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Abstract: Gastric cancer is the fifth most common disease in the world and the fourth most common
cause of death. It is diagnosed through esophagogastroduodenoscopy with biopsy; however, there
are limitations in finding lesions in the early stages. Recently, research has been actively conducted to
use liquid biopsy to diagnose various cancers, including gastric cancer. Various substances derived
from cancer are reflected in the blood. By analyzing these substances, it was expected that not
only the presence or absence of cancer but also the type of cancer can be diagnosed. However, the
amount of these substances is extremely small, and even these have various variables depending
on the characteristics of the individual or the characteristics of the cancer. To overcome these, we
collected methylated DNA fragments using MeDIP and compared them with normal plasma to
characterize gastric cancer tissue or patients’ plasma. We attempted to diagnose gastric cancer using
the characteristics of cancer reflected in the blood through the cancer tissue and patients’ plasma. As
a result, we confirmed that the consistency of common methylated fragments between tissue and
plasma was approximately 41.2% and we found the possibility of diagnosing and characterizing
cancer using the characteristics of the fragments through SFR and 5′end-motif analysis.

Keywords: gastric cancer; liquid biopsy; MeDIP; fragment

1. Introduction
1.1. Gastric Cancer and Liquid Biopsy

Despite advances in diagnosis and treatment, cancer is the second leading cause of
death worldwide [1]. In particular, gastric cancer is the fifth most common disease and
fourth most cause of death, causing 1.1 million new cases and 7.6 hundred thousand deaths
each year worldwide [2,3]. Recently, the incidence of gastric cancer has been increasing in
Korea due to changes in eating habits and various environments [4,5]. The gold standard
of diagnosis for gastric cancer is esophagogastroduodenoscopy with biopsy. However,
the diagnosis can often be delayed in early-stage cancer. In particular, liquid biopsy
research using blood has been conducted recently for early diagnosis of various diseases,
including cancer [6,7]. In various diseases, including cancer, various characteristics derived
from the lesion are reflected in the blood. Direct indicators include exosomes, metabolic
materials, cfDNAs, and CTCs. Although it exists in extremely small quantities, analyzing
its characteristics has made it possible to diagnose the disease with minimally invasive
methods [8–10]. Therefore, for a more accurate diagnosis, the unique characteristics of each
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cancer type must be identified. Representative successful cases include EGFR, KRAS, and
BRAF mutations in lung cancer [11–14]. Recently, omics research on various characteristics
has reached a level where it is possible to diagnose not only cancer but also types of
cancer [15–17]. However, the uniqueness of many types of cancer is still unclear.

1.2. Methylation

Changes in the gene sequence cause functional changes and, in fact, many diseases,
including cancer, are caused by small changes in genes [18]. It is known that cancer is
sometimes caused by abnormal changes in expression levels rather than functional changes
in genes. These epigenetic studies are widely applied in the diagnosis and prediction of
cancer. Human cancer is closely associated with changes in methylation [19]. In particular,
tissues sometimes have specific methylation profiles [20,21]. Based on these characteristics,
it is possible to diagnose cancer and its type using the methylation pattern of cancer-derived
substances present in the blood.

1.3. Fragmentomics (Size and 5′End-Motif)

cfDNA in the blood comes from various tissues and cells [22,23]. Recently, it has been
revealed that fragments derived from various cancers are shorter than those derived from
normal cells due to different biological mechanisms, and the possibility of diagnosis using
this is being discussed [24–27].

All living organisms contain nucleases that can interact with nucleic acids and hy-
drolyze phosphodiester bonds. Nucleases may also exhibit a cleavage preference for single-
or double-stranded nucleic acids. Some nucleases are structure- or sequence-specific. In
particular, there are nucleases that are predominant and specific to the cancer type or
tissue [28–31]. In gastric cancer, FEN1, APE1, XPF/XPG, MRN complex, and DNase1 are
typically found [30].

Many liquid biopsy studies are focused on diagnosing cancer by analyzing the char-
acteristics of cancer-derived cell-free nucleic acids in the blood. However, it is still true
that in the early stages of cancer, the amount present is very small, and a lot of effort and
time are required for accurate analysis. In this study, in order to clarify the characteristics
of cancer-derived fragments, hypermethylated fragments were collected and their length
and 5′end-motif sequences were analyzed. We also confirmed whether this approach was
consistent with results from tissue.

2. Results
2.1. Differentially Methylated Region (DMR)

First, changes in cfDNA methylation in the plasma of cancer patients were compared
with the healthy human plasma. Paired blood and tissue from 22 stomach cancer patients and
40 plasma samples from healthy people were used (Table 1). The MEDIPS library was used
to determine differentially methylated regions (DMR) [32]. The BH (Benjamini–Hochberg)
method was set to be used for p-value adjustment, and areas with a value of 0.01 or less based
on the adjusted p-value were selected as DMR. The methylation marker information for each
cancer type was used as published in Vrba’s paper [33], and the methylation marker informa-
tion for each tissue was used as published in Moss’ paper [34]. A total of 1,541,364 DMRs were
obtained by comparing tissue and plasma of cancer patients with healthy human plasma, and
the total length was approximately 813 Mb (Figure 1A and Supplementary Table S1). About
146 Mb DMRs were identified between plasma from cancer patients and healthy human
plasma, with a ratio of 124 Mb gain (hypermethylation) to 22 Mb loss (hypomethylation) of
approximately 6:1. Additionally, DMR coverage of 667 Mb was confirmed between cancer
patients’ tissue and healthy human plasma, and hypermethylation and hypomethylation of
528 Mb and 138 Mb were found, respectively (Figure 1). Between cancer patient and healthy
plasma samples, approximately 3% (9711/316,507) of DMRs were found in the promoter
region. Between cancer tissue and healthy plasma samples, 2.6% (31,922/1,224,857) of DMRs
were located in promoter regions (Supplementary Table S1 and Supplementary Figure S2).
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Table 1. Information of specimens in the study.

Group Ethnicity Tissue Sample Capture # Samples # Individual

Gastric
Cancer

Korean
Plasma cfDNA MeDIP 22

22
Cancer gDNA MeDIP 22

Healthy Hispanic Plasma cfDNA MeDIP 40 40
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Figure 1. Size and composition of DMR obtained by comparing tissue and plasma of gastric cancer
patients with healthy donor plasma. (A) The graph shows the total number and size of DMRs
obtained by comparing the gastric cancer patients’ plasma or tissue to healthy donor plasma. (B) Red
and blue bars represent the proportion of methylation gain and loss among total DMRs, respectively,
when compared to heathy donor plasma. (C,D) The graph shows the total size of methylation gained
and methylation lost.

2.2. Commonly Methylated Region (CMR)

Next, we analyzed how much methylated DNA there was in common between tissue
and plasma from cancer patients. The MACS-2.2.6 program was used to discover methy-
lation regions [35]. The discovered methylation region was then used to determine the
common methylation region (CMR). Methylated regions were processed in 300 bp sections.
If the methylated region discovered by the MACS program occupied more than 50% of
the 300 bp region, the region was considered methylated. The region was determined by
connecting adjacent windows (Supplementary Figure S3A). Overall, the average number of
peaks was 439,109 and the average number of CMRs was 213,548, and most CMRs were not
located in DMR (Supplementary Figure S3B,C). When comparing the tissue and plasma of
cancer patients with that of healthy human plasma, the average size of the CMR between
tissue and cfDNA was approximately 73 Mb (Figure 2). Interestingly, the average similarity
was approximately 41.2% between tissue and cfDNA (Supplementary Figure S3D). This
shows that cancer-tissue-based methylation changes were also reflected at high levels in
ctDNA from the blood.
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2.3. Short Fragment Ratio (SFR)

To detect cancer, we used cfDNA obtained from MeDIP to compare the length of
cfDNA in the plasma of cancer patients and the plasma of healthy donors. Many previous
studies have already shown that shorter-length cfDNA exists in patients with various
diseases, including cancer. Although ctDNA derived from cancer is only a small portion
of the total, we distinguished the difference more clearly by using the proportion of short
cfDNA. The insert size estimated from the mapping information was used as the length of
cfMeDNA (circulating free methylated DNA). The short fragment rate (SFR) was calculated
as the proportion of short fragments among all fragments. cfMeDNAs with a length of
100 to 240 bp were set as full fragments, and those with a length of 100 to 160 bp were
set as short fragments. To calculate the skewness of the cfMeDNA length distribution,
100 to 240 bp fragments were used. Simply looking at the trend, the proportion of short
cfDNA in the patient’s plasma was high (Figure 3A,B). Next, for detailed quantification,
we calculated the SFR by dividing healthy samples and cancer patients and compared
the differences. In conclusion, a high level of significant SFR difference was observed in
cancer patients (p value = 1.63 × 10−8; Figure 3C). Surprisingly, focusing on the CpG island
resulted in a clearer distinction (p value = 1.97 × 10−11; Figure 3D). To verify the ability to
distinguish between normal and cancer samples using SFR, the ROC curve was calculated.
At the whole genome level, the AUC was 0.909. Interestingly, applying this to the CpG
island region raised the AUC to 0.950 (Figure 3E,F). We identified how SFRs differed in the
promoter regions of 51 well-known cancer-related genes [36]. In particular, the SFR of the
BAP1 gene promoter was statistically significantly higher in cancer patients (Figure 4).
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respectively. ROC, receiver operating characteristic; AUC, area under the ROC curve.
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2.4. 5′End-Motif

Short fragments occurred depending on the type of acting DNase. In particular, it is
known to show characteristic differences when DNA is fragmented within cancer cells.
We classified the collected short cfDNAs using the sequences of their 5′end-motifs. The
length of the motif used in the 5′end-motif frequency analysis was 4 bp. There were 256
possible 4-mer motifs, among which 199 motifs showed significant differences between
gastric cancer patients and healthy subjects. Here, 115 and 83 motifs were frequent and
infrequent in gastric cancer patients and healthy people, respectively. In other previous
studies, abnormal activation of DNase I was reported in gastric cancer [30]. As a result
of the action of DNase I, a thiamine end-motif was generated, and in our results, T-end
SFRs accounted for a statistically significantly high proportion in the top 10 rank (Table 2).
Usually, when cfDNA is generate, the A-end sequences are generated by DFFB (DNA
fragmentation factor B). Interestingly, in our significant list, T-end motifs were frequent in
gastric cancer patients, and A-end motifs were frequent in healthy subjects. The Mann–
Whitney U test was used as the statistical test for the frequency of differences between
groups, and the list of significant motifs was calculated based on the p-values.

Table 2. List of the top 10 significant 5′end-motifs.

Motif
Average Frequency (Rate)

p-Value
Cancer Patients Healthy Individuals

CCAC 0.012198 0.010076 5.03 × 10−11

AGCT 0.003254 0.004846 6.11 × 10−11

TCCT 0.004531 0.003161 6.11 × 10−11

TCAG 0.002890 0.001785 8.16 × 10−11

TACG 0.000666 0.000449 9.85 × 10−11

AGTC 0.002373 0.003192 9.89 × 10−11

AGTT 0.002356 0.004342 1.20 × 10−10

TCAA 0.002575 0.001606 1.20 × 10−10

AGAT 0.002691 0.003770 1.32 × 10−10

AGCC 0.003252 0.003959 1.45 × 10−10

3. Discussion

We hypothesized that there would be a clearer difference between cancer and healthy
samples if methylation changes were limited to cfDNA. In this study, hypermethylated
cfDNA predominated in both cancer and healthy donor plasma due to MeDIP capture.
Hypermethylation was more prevalent in cancer genomes. As our results showed, MeDIP
had the effect of making these characteristics more evident. It is well known that many
diseases, including cancer, are related to methylation change. Moreover, methylation
change is related to age-, gender-, species-, and organ-specific factors [37]. However, to be
free from these factors, individual cancer-derived substances were compared with a pool
of 40 healthy donor plasma results.

Of course, comparing within the same type of specimen can yield more accurate
results than comparing plasma and tissue. Nevertheless, there are many studies attempting
to determine whether the characteristics of cancer tissue are reflected in blood for liquid
biopsy. We obtained common DMRs between cancer tissue and plasma of cancer patients
compared with plasma of healthy people. Although a more in-depth study of the obtained
results was not conducted, we believe it will be good material for future research.

Because methylation differences were well reflected using MeDIP, we expected to
discover CMRs within the DMRs. An extreme DMR was also set between cancer and
normal plasma for dramatic results. Unfortunately, the CMR seems to have little to do with
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the DMR. This result is expected to have occurred because a very small amount of cfDNA,
including ctDNA, was used as a control. Nonetheless, surprisingly, there was a match rate
of about 40% between cancer tissue and cancer patient plasma. This was the result of the
characteristics of cancer tissue being reflected in the blood. Sometimes, many tissues have
tissue-specific mutations and methylation patterns depending on the type of cancer [38,39].
It is expected that the CMR may contain clues that can predict not only the presence or
absence of cancer but also the type of cancer.

Short-fragment DNA provides useful clues for ctDNA classification using liquid
biopsy. Especially in the early stages, ctDNA accounts for less than 1% of cfDNA [40,41].
Therefore, there are limitations in clearly distinguishing cancer from normal samples with
only these small changes. We hypothesized that cfDNA derived from cancer could be more
clearly identified through methylation capture. Surprisingly, when our method used SFR
to distinguish cancer from normal samples, the AUC of the ROC was 0.909. Additionally,
when limited to CpG islands, the AUC increased to 0.95. This showed that SFR can more
clearly distinguish between cancer and normal conditions under certain conditions, such
as methylation. We applied methylation capture and CpG island piecemeal, but we expect
that better discrimination ability will be achieved in the future.

All living organisms have enzymes that break down nucleic acids, and DNases and
RNases act differently depending on the type of tissue or disease. The action of these
different DNases resulted in shorter lengths of cancer-derived cfDNA. In particular, all
nucleic acids exposed due to apoptosis or necrosis were fragmented by various DNases
and RNases, and some were exuded into the blood. Verification is necessary to clearly
reveal the direct basis for the relationship between DNase and 5′end-motif in the results
presented in our study. Nevertheless, our study showed that cancer diagnosis is possible
by utilizing the characteristics of ctDNA in cfDNA. In particular, if the DNase action is
more clearly identified for each cancer type, it is expected that cancer can be diagnosed
using only the short sequence of the fragment (only 4 bp).

Although the genes we used in our analysis were limited to 51, these genes are already
well-known cancer-related genes. Genes with high methylated-SFR in cancer patients,
such as AKT1, BAP1, BRCA1/2, BRAF, CCND1, ERBB2, ESR1, FGFR1/2/4, FLT3, HRAS,
IDH1, KRAS, MAP2K1, PPARG, PTCH1, PTEN, ROS1, SMO, and TP53, may act as direct
or indirect suppressors in gastric cancer. In particular, BAP1 is a well-known TSG, and its
role in gastric cancer has also been identified. This study did not conduct experiments to
support the function of highly frequent, methylated SFR genes, including BAP1, in gastric
cancer. However, shorter fragmentation and methylation of TSGs and oncogenes may
not be unrelated to the development of cancer. Characteristics of the fragments, such as
differences in methylation or the length of these genes in the blood, may be the result of
their origin from actual cancer tissue. In other words, identification of these characteristics
can provide a clear basis for cancer diagnosis using liquid biopsy. Unfortunately, gastric
cancer was not ranked in the classification using tissue-specific hypermethylation markers.
Perhaps methylation capture may simplify features of the tissue, including stomach, that
we were unaware of.

In conclusion, we initiated this study out of curiosity to see whether known properties
of ctDNA could be further elucidated through methylation. Although there were limitations
in obtaining normal controls, we believe that our approach offers new possibilities for future
gastric cancer diagnosis and characterization using liquid biopsy. We plan to conduct large-
scale clinical research using the methods identified in this study. In addition, by securing
a strong normal control group for clarifying the characteristics of tissue and plasma, and
applying various analysis methods to cfDNA, including ctDNA, it is expected that we will
be able to get one step closer to cancer diagnosis using liquid biopsy.
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4. Materials and Methods
4.1. 40 Healthy Donor Plasmas, 22 Pairs of GC Tissue and Blood, DNA Extraction

In this study, tissue and blood were randomly collected in pairs from 22 patients with
cancer stages I to IV (IRB: CUH2022-8-012). For comparative study and normalization,
40 healthy human plasma samples were used (Innovative Research, Novi, MI, USA).
cfDNA was collected using the Apostile cfDNA prep kit (Beckman Coulter, Brea, CA,
USA). Genomic DNA was extracted from the tissue using a DNeasy kit (Qiagen, Hilden,
Germany) and cut into sizes of less than 200 bp using Bioruptor Pico (Diagenode, Denville,
NJ, USA). The size and quality of all nucleic acids was measured using TapeStation 4150
(Agilent Technologies, Santa Clara, CA, USA) and a Qubit 4 Fluorometer (Thermofisher
Scientific, Waltham, MA, USA).

4.2. MeDIP Sequencing

For the MeDIP sequencing of cfDNA and fragmented gDNA, we followed previous
methods [42]. The sequencing data were generated using a MGI G400 sequencer. Each
output of sequencing produced more than two times the depth.

4.3. Data Processing and Mapping

The Cutadapt-2.4 program was used to select high-quality sequence data [43]. Adapter
sequences and low-quality bases from the back of the original sequence were removed
to obtain a high-quality sequence. The high-quality sequences were mapped to the hg38
human genome, and the mem command of the BWA-0.7.15 program was used for the
mapping task [44]. Duplicate sequence data were removed using the MarkDuplicates
command in the Picard-2.7.1 program. Flowcharts and tools used in data processing, such
as DMR, CMR, and SFR, are available in Supplementary Figure S1.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25137377/s1.
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