number of DEGs detected in the baseline to 
malaria and the malaria to recovery contrasts and increased the number of DEGs in the 
baseline to recovery contrast with both deconvolution methods.

Genes detected with the principal component adjusted models showed a large over-
lap between the deconvolution approaches highlighted by the Venn diagrams in Fig. 4b 
(genes in supplementary dataset 3). Principal component models from both deconvolu-
tion approaches had nearly complete overlap with ~ 90% of the DEGs detected with the 
transcriptome-derived model matching those from the DNAm-derived model. The prin-
cipal component models only shared ~ 50–70% of the DEGs with the unadjusted models 
in the baseline to malaria or malaria to recovery contrasts. In the baseline to recovery 
contrast, 100% of the genes detected in the unadjusted model were also found with the 
principal components models.

After cell-type adjustment, the estimated log fold-changes (logFCs) in gene expres-
sion between times were similar and follow closely to the identity line. Figure 5 dem-
onstrates the association between the logFC estimates after cell-type adjustment with 
transcriptome-derived versus DNAm-derived cell proportions in the 779 genes with 100 
smallest p values in at least one of the models used. Deconvolution-sensitive genes are 
labeled in red and are defined as genes with an orthogonal distance between logFC and 
the identity line in the extreme 0.3 percentile (detailed information in supplementary 
dataset 4). Estimated logFCs of gene expression were nearly identical in the monocyte, 
naïve B cell, natural killer, and memory CD4 T cell adjusted models with 0 to 1 deconvo-
lution-sensitive genes found in each cell type (Supplementary Table S5 contains a sum-
mary of deconvolution-sensitive DEGs). The highest number of deconvolution-sensitive 

Fig. 5  Log fold-change estimates are represented on the x-axis after transcriptome-derived cell-type adjustment 
versus the corresponding logFC from the DNAm-derived model. Cell-type adjustments are labeled along the top 
and contrasts along the right side. Red points represent deconvolution-sensitive DEGs (genes whose estimates 
vary the most using the difference deconvolutions) and their count is listed in the bottom right of each panel if 
n > 0. The dashed line represents the identity line
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genes were found within the CD8 T cell adjusted models that identified 18 and 13 of 
the 779 compared genes in the baseline to malaria and malaria to recovery contrasts, 
respectively.

Effect of deconvolution approach on differential methylation analysis

The number of differentially methylated positions (DMPs) detected by the cell-type 
adjusted models varied similarly to the differential gene expression analyses (Fig.  6a). 
Monocyte, naïve CD4 T cell, CD8 T cell, or principal component adjusted models 
showed the biggest difference in the number of DMPs compared to the unadjusted 
model. Smaller differences in the number of DEGs were noted from the models adjusted 
with naïve B cells, natural killer cells, or memory CD4 T cells. Monocyte adjusted mod-
els detected nearly the same number of DMPs across the deconvolution approaches 
regardless of comparison. Monocyte adjustment resulted in more DMPs in the baseline 
versus recovery contrast and a reduced number of DMPs detected in the baseline versus 
malaria and the recovery versus malaria contrasts. Adjustment with only the transcrip-
tome-derived naïve CD4 T cell proportions resulted in the most DMPs compared to any 

Fig. 6  (a) The number of differentially methylated positions is on the y-axis at several p-value thresholds as de-
tected by cell-type adjustment (labeled across the top), contrast (labeled along the right side), and deconvolu-
tion approach (along the x-axis). Transcriptome-derived and DNA-methylation-derived cell-type adjustments are 
marked by RNA and DNAm, respectively. As colors become darker, the significance threshold becomes higher and 
are listed in the legend. “Prin. Comp.” refers to the principal component-adjusted models. (b) Venn diagrams depict 
the overlap in DMPs selected with p-value < 0.001 in unadjusted, transcriptome-derived principal components, 
and the DNAm-derived principal components models

 



Page 11 of 16Hannon et al. BioData Mining           (2024) 17:21 

other model in the baseline to malaria and malaria to recovery contrasts. In the baseline 
to recovery contrast, the number of DMPs did not change after adjustment with naïve 
CD4 T cell proportions regardless of deconvolution method. Adjustment with CD8 T 
cell proportions resulted in the most reductions in estimated DMPs with the number 
decreasing by more than two-thirds when malaria is compared to either baseline or 
recovery, regardless of the deconvolution method used. Similarly, models that adjusted 
with principal components also resulted in a large reduction in the number of DMPs 
when comparing malaria to the other time points. This was observed with both decon-
volution methods.

The transcriptome-derived and DNAm-derived principal component models shared 
most DMPs with the unadjusted model in the baseline versus recovery contrast (Fig. 6b 
left panel, supplementary dataset 5). The baseline versus malaria or malaria to recov-
ery contrasts were less consistent, where approximately only one-third of the DMPs 
were shared between the principal component models from the two deconvolution 
approaches. However, more notable is that models with the principal components 
adjustment eliminated ~ 90% of the signal detected by the unadjusted models regard-
less of deconvolution approach in the baseline versus malaria or malaria versus recovery 
contrasts.

For most cell-type adjustments, the deconvolution approach did not substantially 
affect the estimated logFC in methylation level between time points as demonstrated by 
the proximity of the logFC estimates to the identity line (Fig. 7). CpG sites sensitive to 
deconvolution method are labeled in red on Fig. 7 and are defined as methylation sites 
with an orthogonal distance between logFC and the identity line in the outer 0.3 percen-
tile (detailed information in supplementary dataset 6). Similar to the differential gene 
expression analyses, logFCs in monocyte, naïve CD4 T, or naïve B cell-type adjusted 
models were nearly identical with no deconvolution sensitive DMPs for any contrast in 

Fig. 7  Relative logFC estimates in high interest CpG locations using transcriptome-derived vs. DNAm-derived 
cell-type adjustments by model (labeled along the top) and contrast (labeled along the right side). Red points are 
deconvolution-sensitive DMPs and their count is listed in the bottom right corner of each panel if n > 0. Dashed 
lines represent the identity line. Deconvolution-sensitive CpG sites vary the most with different deconvolution 
approaches
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the 1356 CpG sites that have one of the smallest 100 p-values in at least one of the mod-
els. Memory CD4 T cells only had 2 deconvolution sensitive genes in the baseline versus 
malaria and malaria versus recovery contrasts. CD8 T cell adjusted models had the larg-
est discrepancy in logFC between deconvolution methods with 45 and 14 DMPs that 
were deconvolution-sensitive in the baseline to malaria and recovery to malaria com-
parisons, respectively (Supplementary Table S6). Unique to the differential methylation 
analyses, the NK cell adjusted models detected the second most deconvolution-sensitive 
DMPs with 14 in the baseline to malaria.

Discussion
Results of our study show that human PBMC cell-type proportion estimates were highly 
consistent when comparing transcriptome-derived versus DNAm-derived deconvolu-
tion methods in a cohort of Kenyan children before, during, and after a febrile malaria 
illness. Most major cell types that made ~ 10% or greater proportion of the total had cor-
relation coefficients that ranged from r = 0.60–0.96. The top two principal components 
calculated from each deconvolution approach were also highly correlated and identified 
three cell types, monocytes, CD8 T cells, and naive CD4 T cells, that drive the varia-
tion in cell-type proportions in PBMCs. Cell-type adjustments with these same three 
cell types were associated with the biggest differences in the number of DEGs or DMPs 
relative to the unadjusted models. Similarly, multi-cell-type adjustment using the top 
two principal components resulted in the largest change in number of DEGs and DMPs 
regardless of deconvolution approach. The effect estimates for log-fold change in either 
differential gene expression or differential methylation in any time point comparisons 
were largely unaffected by deconvolution method in the cell-type adjusted models. Col-
lectively, these analyses show that both deconvolution methods performed similarly and 
captured the major sources of cell-type variation despite being based on different nucleic 
acids, assay platforms, processing pipelines, and reference matrices in a population that 
differs in age and ethnicity from the deconvolution validation datasets.

During febrile malaria there was a statistically significant decrease in the estimated 
average CD8 T cell proportions relative to baseline and recovery regardless of the decon-
volution method. Adjustment with CD8 T cells substantially reduced the total num-
ber of both DEGs and DMPs when comparing malaria to either baseline or recovery 
samples. Additionally, the most deconvolution-sensitive genes and CpG locations were 
found in models adjusted for CD8 T cells. This pattern indicates that the decreased CD8 
T cell proportions during malaria is confounding the differential gene expression and 
differential methylation estimates between time points. Reductions in both absolute 
counts and proportions of CD8 T cells in peripheral blood measured by flow cytometry 
has been previously reported in children with acute febrile malaria [31–33]. The con-
founding effect of the change in CD8 T cell proportions highlights the need to account 
for this cell type in bulk expression or epigenetic study designs related to infectious dis-
eases such as malaria and perhaps other inflammatory states such as bacterial sepsis and 
autoimmune diseases.

The greatest discrepancy between the deconvolution approaches was found in the 
estimation of neutrophil proportions, e.g. ranging from ~ 0.10–10% from the tran-
scriptome-derived and DNAm-derived estimate, respectively. Two proposed sources of 
this discrepancy could be the presence of neutrophil extracellular traps (NETs) in the 
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PBMC compartment or neutrophil contamination and subsequent degradation of neu-
trophil subsets through cryopreservation processes. Typically, cryopreserved PBMCs 
contain few neutrophils because they localize to a different layer following hypaque 
ficoll centrifugation of anticoagulated whole blood and likely do not remain viable fol-
lowing cryopreservation of PBMCs [34, 35]. During febrile malaria illness, NETs have 
been implicated as major contributors to innate immune pathogenesis [36–38]. Neutro-
phils release NETs that are composed of cell-free DNA along with other antimicrobial 
factors to activate innate immune system pathways [39, 40]. NETs could remain in the 
PBMC compartment during hypaque-ficoll PBMC purification and be detected by the 
DNA methylation assay. Hence, we speculate that substantially different estimates in 
neutrophil proportions can in part be explained by the underlying biological differences 
between analyzing RNA versus DNA in PBMCs.

The two main cell-type adjusted modelling approaches used either a single cell sub-
set or principal components as covariate(s). The value of each approach depends on the 
intent of the study and features of the system. If the research question is focused on a 
specific cell type or there is prior knowledge regarding a specific cell type, a single type 
adjusted model may be most appropriate. Alternatively, if the research interest focuses 
on global changes in gene expression or differential methylation, then the multi-cell 
type adjustment with principal components would be more applicable. For example, our 
study showed that CD8 T cell proportions are acting as a confounder of gene expression 
and DNA methylation during acute malaria. Therefore, CD8 T cell proportions should 
be included in the model as either a single covariate or as part of the multiple cell-type 
model. The use of the multiple cell-type adjusted models resulted in a large loss of signif-
icant DEGs and DMPs that may show the degree to which cell-type variation drives gene 
expression and DNA methylation patterns. On the other hand, the decrease in DEGs 
and DMPs may be too extreme, thereby eliminating part of the target signal.

There are limitations to the methods used and the results presented here despite the 
overall consistency between these two deconvolution approaches. In some cell-types, 
namely memory B cells, regulatory T cells, and memory CD4 T cell subsets, estimates 
did not correlate between deconvolution approaches. Memory B cells and regulatory 
T cells are present in small proportions in peripheral blood and harder to detect accu-
rately. The memory CD4 T cells estimates were an exception to this rule but are likely 
uncorrelated because the transcriptome-derived deconvolution had two sub-categories, 
activated and resting, whereas the DNAm-derived deconvolution had one total memory 
CD4 T cells estimate. Nonetheless, cell-type adjusted modeling that accounted for mem-
ory CD4 T cells from either deconvolution approach did not substantially affect differ-
ential methylation or differential gene expression results. Lastly, the sample size in the 
current study is small and constrained the assessment of methods available for cell-type 
adjustment. More cell-type adjusted modelling approaches exist but depend on complex 
models with many parameters. The challenging logistics surrounding the collection and 
processing for study designs such as this highly matched, longitudinal study of a pediat-
ric population in rural Africa are reflected in the sample size and are a common prob-
lem. Although we cannot determine which method is better when the correlations are 
poor, the results indicated that, in general, the deconvolution methods do not change 
the main biological interpretations.
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Conclusions
Cell-type proportion estimates from PBMCs were concordant between transcriptome-
derived and DNAm-derived deconvolution approaches in a cohort of Kenyan children 
before, during, and after a febrile malaria illness with a few exceptions. Furthermore, the 
estimates for log-fold change in either differential gene expression or differential methyl-
ation were similar between deconvolution approaches when applied to cell-type adjusted 
modelling. Together, these analyses demonstrate the robustness of the deconvolution 
approaches with the major sources of cell-type variation detected by both deconvolution 
approaches regardless of different nucleic acids, assay platforms, processing pipelines, 
and reference matrices.
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