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Abstract: Immune engineering and modulation are the basis of a novel but powerful tool to treat
immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without
genetic material making them non-infective. However, they offer a wide variety of possibilities
as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune
modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the
treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes,
TLR ligands, and other immune modulators to modulate or enhance the immune response toward
the presented allergen. Here, the authors present an overview of VLP production systems, their
immune modulation capabilities, and the applicability of actual VLP-based formulations targeting
allergic diseases.

Keywords: virus-like particles; therapy; allergy

1. Introduction

Allergy is a worldspread disease characterized by an exacerbated immune response
to a normally tolerated molecule. The prevalence of allergies has increased in the last
years, affecting approximately 5% of the global population, with higher concern when
considering infants [1,2]. In this context, the allergens responsible for eliciting allergic
reactions in susceptible individuals are predominantly food molecules, consisting mainly
of proteins and/or lipoproteins [3–5]. Although medical treatments for food allergies have
made considerable progress [1,6], healthcare professionals universally recommend allergen
avoidance as a primary measure [7].

In recent years, there has been a growing emphasis on taking advantage of nanotech-
nology for allergen detection, diagnosis, and treatment using allergen-specific immunother-
apy (AIT) [8,9]. AIT involves gradually administering small amounts of the allergen to the
patient, with the goal of training the immune system to tolerate its presence. While AIT re-
mains the only treatment capable of eradicating certain allergic phenotypes, its application
in food-allergic patients entails significant challenges, such as the need to achieve better
benefit-to-risk ratios before widespread adoption in routine clinical practice [10–12].

Hence, novel approaches have been proposed to enhance the effectiveness, safety,
and convenience of allergy therapy, such us (a) exploring new administration routes;
(b) utilizing allergens, hypoallergens, allergoids, and peptide-based vaccines produced
via recombinant methods; and introducing new adjuvants derived from bacteria and
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viruses, such as (c) bacterial extracts and (d) TLR ligands and, (e) advancements in formula-
tions and delivery systems, such as virus-like particles (VLPs), DNA vaccines, aggregates,
nanoparticles, or liposomes [1,13].

In the field of nanobiotechnology, virus-like particles have arisen as a powerful tool for
a variety of applications [14–16]. VLPs consist of the virus capsid protein but without the
corresponding encapsidated nucleic acid [17]. They serve as efficient delivery platforms,
capable of transporting a wide variety of cargos due to their controlled self-assembly and
adaptable architectures [16,18–20]. The nature of VLPs makes them generally highly bio-
compatible and biodegradable, which is a great advantage compared to other nanoparticles
with intended use in therapy [21].

Cargos of interest can be attached to VLPs via genetic engineering or chemical fu-
sion [22], enhancing concentration and efficacy while minimizing the need for potentially
harmful adjuvants and the presence of the side effects [23,24]. The presence of these nanos-
tructures with highly repeated domains is known to effectively activate the immune system,
akin to vaccines, stimulating both B-cell and dendritic cell responses [25,26]. Regarding
toxicity, VLPs are generally considered safe, but careful evaluation is needed [21]. The use
of VLPs as a vaccine as promising therapeutic tools is already in trial for diseases such as
Alzheimer’s [27,28], arthritis [29], atherosclerosis [30,31], cancer [32–34], and, since their
early days, for infectious diseases such as malaria, COVID, or papillomavirus [35].

This manuscript aims to review and update the use of these powerful tools in the
treatment of allergic diseases. To this end, the review presents a brief overview of what
VLPs are, including their structure and function, the systems used to produce them, and
the current state of the art in VLPs and allergy research (Figure 1).
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Figure 1. Summary of the main issues reported throughout this review: Structural classification,
different production systems, the immune mechanisms associated, and the application of VLPs in the
treatment of allergies. Created with BioRender.com and ChimeraX v1.17.

2. VLPs as Vaccine: Success Stories
2.1. Structural Features

As mentioned above, VLPs are viral capsids without genetic material, preventing
their replication and, therefore, infection capacity. These structures are formed by viral
capsid proteins or other self-assembly proteins [17,36,37]. VLPs can be both spherical and
filamentous structures. Based on the structure of the coated protein, both types of VLPs
can be classified as enveloped (eVLP), non-enveloped or naked (non-eVLP), and chimeric
(cVLP) [38] (Figure 2).
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Figure 2. Schematic and modeled structural classification of VLPs. (a) According to their morphology,
VLPs can be spherical or filamentous. (b) Both spherical and filamentous VLPs can be distinguished
according to the structure of the assembled particle: eVLP (membrane in wheat color, glycoproteins
in blue), non-eVLP (capsid in purple), or cVLP (capsid in rainbow). (c) cVLPs can be further classified
according to the type of conjugation, such as chemically coupled (capsid in green, linker in red, epitope
in yellow) or genetically fused (capsid in light blue, epitope in pink). Created with BioRender.com
and ChimeraX v1.17.

eVLPs are complex particles that require the host membrane for envelopment. Thus,
in addition to a protein capsid, they will be coated with a lipid bilayer. In some cases, the
correct assembly of the eVLP involves specific glycoproteins [24,39]. eVLPs are stable and
flexible structures, making them ideal for transporting components; they can be attached to
the outermost layer or carried inside. However, the production of these particles is highly
complex and will depend on the production system [40].

Non-eVLPs are membraneless particles that arise from the self-assembly of one or
more proteins. While there are simple particles composed only of the main nucleocapsid
protein, there are complex multiprotein particles that, in addition to the capsid protein,
have auxiliary proteins associated with them [24,41]. In general, these particles have
higher stability than eVLPs, as they are less susceptible to environmental changes such as
temperature, shear strength, and chemical treatments [40].

Finally, cVLPs result from the assembly of viral components from at least two dif-
ferent viral serotypes, or are the product of recombinant DNA [38]. Spherical cVLPs are
becoming highly relevant for the encapsulation and display of molecules. Filamentous
cVLPs are also being used due to their high functionalization power, as they are structures
composed of thousands of subunits (as opposed to spherical ones, composed of hundreds
of subunits) [42]. This approach shows great advantages, as the particle surface is highly
modifiable by chemical or genetic approaches [43].
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To conjugate an epitope by chemical techniques, a linker that binds at one end to the
lysines of the viral capsid is used. The other free end of the linker will bind to the epitope of
interest, forming the VLP–epitope complex [44]. However, the highest yielding approach
consists of gene fusion methods. For this, the VLP is expressed with the sequence of the
desired epitope incorporated into the sequence of the viral proteins themselves [17].

The major disadvantage of both conjugation methods is related to the addition of an
exogenous component. Due to this, the particle may cause misfolding of viral proteins or
decrease their ability to self-assemble [45]. On one hand, chemical conjugation facilitates
an easy broad spectrum of diverse formulas, based on the production of a single common
batch with controlled conditions [46]. Therefore, the same platform can be used for many
objectives. This is a very interesting point when facing a large scale of production and
the possibilities of treating different diseases. Moreover, chemical conjugation will better
preserve the stability and architecture of VLP compared to genetic coupling [47]. On the
other hand, genetic conjugation offers a controlled molecular ratio of the VLP–epitope
complex, the possibility of disassembling/reassembling the formula, and more safety
in terms of the presence of free antigen. In addition, this methodology dispenses with
pH-dependent chemical reactions and the use of toxic reagents [48].

2.2. Challenges in the Production of VLPs

VLPs can be obtained from the parental virus by removing the genetic material, al-
though this approximation may show several safety issues. The majority of VLPs produced
are based on heterologous systems by recombinant production of the capsid protein with
or without helper proteins [38]. Recombinant production of VLPs can be obtained from,
mainly, five systems: (a) bacteria, (b) yeast, (c) baculovirus/insect cells, (d) mammalian
cells, and (e) plants, each with distinct advantages and challenges. The key determinants
for choosing a suitable synthesis system to produce VLPs are the yield and the ability
to scale up, the requirement on the structural complexity and immunogenicity of VLPs,
process stability, flexibility for modification, safety, and cost [49,50]. The advantages and
disadvantages of each system are summarized in Scheme 1.

Briefly, bacterial and yeast cells are commonly chosen for their high production
yields, but limitations in achieving complex post-translational modifications (PTMs) and
their reduced immunogenicity hinder their widespread adoption [51]. In contrast, bac-
ulovirus/insect cell (B/IC) systems offer versatility and high expression levels, but concerns
remain regarding the co-production of baculovirus-enveloped particles and downstream
processing complexities [52]. Mammalian cells enable complex PTMs, making them ad-
vantageous for VLP production, although their higher production costs and lower control-
lability pose challenges [52,53]. Transgenic plants offer benefits such as low processing
costs and increased safety but face limitations in PTMs and expression levels. Additionally,
methods like transfection and transduction play critical roles in the production, each with
unique considerations for achieving high protein yields [54,55].

Another alternative system to produce VLPs can be the cell-free system. This has become
an option with great potential industrial importance, especially for producing proteins that
are toxic or for being able to introduce modifications with non-biological amino acids [51].

Besides the previously mentioned factors for selecting a system for VLP production,
safety and the absence of side effects are particularly important considerations. These con-
cerns involve both the production system and the nature of the VLP being produced [56,57].
For instance, eVLPs, due to their enveloped nature, may contain impurities that could
cause undesired side effects. While non-eVLPs and cVLPs are also susceptible to impuri-
ties (such as those within the inner cavity or from non-specific binding), these impurities
are easier to remove during the purification process [58,59]. High-scale VLP production
following cGMP practices is tightly regulated by the Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) of the Guidance for Industry of the Viral
Safety Evaluation of Biotechnology Products from Cell Lines of Human or Animal Origin
Q5A2(R2).
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Finally, live animals can be used as another strategy for the expression of VLP vaccines,
with more complete post-translational modifications. This system has a relatively low cost,
and the strategy offers great robustness and easy mass production compared to other
systems. For example, the expression system of the protozoan Leishmania tarentolae offers
post-translational modifications similar to those of mammals and is not pathogenic for
humans [78].

2.3. Immunological Mechanisms of VLPs

VLPs can act as antigens just like the viruses from which they originate. This can
be favorable when you want to enhance the immune response (immunotherapy against
tumors), but it can be harmful when trying to improve the symptoms of an autoimmune
disease [38].

The size (between 20 and 200 nm) and shape of VLPs greatly facilitate a wide variety
of interactions (ionic, hydrophobic, and hydrophilic) with the surface of the antigen-
presenting cells (APCs), favoring their absorption [21]. Their particulate structure and
repetitive antigens allow them to be absorbed efficiently and can be presented in both
MHC class I and class II molecules [26,53]. The repetitive arrangement of the surface of
VLPs also allows them to be recognized by B-cell receptors (BCRs), being able to induce a
strong humoral response [79]. Therefore, VLP-derived peptides presented by MHC class
II result in the activation of CD4+ T helper cells and in the generation of protective IgG
antibody titers. Interestingly, several studies demonstrated that VLPs can also induce
efficient cytotoxic T-cell responses by cross-presentation [26,80–82].

Furthermore, the repetitive epitopes that VLPs present can also be recognized by
the innate immune system, recruiting humoral components such as natural IgM and the
complement system [83]. Activation of this humoral response can also enhance B-cell
activation and promote B-cell-mediated antigen deposition in follicular dendritic cells
(FDC), which is essential for the formation of germinal centers and, therefore, for the
generation of long-lived memory and plasma B cells. Some immunostimulatory agents
or other adjuvants can be packaged with VLPs to enhance the response even more [84].
Therefore, VLPs may encapsulate drugs within their structures or attach them to the
surface, offering controlled release and specific targeting of cells or other tissues by the
incorporation of specific ligands [85]. In comparison, other nanovehicles may offer similar
drug delivery capabilities, but with differences in release kinetics, targeting abilities, and
loading capacities based on the type. These vehicles can also be functionalized to improve
targeting [86].

Hence, VLPs emerge as an attractive option for vaccination, compared to live or atten-
uated viruses. The spectrum of production systems, the time for production (3–12 weeks),
and their immunogenic properties make them a promising platform for vaccination [44,53].
Owing to these facts, the FDA approved the first VLP-derived vaccine, against Hepatitis
B [87,88]. Since then, other VLP-based therapies have reached the market: Recombivax
HB® (Merck & Co., Inc., Rahway, NJ, USA) [89], Engerix® B (GlaxoSmithKline, Brent-
ford, UK) [90], and Sci-B-VacTM (VBI Vaccines Inc., Cambridge, Massachusetts, USA) [91]
for hepatitis B; Gardasil® (Merck & Co., Inc., Rahway, NJ, USA) [92], Gardasil9® (Merck
Sharp & Dohme LLC, Rahway, NJ, USA) [93], and Cervarix® (GlaxoSmithKline, Brentford,
UK) [94] for human papillomavirus (HPV); Hecolin® (Xiamen Innovax Biotech, Haicang,
Xiamen, China) [95] for hepatitis E; and, recently, Mosquirix™ (GlaxoSmithKline, Brentford,
UK) [96] for malaria.

3. Application of VLPs in the Treatment of Allergic Diseases

The final goal of the use of VLPs in the treatment of allergies is to potentially induce
immune tolerance and desensitization, promoting regulatory T-cell responses and reedu-
cating the immune system towards a more tolerogenic state. To reach this objective, there
are several approaches using modified VLPs, displaying allergenic proteins, peptides, and
other molecules on their surface, by genetical fusion or chemical conjugation [37].
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These formulas can also play a dual role in allergy vaccination; first, acting as an adju-
vant to facilitate antigen presentation; second, helping to reduce the Th2 response, skewing
the immune system towards a Th1 type response, which is important for sustained immu-
nity to the allergen [84]. The repetitive display optimizes BCR cross-linking stimulation to
produce IgG with high affinity, which is required for successful allergen neutralization [97].
In addition to that, thanks to their inherent adjuvant properties, they enhance the immune
response and promote stronger and longer-lasting immunomodulatory effects [98].

VLP-based allergy treatments are reported to trigger fewer side effects compared to
traditional allergen immunotherapy, with reduced systemic reactions. Allergens that have
been coupled to VLPs seem to be unable to provoke anaphylactic reactions in allergic
individuals because of the physicochemical differences between free allergens and the
VLP-coupled ones [84]. It has also been demonstrated in vitro that allergens bound to VLPs
are unable to activate mast cells, showing a strong ability to bind to surface-linked IgE. This
may indicate that repetitively displaying allergens on VLPs increases their immunogenicity
while reducing their potential to cause anaphylactic reactions by the inhibition of the
IgE-mediated activation of mast cells [99].

There are two different main approaches for the allergy treatment with VLPs: allergen-
dependent VLPs and allergen-independent VLPs (Table 1).

3.1. Allergen-Dependent VLPs

This classification comprises all VLPs that induce an allergen-dependent immunomod-
ulation. It is based on the direct binding of VLP vehicles with specific full-length allergens
or B-cell epitopes. The aim of this formula is to induce allergen-specific T-cell tolerance and
the production of blocking antibodies [100]. Allergens can be displayed on the surface, but
they can also packed into VLPs [37]. However, the latter is a less frequently used strategy.

This approach shows many advantages, such as the precise targeting of the molecular
cause of the disease, without affecting unrelated immune responses [100]. In some murine
models presented in Table 1, the prevention of systemic anaphylaxis was observed in mice
treated with these platforms [97,100–102]. Related to adverse effects, allergens displayed
on the surface of VLPs induce a weaker degranulation in effector cells compared to soluble
allergens at equivalent concentrations [99]. However, it is extremely important to ensure
the stability of the particle because an undesired disassembly could release a full-length
allergen, which may lead to effector cell activation and anaphylaxis [103]. Moreover, the
use of epitopes of major allergens is also an interesting alternative to reduce the chances of
inducing unwanted reactions [97].

Several studies have been carried out about the use of these particles as allergy im-
munotherapy. For instance, VLP coupled to the peach major allergen Pru p 3 was produced
as an immunotherapeutic formulation against peach allergy [12]. The formula consisted
of the coat protein of the turnip mosaic virus (TuMV) and Pru p 3, separated by a linker.
It was introduced into a highly expressed transient vector, followed by agroinfiltration in
Nicotiana benthamiana. Sublingual administration of the formula in allergic mice effectively
reduced some serological markers associated with allergic responses, such as anti-Pru p 3
serum IgE and serum IgG2a, with no toxicity associated. The resulting formulation exerts
remarkable immunomodulatory properties without the need for potentially hazardous
adjuvants [23].

Relating to peanut allergy, VLPs derived from the cucumber mosaic virus (CuMV)
were used to display the peanut allergen Ara h 1, Ara h 2, or Ara R, the extract of roasted
peanut [64]. The allergens were chemically coupled to the viral platform. Peanut-allergic
mice were vaccinated subcutaneously with each formula and the three VLPs led to the
prevention of an anaphylactic outcome. This treatment induced the development of protec-
tive IgG responses in allergic mice. The proposed mechanism is based on the competition
between IgG and IgE for the allergen.
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Table 1. Recent advances in the development of allergy immunotherapies based on the use of VLPs.

ALLERGEN-DEPENDENT

VLP Target Organism Observed Effects Reference

Vaccine BM32
PreS domain of Hepatitis B Virus (HBV) Phl p 1, 2, 5, 6 Human

phase II clinical trial
Increase in IgG4 allergen-specific antibodies

No IgE levels enhanced

ClinicalTrials.gov
Identifier:

NCT01538979

Monoley-murine-Leukemia Virus (MLV) Art v 1 Mouse Surface exposed Art v 1 VLP induces allergen-specific antibodies
Induction of Th1/Treg response [103]

Monoley-murine-Leukemia Virus (MLV),
displaying GM-CSF

Ova-derived
peptides Mouse Expansion of CD11b+ cells within bone marrow

Induction of antigen-specific CD4+ and CD8+ T-cell proliferation [75]

Acinetobacter phage AP205 fused to SpyCatcher
(SpyCatcher-VLP) Der p 2 Mouse Blocking of allergen-specific IgG

Prevention of specific IgE [61]

HypoCat™
Cucumber Mosaic Virus engineered with tetanus

toxoid universal T-cell epitope (CuMVTT)
Fel d 1 Cat

Development of neutralizing antibodies against Fel d 1
Sustained specific IgG antibody response

Reduction in symptoms in cat owners
[60,104]

Cucumber Mosaic Virus engineered with tetanus
toxoid universal T-cell epitope (CuMVTT) Ara h 1, 2, R Mouse

Protection of peanut-sensitized mice against anaphylaxis to the whole
peanut extract

Induction of specific IgG antibodies
[64]

TM/CT domain of Influenza Virus hemagglutinin Der p 2 Mouse Strong IgG response
Low basophil degranulation of human sera [72]

Hepatitis B core antigen (HBcAg) Che a 3-derived
peptide Mouse

Lack of IgE-binding and basophil degranulation activity
Induction of rChe a 3-related IgG antibody

Low polcalcin-specific IgE
[105]

Turnip Mosaic Virus (TuMV) Pru p 3 Mouse No adjuvants needed
Reduction in allergen-specific IgE and IgG2a [12]

Cucumber Mosaic Virus engineered with tetanus
toxoid universal T-cell epitope (CuMVTT) Ara h 2 Mouse Significant anti-Ara h 2 IgG response

Confer systemic protection [102]

PreS domain of Hepatitis B Virus (HBV) Bet v 1/Mal d
1-derived peptides Rabbit Lack of IgE reactivity and allergenic activity

Presence of neutralizing antibodies to both allergens at the same time [106]

Cucumber Mosaic Virus engineered with tetanus
toxoid universal T-cell epitope (CuMVTT) Ara h 2 Human

phase I clinical trial Recruiting candidates
ClinicalTrials.gov

Identifier:
NCT05476497

ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Cont.

ALLERGEN-DEPENDENT

VLP Target Organism Observed Effects Reference

ALLERGEN INDEPENDENT: Immunomodulation by TLR ligands

Bacteriophage Qβ-derived VLP CpG-motif G10
(TLR9 ligand)

Human, phase IIb
clinical trial

Improvement of rhinoconjunctivitis symptoms in dust
mite-allergic patients

ClinicalTrials.gov
Identifier:

NCT00800332

Bacteriophage Qβ-derived VLP CpG-motif G10
(TLR9 ligand)

Human, phase II
clinical trial

Improvement of asthma symptoms and relief medications in
allergic patients

ClinicalTrials.gov
Identifier:

NCT00890734

ALLERGEN INDEPENDENT: Neutralize cytokines

Hepatitis B core antigen (HBcAg) Recombinant IL-13
peptide Mouse Partial suppression of induced airway remodeling features

Production of anti-IL13 antibodies [107]

Cucumber Mosaic Virus engineered with tetanus
toxoid universal T-cell epitope (CuMVTT) Recombinant IL-5 Horse

Induction of neutralizing anti-IL-5 IgG
Reduction in eosinophil inflammation in lesions

Response maintained over a year
[108–110]

ALLERGEN INDEPENDENT: Neutralize allergen-specific IgE

Bacteriophage Qβ-derived VLP IgE peptides Y and P Mouse Strong antibody response to IgE peptides by TLR7 activation
Production of blocking anti-IgE antibodies [19]

Cucumber Mosaic Virus engineered with tetanus
toxoid universal T-cell epitope (CuMVTT)

Synthetic mouse
IgE-Fc fragments Mouse High amount of anti-IgE antibodies

Less IgE bound to FcεRI on the surface of basophils [111]

ClinicalTrials.gov
ClinicalTrials.gov
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These formulas could prevent the crosslinking of IgE with the FcεRI receptor, as well
as inducing the direct binding of IgG with the inhibitory receptor FcγRIIb, present on mast
cells and basophils. In the presence of high levels of anti-allergen IgG antibodies, IgG–
immune complexes form and bind FcγRIIb, causing the inhibition of IgE-mediated signals.
This emphasizes the role of allergen-complexed IgG in the regulation of anaphylaxis.
Moreover, this approach induced protection against the whole peanut extract, made up of
multiple allergens, not only against the allergen displayed by the VLP itself [64].

Another strategy to treat peanut allergy was the genetic fusion of the allergen Ara h 2
cDNA to CuMV VLP subunits [102]. This is different from the previously described formula,
where the coupling was carried out by chemical reactions. Subcutaneous immunizations in
peanut-sensitized mice with this formula resulted in an anti-Ara h 2 IgG response and the
protection against both systemic and local anaphylaxis. This reconfirmed the crucial role
of the inhibitory FcγRIIb receptor in cross-protection against peanut allergens other than
Ara h 2, by inhibiting FcγRIIb function and observing a loss of protection. The serum from
treated mice could inhibit the binding of high affinity anti-Ara h 2 IgE. In addition, the
authors stated that their formula can protect against systemic anaphylaxis when used in a
prophylactic immunization regimen. This hypothesis was tested by the application of the
vaccine to naïve mice, who were not previously allergic to peanut extract. After treatment,
the mice were sensitized, and the challenge was performed weeks later. The prophylactic
immunization conferred protection against anaphylaxis, maintaining protective titers of
IgG antibodies against peanut. This formula has now entered clinical development under
the name of the PROTECT clinical trial [112] (ClinicalTrials.gov Identifier: NCT05476497).

Regarding to grass pollen allergy, one of the most relevant developed vaccine is BM32
(Biomay AG) [113,114]. The formula includes four recombinant fusion proteins consist-
ing of the hepatitis B virus (HBV)-derived PreS fused to hypoallergenic peptides from
the IgE binding sites of the timothy grass pollen allergens Phl p 1, 2, 5, and 6, adsorbed
on aluminum hydroxide. A two-year double-blind, placebo-controlled, multicenter im-
munotherapy clinical trial (phase II clinical trial: ClinicalTrials.gov NCT01538979) was
carried out to evaluate the efficacy and safety of the treatment during two consecutive grass
pollen seasons. The patients received three subcutaneous injections of BM32 pre-season
and a single post-season booster injection in the first year of treatment, to maintain optimal
allergen-specific IgG responses. This regimen demonstrated improvement in clinical symp-
toms of grass pollen allergy. It induced a continuously increasing allergen-specific IgG4
response without activating allergen-specific IgE responses and maintained low stimula-
tion of allergen-specific PBMCs. The IgG4 response was increased in the second year of
immunotherapy compared to the first one; thus, clinical efficacy was observed. In addition,
allergen-specific pro-inflammatory cytokine responses were not induced [113,114].

Concerning pet allergy, a creative strategy was developed to treat cat allergy in hu-
mans by the vaccination of cats with a HypoCat™ vaccine (Saiba Animal Health, Zurich,
Switzerland) [104]. The formula is composed of the major cat allergen Fel d 1 and a VLP
derived from CuMV with the tetanus toxin-derived universal T-cell epitope tt830-843
(CuMVTT) [60]. After subcutaneous vaccination, cats induced a strong specific IgG anti-
body response in cat owners, leading to the development of neutralizing antibodies against
the allergen, thus reducing its endogenous level. The vaccine was well tolerated and had
no toxic effects. A persistent reduction in symptoms over the study period was observed
in cat owners, and even the total prevention of allergic reactions was reported in some
individuals [104].

3.2. Allergen-Independent VLPs

These strategies are based on VLPs triggering an allergen-independent immunomodu-
lation. This can be divided into (a) immunomodulation by TLR ligands, (b) VLPs priming
the production of neutralizing antibodies against typical allergy cytokines, and (c) VLPs
leading to the generation of neutralizing/blocking antibodies against allergen-specific IgE
and their receptors, FcεRs [100].

ClinicalTrials.gov
ClinicalTrials.gov
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3.2.1. Immunomodulation by TLR Ligands

One of the strategies followed in allergy is trying to switch from a Th2 response and
induce a Th1-biased response [115,116]. This can be achieved by exposing VLPs coupled to
PRR receptor ligands, such as TLRs. Generally, this strategy is based on the immunological
activation of TLR9 [37,100].

This approach is based on the use of VLPs based on single-stranded RNA bacte-
riophages, which are capable of self-assembly [117]. However, it has been found that
the capsid of these viruses can also self-assemble in the presence of synthetic CpG-rich
oligodeoxynucleotides (ODNs) that are able to activate TLR9 [118]. In humans, TLR9 is
expressed mainly by plasmacytoid dendritic cells (pDCs) and B cells. While pDCs generate
type I interferons (particularly IFN-α) in response to TLR9 activation, the primary outcomes
of TLR9 signaling are recognized to be the secretion of cytokines and chemokines that
support Th1 immune responses. These include substances such as monocyte inflammatory
protein-1, IFN-γ, and the promotion of IgG class switching in B cells [119]. Thus, some
experiments began to evaluate the potential of using these CpG-VLPs to reprogram Th2
allergic response to Th1-biased responses.

All published information consists of CYT003, a treatment involving QβG10, a CpG-
VLP based on bacteriophage Qβ [120]. Supported by promising previous studies [121]
(Clinicaltrials.gov Identifier: NCT00652223), a phase IIb clinical trial involving 299 partici-
pants was carried out by the subcutaneous injections of QβG10 in house dust mite-allergic
patients with rhinoconjunctivitis symptoms. The treatment was shown to be harmless,
and it significantly reduced symptoms compared to the placebo group. In addition, these
patients reduced their intake of medication associated with allergic symptoms, improv-
ing their quality of life, and showed a 10-fold increase in tolerance to the conjunctival
provocation dose in the high-dose group [122] (ClinicalTrials.gov Identifier: NCT00800332).

Based on the same approach, a second study was carried out with QβG10 VLP CYT003.
Sixty-three allergic asthmatic patients with moderate or high steroid intake were treated
with Qβ subcutaneous injections. All patients who received the treatment improved
symptomatically in the first 12 weeks, having controlled asthma after that week, reducing
the amount of steroid intake [123] (ClinicalTrials.gov Identifier: NCT00890734).

This type of treatment is ideal for individuals without a clear sensitization profile or
who are sensitized to complex allergen sources. However, it is not specific for any type
of allergen [100]. In fact, its application in allergy did not last much longer. The latest
clinical trial conducted in 2014 yielded data contradictory to the trend hitherto observed. A
total of 365 patients with moderate-to-severe asthma, who were being treated with inhaled
steroids, were treated subcutaneously with CYT003. No significant improvement over the
placebo group was observed [124] (ClinicalTrials.gov Identifier: NCT01673672). Since then,
no further clinical trials have been conducted with this type of approach, or they were even
withdrawn after starting due to lack of results (ClinicalTrials.gov Identifier: NCT02087644).

3.2.2. VLPs Coupled with Cytokines

This type of formula primes the production of neutralizing autoantibodies against
typical allergy cytokines, which are necessary to induce and maintain allergic inflammation.
This is achieved by the direct coupling of VLPs with type 2 effector cytokines [37,100].
This approach is based on active immunization. The current main and most widespread
competitor is passive immunization with monoclonal antibodies, which has become an
important treatment option for atopic and allergic diseases [125–127].

Our immune system develops tolerance against our proteins, and therefore, the vaccine
against cytokines (and IgE) requires overcoming this tolerance. The binding of cytokines to
a source of Th cell epitopes, such as VLPs, can drive specific B-cell responses and trigger
the induction of IgG autoantibodies against these inflammatory mediators [37]. This is
similar to what happens in carbohydrate conjugate vaccines, where B cells recognize the
carbohydrate and Th cells recognize the carrier protein to which the carbohydrates are
attached [83]. This formula triggers a long-term and polyclonal response against targeted
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molecules. Thanks to polyclonality, less induction of anti-drug antibodies is observed,
which is one of the main drawbacks of monoclonal antibodies. Moreover, the formula
requires a more limited number of vaccine doses [100], and it is quite cost-effective. In terms
of immunological response, the administration of VLP bound to Th2 cytokines showed
a marked reduction in well-known hallmarks of allergic diseases and asthma in animal
models. The active induction of anti-cytokines antibodies was also observed in the majority
of VLPs formulas [37,100].

Several formulas of VLPs with cytokines such as IL4 [128], IL-5 [129], IL-13 [79], IL-
33 [130], etc., have been tested. One of the most remarkable studies involved the genetic
fusion of an IL-13 peptide to the hepatitis B core antigen (HBcAg). The subcutaneous admin-
istration of this treatment in mice successfully broke tolerance, inducing the production of
anti-IL13-specific antibodies. This led to significantly diminished IL-13 concentrations, fewer
inflammatory cells in the bronchoalveolar fluid, and a drop in lung mucus production and col-
lagen deposition. As a result, this VLP significantly reduced lung inflammation, remodeling,
and hyperresponsiveness, thus limiting asthma exacerbations in the animal model [78].

More recently, some approaches against IL-5, the master regulator of eosinophils, have
been developed. For instance, the subcutaneous vaccination with equine IL-5 coupled to a
CuMVTT, showed promising results in horses suffering from chronic allergic dermatitis
caused by insect bites [108]. The aim was to strongly dampen eosinophil recruitment and
expansion. It resulted in the induction of anti–eIL-5 antibody titers. This significantly
improved the horses’ symptoms related to this chronic relapsing allergic dermatitis. In
addition, one year later, they assessed a second follow-up to analyze the potential for
long-term therapy [109]. The horses showed even more improvement in the disease in their
second vaccination year, confirming that responses could be maintained over the seasons
by yearly vaccination against IL-5. Therefore, this may be a long-term solution for the
treatment of eosinophil-mediated diseases. Moreover, the authors guaranteed the safety of
the formula, ensuring it did not induce auto-reactive IL-5-specific T-cell responses [110].
This was a successful immunotherapeutic approach in horses, and it might shed light on
the development of a similar treatment in humans.

When developing this kind of treatment, there are other aspects to take into consideration.
As we mentioned before, the breakage of tolerance may lead to adverse effects, such as
autoimmune diseases, immunodeficiency, reactivation of latent infections, or even impact
tissue remodeling [100]. In addition, once the administration has been performed, their effects
are hard to reverse. This is due to the establishment of long-lived plasma cells or vaccine-
induced B-cell memory cells, which would be difficult to remove from that moment on [100].
This is clearly different from monoclonal antibodies, whose administration can be stopped,
and the effects will disappear after some weeks, without further complications [131]. Another
potential issue is the possibility of potentiating the function of cytokines instead of mitigating
it, due to an increase in the activity of the cytokines by prolonging their half-life, for example.
In addition, some cytokines have been proved to retain their biological activity bound to VLPs,
leading to potential adverse effects, such as cytokines storm [100], while other VLPs can be
used to treat the cytokine storm syndrome [132,133].

3.2.3. Neutralizing/Blocking Antibodies against Allergen-Specific IgE

The last strategy to counteract allergies is based on the elimination of IgE-producing
cells or the neutralization of the function of IgE itself. Tolerance to IgE or FcεRs could be
altered by inducing autoantibodies or blocking antibodies [37]. This can be achieved by
targeting IgE, its specific receptor FcεRs, and IgE-producing B/plasma cells [100]. Several
studies have already used these approaches, with positive results.

A first example is a study in 2007, where three synthetic peptides of the human IgE
receptor-binding site of IgE conjugated with HBsAg VLP were produced. This vaccine
was injected subcutaneously to rats and mice sensitized to trichosanthin. The vaccinated
animals presented low IgE-antibody levels in serum, and they generated blocking FcεR
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antibodies. However, they did not interact with FcεR-bound rat IgE, showing the non-
anaphylactogenicity of the induced autoantibodies [134].

Subsequent studies have shown the importance of innate danger signals in VLP-
derived vaccines. For example, it has been demonstrated that QβG10 conjugated with two
IgE peptides could stimulate the innate immune system in mice, resulting in the production
of blocking anti-IgE antibodies. However, this effect was significantly reduced in TLR7
knockout mice. When mixed with adjuvants such as alum or CpG, no reduction in antibody
production was observed in the TLR7 knockout mice [19].

However, few other examples could be found until 2024, when Gharailoo et al. (2024)
developed a CuMVTT VLP immunotherapy with chemically bound IgE-Fc fragments. This new
strategy was tested in Fel d 1-sensitized mice. Mice immunized with these subcutaneous vac-
cines produced anti-IgE IgGs and blocked anaphylaxis upon challenge with the allergen [111].

This kind of methodology has the great advantage of generation of blocking antibodies,
which inhibit the binding between IgE and its receptors and reduce IgE serum levels.
However, no human clinical trials have been conducted. In addition, the main drawback is
the production of autoantibodies, with their related side effects, as mentioned before.

In summary, Figure 3 aims to depict in a single snapshot the variety of immunological
mechanisms behind the use of VLPs to treat allergy, based on the data in this review.
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Figure 3. Proposed immune mechanisms associated with the main strategies of VLP immunotherapies
against allergies. The strategies share two common mechanisms: The first is based on the recognition
of the formula by the BCR of B cells and consequent antibody production. The second consists of
the detection of VLPs by APCs and the following presentation to CD4+ lymphocytes, enhancing
Th1 and Treg responses with a decrease in the Th2 pathway. Depending on the approach, specific
mechanisms will occur: (a) TLR ligands coupled to VLP platforms will induce the secretion of class
I interferons, skewing the response to a Th1-type. (b) Allergen-conjugated VLPs can trigger the
production of neutralizing antibodies against the allergen itself. (c) Cytokines bound to VLPs can lead
to the secretion of anti-cytokines autoantibodies. (d) VLPs combined with IgEs elicit the synthesis
of anti-IgE antibodies to inhibit the function of the main allergy immunoglobulin. The main goal of
these immunotherapies is the desensitization of the patient to the specific allergen and the induction
of tolerance (created with BioRender.com).
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4. Conclusions

Virus-like particles have emerged as a novel and promising approach for the treatment
of allergic diseases. Within the array of nanoparticles used as biotechnological tools, VLPs
show advantages that make them a rational choice. Their structure, resembling their viral
origin, along with their repetitive patterns and size is very efficient in promoting entry
into the lymphatic system, especially in their uptake and presentation by APCs [103,135].
They show a low or non-toxic profile, are biodegradable and, in many cases, resistant to
proteases [54,136]. Moreover, their key capability is to pack molecules of interest within
their inner cavity, as well as the possibility of presenting antigens coupled chemically or by
genetic fusion [38,137].

Regardless of the coupling method, VLPs display the attached proteins in an ordered
and repetitive structure, increasing their immunogenicity, their concentration, and avoiding
degradation [138,139]. Thanks to recent advances in genetic engineering, the capacity of
VLPs to carry and present more antigens will be optimized. Bioinformatic tools will also be
crucial for designing chimeric proteins with improved physicochemical characteristics for
antigen displaying in VLPs [140,141]. In this regard, the size of the attached molecule is a
very important aspect to consider and may present a challenge for the correct folding of
the formula and for antigenic presentation [142–144].

Considering that structure and function are closely intertwined, the immunogenic
properties must be taken into consideration when optimizing VLPs’ structure. As pre-
viously mentioned, the repetitive antigen display in VLPs enhances uptake by APCs,
promotes antigen-specific responses, B-cell activation, etc. [52,53,55]. Previous reports have
suggested the development of neutralizing IgG/IgM antibodies, which seem to opsonize
VLPs, with interesting consequences in their efficacy [145,146]. This type of response needs
to be considered when choosing a VLP platform. For example, the viruses on which some
VLPs are based, such as norovirus or hepatitis virus, might have been previously presented
to our immune system, thus altering the expected response. However, other VLPs, such as
plant viruses or bacteriophage Qβ, are immunologically inert [135].

As shown in this review, VLPs are powerful and promising tools, with many in vivo
studies, but very few cases reaching clinical trials. This is, in a way, reasonable, given the
short period of time since the beginning of using VLPs and the many aspects to be analyzed
and optimized. In this regard, it is also important to consider the route of administration,
use of adjuvants, quantity, duration, side effects, etc. For instance, there are VLPs presented
here that display one allergen on their surface and other examples of VLPs that combine
antigen + adjuvant (see Table 1). There are examples of promising results with different
presentations, such as those based on VLPs packaging an allergen, where the authors
show the establishment of a Th1-Treg response that promotes the reduction of airway
hyperresponsiveness [103,147].

These conclusions reflect on the potential of applying VLPs for the treatment of
allergic diseases. The data obtained so far show promising results, indicating beneficial
immunomodulatory effects and increased safety. Still, there are many unresolved questions
to fully understand the mechanisms of protection that VLPs promise, with the final goal of
their applicability in human therapy.
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