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Abstract: Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are
produced by intestinal bacteria during the fermentation of partially digested and indigestible polysac-
charides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining
the homeostasis of the intestinal environment and also play an important regulatory role in organs
and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate
inflammation and affect host health, and two main signaling mechanisms have also been identified:
the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC).
In addition, a growing body of evidence highlights the importance of every SCFA in influencing
health maintenance and disease development. In this review, we summarized the recent advances
concerning the biological properties of SCFAs and their signaling pathways in inflammation and
body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention
and treatment of human diseases.
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1. Introduction

Short chain fatty acids (SCFAs) are organic acids produced in the intestinal lumen
by the bacterial fermentation of undigested dietary carbohydrates, dietary or endogenous
proteins, such as mucous and sloughed epithelial cells [1]. Bacteria of the Bacteroidetes
phylum are known to produce high levels of acetate and propionate, whereas bacteria of the
Bacillota are known to produce high amounts of butyrate [2]. Acetate (C2), propionate (C3)
and butyrate (C4) account for more than 95% of the SCFAs in the gut, with an estimated
ratio of about 3:1:1 in the gut [3,4]. SCFAs are vital mediators between the microbiota
and host physiology. A decreased production of SCFAs is associated with metabolic
diseases [5,6]. SCFAs have been identified as important metabolic biomarkers of disease-
related changes [7]. They are strongly associated with a variety of diseases, including
gastrointestinal disorders, obesity, diabetes, inflammation, kidney disease, cancer and
neurological disorders.

The microbial conversion of dietary fiber to monosaccharides in the gut is a complex
process involving a number of principal events (reactions) mediated by the enzymatic
repertoire of specific members of the gut microbiota [8]. (Figure 1) The major end prod-
ucts from these fermentations are the SCFAs. One of the major SCFAs, acetate, can be
produced directly from acetyl-CoA or via the Wood–Ljungdahl pathway using hydrogen
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and carbon dioxide or formate. Propionate is produced from the conversion of succi-
nate to methylmalonyl-CoA via the succinate pathway. It can also be synthesized from
acrylate with lactate as a precursor via the acrylate pathway [9] and via the propanediol
pathway using deoxyhexose sugars (such as fucose and rhamnose) as substrates [10]. Bu-
tyrate is formed from the condensation of two molecules of acetyl-CoA and subsequent
reduction to butyryl-CoA by phosphotransbutyrylase and butyrate kinase [11] or by the
butyryl-CoA:acetate CoA-transferase route [12].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 24 
 

 

from these fermentations are the SCFAs. One of the major SCFAs, acetate, can be produced 
directly from acetyl-CoA or via the Wood–Ljungdahl pathway using hydrogen and car-
bon dioxide or formate. Propionate is produced from the conversion of succinate to 
methylmalonyl-CoA via the succinate pathway. It can also be synthesized from acrylate 
with lactate as a precursor via the acrylate pathway [9] and via the propanediol pathway 
using deoxyhexose sugars (such as fucose and rhamnose) as substrates [10]. Butyrate is 
formed from the condensation of two molecules of acetyl-CoA and subsequent reduction 
to butyryl-CoA by phosphotransbutyrylase and butyrate kinase [11] or by the butyryl-
CoA:acetate CoA-transferase route [12]. 

 
Figure 1. A schematic diagram of carbohydrate fermentation pathways producing acetate, propio-
nate and butyrate. PEP, phosphoenolpyruvate; DHAP, dihydroxyacetonephosphate. 

Following their production in the colon, SCFAs are rapidly absorbed by the colono-
cytes. After supplying colonocytes, the remaining SCFAs are transported through the 
blood to various parts of the body [13]. Only a small proportion (approximately 5–10%) is 
excreted in the feces [14]. Acetate produced by bacterial fermentation in the colon enters 
the bloodstream and is mixed with acetate released by tissues and organs [15]. Up to 70% 
of the acetate is taken up by the liver, where it is used not only as an energy source but 
also as a substrate for the synthesis of cholesterol and long chain fatty acids and as a cosub-
strate for glutamine and glutamate synthesis [16]. Other tissues, including the heart, adi-
pose tissue, kidney and muscle, metabolize the rest of the acetate [16]. To prevent high 
SCFAs concentrations in the blood, the liver clears the major part of propionate and bu-
tyrate from the portal circulation [16]. Propionate acts as a precursor for gluconeogenesis 
in the liver [17]. After the conversion of propionate into propionyl-CoA, propionyl-CoA 
is converted to succinyl-CoA, which enters the tricarboxylic acid (TCA) cycle and is con-
verted to oxaloacetate, the precursor of gluconeogenesis [16]. The majority of butyrate is 
metabolized by colonocytes, where it is oxidized to ketone bodies and CO2; the remainder 
is oxidized by hepatocytes, preventing toxic systemic concentrations [16]. As discussed 
above, these SCFAs can be used as substrates to synthesize sugars or lipids and can also 
be used as cytokines to regulate metabolism (Table 1) [18,19]. 

The immune system is composed of two distinct branches: adaptive immunity, which 
develops in response to antigen stimulation and subsequent specific responses to the 

Figure 1. A schematic diagram of carbohydrate fermentation pathways producing acetate, propionate
and butyrate. PEP, phosphoenolpyruvate; DHAP, dihydroxyacetonephosphate.

Following their production in the colon, SCFAs are rapidly absorbed by the colono-
cytes. After supplying colonocytes, the remaining SCFAs are transported through the
blood to various parts of the body [13]. Only a small proportion (approximately 5–10%) is
excreted in the feces [14]. Acetate produced by bacterial fermentation in the colon enters
the bloodstream and is mixed with acetate released by tissues and organs [15]. Up to 70%
of the acetate is taken up by the liver, where it is used not only as an energy source but also
as a substrate for the synthesis of cholesterol and long chain fatty acids and as a cosubstrate
for glutamine and glutamate synthesis [16]. Other tissues, including the heart, adipose
tissue, kidney and muscle, metabolize the rest of the acetate [16]. To prevent high SCFAs
concentrations in the blood, the liver clears the major part of propionate and butyrate
from the portal circulation [16]. Propionate acts as a precursor for gluconeogenesis in the
liver [17]. After the conversion of propionate into propionyl-CoA, propionyl-CoA is con-
verted to succinyl-CoA, which enters the tricarboxylic acid (TCA) cycle and is converted to
oxaloacetate, the precursor of gluconeogenesis [16]. The majority of butyrate is metabolized
by colonocytes, where it is oxidized to ketone bodies and CO2; the remainder is oxidized
by hepatocytes, preventing toxic systemic concentrations [16]. As discussed above, these
SCFAs can be used as substrates to synthesize sugars or lipids and can also be used as
cytokines to regulate metabolism (Table 1) [18,19].

The immune system is composed of two distinct branches: adaptive immunity, which
develops in response to antigen stimulation and subsequent specific responses to the
antigen, and innate immunity, which is relatively nonspecific in nature [20]. SCFAs have
become well-recognized as mediators between the microbiota and mucosal immune cell
populations, and regulation by SCFAs extends to both the innate and adaptive immune
compartments both locally in the gut and systemically [21]. SCFAs can participate in
intestinal immune homeostasis by regulating T-cell polarization and inducing T-cell dif-
ferentiation into effector and regulatory T cells (Tregs) [22]. SCFAs exert inhibitory and
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accelerating effects on neutrophils and influence the immunoregulation of monocytes and
macrophages [22]. Zheng et al. (2024) demonstrated that the potential mechanisms for the
improvement of dextran sodium sulfate (DSS)-induced colitis include alterations in the
diversity and composition of the gut microbiota, as well as the upregulation of SCFA levels
and Treg production [23]. Furthermore, a growing body of evidence indicates that each
SCFA plays a pivotal role in influencing health maintenance and disease development.

Therefore, it is critical to understand exactly how SCFAs affect body energy home-
ostasis to improve the clinical efficacy of microbiota regulation on metabolic health. In
this review, we summarized the biosynthesis, distribution and physiology of SCFAs and
discussed their roles in diseases, with the aim of providing a theoretical basis and reference
for the treatment of diseases based on SCFA regulation.

Table 1. The impact of SCFAs on the basic biochemical pathways in the human body.

SCFAs Effects on Basic Biochemical Pathways Refs

acetate cholesterol and long chain fatty acid synthesis ↑; glutamine and glutamate
synthesis ↑; secretion of leptin in adipocytes ↑; fat oxidation ↑ [16,24]

propionate gluconeogenesis in the intestine and liver ↑; fatty acid synthesis ↓; TC ↓ [8,15,16,25]

butyrate
glycolysis ↓; intestinal gluconeogenesis ↑; liver gluconeogenesis ↓; liver
fatty acid oxidation ↑; lipid oxidation and glucose uptake in muscle ↑;

lipolysis in adipose tissue ↓
[15,25,26]

2. Physiological Mechanisms of SCFAs

Previous studies suggest that SCFAs have two major mechanisms of action: activation
of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC) [27].

2.1. Ligands for GPCRs

SCFAs can activate the G-protein-coupled receptors GPR41, GPR43 and GPR109A [28,29].
These receptors are also called free fatty acid receptors (FFARs) since they sense free
fatty acids [8]. They have attracted considerable interest and are considered promising
therapeutic targets for the treatment of metabolic disorders, including diabetes and obesity,
as well as for the regulation of inflammatory processes [30–32] (Table 2).

Table 2. SCFA receptors and their main expression sites.

SCFA Receptors G-Protein Coupling Affinity Expression Ref

GPR43/FFAR2 Gi/o; Gq

C2 = C3 > C4 > C5 = C1
(human)
C2 > C3 > C4 > C5 = C1
(mouse)

white adipocytes, enteroendocrine L
cells, intestinal epithelial cells (IECs),
pancreatic β-cells, colonic Tregs, M2
macrophages, neutrophils, eosinophils
and mast cells

[13,22,31,33]

GPR41/FFAR3 Gi/o C3 = C4 > C5 > C2 > C1

sympathetic ganglion cells,
enteroendocrine L cells,
enteroendocrine K cells, white
adipocytes, myeloid dendritic cells,
thymus, pancreatic β-cells

[13,22,31,33]

GPR109A/HCA2 Gi/o C4, niacin

white adipocytes, brown adipocytes,
keratinocytes, retinal-pigmented
epithelium, immune cells (dermal
dendritic cells, monocytes,
macrophages, neutrophils)

[22,34–36]

C1, formate; C2, acetate; C3, propionate; C4, butyrate; C5, valerate.

2.1.1. GPR43/FFAR2

GPR43, also known as FFAR2, is expressed in white adipocytes, enteroendocrine L
cells, intestinal epithelial cells (IECs), pancreatic β-cells, colonic Tregs, M2 macrophages,
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neutrophils, eosinophils and mast cells [24] and plays an important role in hormone
secretion, lipid metabolism, immunomodulation and the nervous system. It is primarily
activated by acetate and propionate, followed by butyrate [37]. SCFAs are primarily natural
agonists of FFAR2, and previous conformational studies have shown that FFAR2 exhibits
a preference for shorter SCFAs [22]. The potencies of the individual SCFAs in activating
FFAR2 in humans are ordered as C2 = C3 > C4 > C5 = C1 [13], whereas those for the mouse
receptor are ordered as C2 > C3 > C4 [31]. The observed differences in the responses of
human and mouse receptors to SCFAs may be attributed to the fact that the mouse receptor
shares approximately 84% amino acid sequence similarity with the human receptor [38].
GPR43 exhibits dual-coupling through the Gi/o and pertussis toxin-insensitive Gq protein
families [33]. Stimulation of GPR43 by SCFAs inhibits adenylate cyclase, thereby reducing
the production of cAMP from ATP [37]; activates the extracellular signal-regulated kinase
(ERK) cascade via interactions with the Gi/o family of G proteins; increases intracellular
Ca2+ levels; and promotes activation of the mitogen-activated protein kinase (MAPK)
cascade via interactions with the Gq family of G proteins [37]. However, the physiological
significance of this dual-coupled signaling mechanism through FFAR2 remains unclear [22].
In addition, β-arrestins are critical regulator and transducer proteins for GPCRs [39]. Lee
et al. (2011) demonstrated that GPR43 is associated with β-arrestins, particularly β-arrestin2
(βarr2), and further showed that GPR43 negatively regulates inflammatory cytokines by
modulating nuclear factor-κB (NF-κB) activity through βarr2 [40]. In adipose tissues,
GPR43 may be involved in regulating obesity and energy accumulation. GPR43 can be
expressed on the colonic epithelium, and SCFAs affect several functions of these cells,
including proliferation and epithelial barrier function. Stimulation of GPR43 by SCFAs is
necessary for the normal resolution of certain inflammatory responses [41]. GPR43-deficient
(Gpr43−/−) mice showed exacerbated or unresolving inflammation in models of colitis,
arthritis and asthma [41].

GPR43 is mainly expressed on leukocyte populations, particularly neutrophils [33].
Previous studies have indicated that GPR43 is expressed extensively in immune tissues
such as the spleen and in immune cells such as neutrophils [28,42], indicating that SCFAs
play an important role in immune responses. GPR43 is a functional receptor for the effects
of SCFAs on neutrophils and is highly specifically expressed in neutrophils [33]. The
average concentrations of propionate and butyrate in the blood are insufficient to activate
GPR41 or GPR43, but the blood concentrations reached by acetate are well within the
active range for GPR43 [33]. Using Gpr43−/− mice, KM et al. (2020) found that although
T- and B-cell numbers as well as blood neutrophil numbers were in the normal range,
acetate induced a robust calcium flux in mouse neutrophils and in human neutrophils
and eosinophils, which was absent in neutrophils from Gpr43−/− mice, suggesting that
GPR43 is the only functional receptor for SCFAs on neutrophils [41]. In a chronic model of
DSS-induced colitis, mice fed 200 mM acetate in their drinking water showed a substantial
decrease in inflammation, including an increased colon length, a reduced DAI, reduced
inflammatory infiltrate and less tissue damage, when compared to wild-type mice not fed
acetate, indicating decreased neutrophil infiltration/activation [41].

2.1.2. GPR41/FFAR3

GPR41, also known as FFAR3, is specifically expressed in sympathetic ganglion
cells [18]. It can also be expressed in enteroendocrine L cells, enteroendocrine K cells,
white adipocytes, myeloid dendritic cells (DCs), the thymus and pancreatic β-cells [22]. In
2003, GPR41 was deorphanized and identified as a receptor for SCFAs [28,33]. It is mainly
activated by propionate and butyrate [43]. GPR41 shows a stronger response to the longer
SCFAs than FFAR2 [28,33]. The potencies of the individual SCFAs in activating FFAR3 in
humans are ordered as C3 = C4 > C5 > C2 > C1 [13,31]. GPR41 is only conjugated by the
pertussis toxin-sensitive Gi/o families [33]. The stimulation of GPR41 by SCFAs has been
demonstrated to inhibit cAMP production and to promote ERK1/2 phosphorylation [22].
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GPR41 is expressed in immune cells, adipose tissue, intestine and peripheral nervous
system and is involved in energy regulation in response to SCFAs produced from the
gut microbiota, which may be beneficial in the treatment of inflammation and metabolic
diseases such as obesity and diabetes [43]. It was reported that the propionate-mediated
regulation of airway inflammation did not involve GPR43 [44]. The activation of both
the GPR41 and GPR43 receptors results in L-cell secretion of PYY and GLP1, which affect
various tissues including cardiovascular, pancreatic and brain tissues [39,40]. Furthermore,
islets are known to express the receptors GPR41 and GPR43, indicating that SCFAs may be
involved in islet-cell metabolism and mitochondrial function [45,46].

2.1.3. GPR109A/HCA2

GPR109A, also known as HCA2, was first identified as a receptor for niacin and is
also activated by β-hydroxybutyrate and butyrate [36]. In contrast to GPR41 and GPR43,
GPR109A is only activated by butyrate and not by acetate and propionate [47]. While
the mouse genome has only one gene for Gpr109 (called GPR109A), the human genome
contains two, GPR109A and GPR109B [35]. GPR109B originated from duplication of
GPR109A, and thus, these genes are highly similar [36]. GPR109A and GPR109B show
96% identity at the protein level; however, GPR109B does not bind to any SCFAs [47].
GPR109A is a coupled Gi/o protein and is expressed in colonic epithelial cells [22] and
adipocytes of white and brown adipose tissue, and it is expressed to a lesser extent in
keratinocytes, retinal-pigmented epithelium and immune cells, including dermal DCs,
monocytes, macrophages and neutrophils [34,35]. As a ligand for GPR109A, butyrate
has been demonstrated to reduce intestinal inflammation and to promote the integrity
of the intestinal epithelial barrier [48]. In the immune system, GPR43 and GPR109A are
expressed on neutrophils, macrophages and DCs, suggesting the roles of SCFAs in immune
responses [34,49].

2.2. HDAC Inhibitors

Studies have shown that HDAC enzymes are involved in maintaining microbiome-
dependent intestinal homeostasis; in particular, HDAC3, a class I histone deacetylase that
is highly expressed in the intestinal epithelium, is sensitive to microbial signaling [21].
SCFAs inhibit HDACs, often resulting in increased histone acetylation at direct targets [21].
HDAC inhibitors are widely used in cancer therapy and have also been reported to have
anti-inflammatory or immune-suppressive functions [8]. Butyrate and, to a lesser extent,
propionate are known to act as HDAC inhibitors, with butyrate being the most potent
and widely studied [50]. Although acetate is not traditionally considered to be an HDAC
inhibitor, it has been found to inhibit HDAC in activated T cells [51]. As the most effec-
tive HDAC inhibitor, the inhibitory efficiency of butyrate on HDAC1/2 can reach about
80% [52]. Propionate, on the other hand, has a maximum inhibition efficiency of about
60% [52]. It has been reported that butyrate and propionate can impact the balance between
pro-inflammatory and anti-inflammatory mechanisms by promoting the production of
peripheral Tregs [53]. This helps to maintain intestinal immune homeostasis. Gut microbe-
derived butyrate induces the differentiation of colonic Tregs by enhancing histone H3
acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus
and reduces the development of colitis [54]. Therefore, SCFAs may act as modulators of
cancer and immune homeostasis.

A cell-based HDAC assay employed by Park et al. (2015), in which SCFAs must enter
T cells to inhibit HDACs, found that the HDAC activity in T cells was dose-dependently
suppressed by SCFAs, the HDAC activity of SCFAs was not diminished in T cells deficient
in GPR41 or GPR43, and further studies showed that SCFAs regulate the mTOR-S6K
pathway required for T-cell differentiation into effector and Tregs [38]. This suggests that
SCFAs inhibit histone deacetylases in a GPR41/GPR43-independent manner and regulate
the mTOR-S6K signaling pathway required for T-cell differentiation into effector and
regulatory T cells, which play an important role in the regulation of tissue inflammation
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and immunity [51]. In a study using bone marrow-derived macrophages (BMDMs) as a
model cell type, PV et al. (2014) found that n-butyrate treatment significantly reduced the
levels of NO, IL-6 and IL-12p40 by inhibiting HDAC [55].

3. SCFA Regulation of Inflammation via GPCRs and HDAC

In immunity and inflammation, the recruitment and secretion of pro- and anti-inflammatory
cytokines by immune cells plays a crucial role in protecting the organism from harm and
maintaining the balance between the immune and inflammatory states [56]. However,
when this balance is disturbed, as in the case of the excessive secretion of pro-inflammatory
cytokines, systemic inflammation and pathological disease can result [57]. SCFAs modulate
inflammation by regulating cytokine production in immune cells including neutrophils,
macrophages, dendritic cells, T cells and B cells [56]. For example, SCFAs (butyrate and pro-
pionate) have been shown to reduce the expression of tumor necrosis factor (TNF) and nitric
oxide synthase (NOS) in LPS-induced monocytes [58]. Macrophages are a major source
of inflammatory mediators, and once activated, macrophages produce large amounts of
TNF-α, IL-1β, IL-6, chemokines, nitric oxide (NO) and arachidonic acid derivatives [59].
SCFAs have been demonstrated to inhibit the production of pro-inflammatory mediators,
including TNF-α, IL-6 and NO, which are stimulated by lipopolysaccharides (LPSs) and
cytokines [59]. As illustrated in Figure 2, SCFAs regulate the inflammation by acting on
GPCRs and HDAC.
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SCFA–GPR43 signaling is one of the molecular pathways whereby commensal bacte-
ria regulate immune and inflammatory responses [41]. In a study by KM et al. (2009), it
was demonstrated that acetate induced apoptosis in neutrophils in a dose-dependent and
GPR43-dependent manner [41]. Furthermore, acetate stimulation of human neutrophils
markedly reduced the surface expression of pro-inflammatory receptors such as C5aR
and CXCR2, presumably through agonist-mediated receptor heterodimerization and in-
ternalization [41]. It has been demonstrated that acetate/propionate can improve airway
inflammation by acting on GPR41, reducing eosinophilic infiltration and downregulating
the levels of IL-4, IL-5, IL-13 and IL-17A in the lungs [60]. Propionate ameliorates allergic
airway inflammation and inhibits Th2 cytokine production by acting on GPR41 [61]. In
addition to free fatty acid receptors, SCFAs have also been demonstrated to participate in
the regulation of inflammation by binding to GPR109A [56]. GPR109A signaling induces
anti-inflammatory properties in colonic antigen-presenting cells, which in turn promotes
the differentiation of Tregs and IL-10-producing T cells [62]. Butyrate can induce the
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expression of anti-inflammatory molecules in macrophages and DCs through GPR109A sig-
naling, thereby enabling them to support the differentiation of Tregs and IL-10-producing T
cells [62]. Furthermore, GPR109A was found to be essential for the expression of IL-18 [62].
In a model of colitis induced by DSS in mice, Li et al. (2021) found that butyrate significantly
inhibited IBD neutrophils from producing pro-inflammatory cytokines, chemokines and
calprotectins, while the blockade of GPCR signaling with pertussis toxin (PTX) did not
interfere with the effect; additionally, the HDAC inhibitor trichostatin A (TSA) efficiently
mimicked the action of butyrate, suggesting that butyrate significantly ameliorates in-
flammation by inhibiting HDAC function to suppress the neutrophil-associated immune
response such as the formation of pro-inflammatory mediators [27].

On the contrary, the pro-inflammatory effects of SCFAs have also been reported. In rat
and in vitro experiments, SCFAs have been shown to increase the expression of the surface
adhesion molecule L-selectin and the release of the cytokine CINC-2αβ (cytokine-induced
neutrophil chemoattractant-2αβ), which in turn increases the migration of neutrophils
to the site of inflammation, thereby exacerbating the inflammatory response [63]. SCFAs
activate the MAPK pathways in enterocytes by activating GPR43, which in turn promotes
the expression of the inflammatory cytokines IL-6, IL-17A and IL-12 and the chemokines
CXCL1 and CXCL2 [29]. The two opposite effects of SCFAs, pro-inflammatory and anti-
inflammatory, may be related to their local concentration, but the possible mechanisms still
need to be further explored [56].

4. Physiological and Pathological Effects of SCFAs
4.1. Acetate
4.1.1. Biosynthesis, Distribution and Physiology

Acetate production pathways are widely distributed in the microbiota. For example,
acetate can be produced by enteric bacteria and acetogens (Blautia hydrogenotrophica) via
the acetyl-CoA and Wood–Ljungdahl pathways, respectively [64]. Acetate and propionate
are released into the portal vein, in addition to butyrate, which is consumed locally by
colon cells. Acetate is the most abundant short chain fatty acid in both the colon and the
peripheral circulation [3].

As the major SCFA produced by the gut microbiota, acetate can signal from the
extracellular compartment to the cytoplasm by activating the protein-coupled receptor
GPR43 [65]. Acetate can bind and activate GPR43 on neutrophils and eosinophils to induce
their apoptosis, and drinking acetate-containing water can reduce inflammatory infiltration
and tissue damage, resulting in a significant reduction in inflammation [29,41]. Acetate
can also bind to liver GPR43 via the entero–liver axis and inhibit the carcinogenic IL-
6/JAK1/STAT3 signaling pathway, thereby preventing the progression of non-alcoholic
fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) [66]. Furthermore,
acetate can cross the blood–brain barrier and reduce appetite by changing the expression
profiles of appetite regulatory neuropeptides in the hypothalamus through activation of
the TCA cycle [67].

4.1.2. Acetate and Diseases

In a rodent experimental model of colitis, oral administration of acetate has been
shown to have a protective effect [42]. Acetate can reduce the levels of pro-inflammatory
cytokines and modulate microglial phagocytosis and disease progression during neurode-
generation [14]. In a study involving transgenic mice overexpressing heparinase (Hpa-Tg
mice), acetate was significantly decreased, and supplementation with acetate reduced
neutrophil infiltration to alleviate acute pancreatic (AP) inflammation in Hpa-Tg mice [68].
Wang et al. (2020) found that Evodiamine (EVO) can regulate the keystone bacteria L.
acidophilus to increase the production of acetate in the gut affected by colitis, thereby pre-
venting or treating ulcerative colitis (UC) [69]. In a human epithelial cell culture model
derived from colitis patients, high acetate administration was found to have protective
effects on epithelial resistance, barrier gene expression and inflammatory protein produc-
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tion [70]. The production of acetate plays a crucial role in pulmonary immunity against
pneumococcal infection [71]. The study demonstrated that acetate therapy augmented the
bactericidal activity of alveolar macrophages by eliminating the NLRP3 inflammasome
and glycolytic–HIF-1A axis in the context of Streptococcus pneumoniae, irrespective of
either GPR43 or acetyl-CoA synthetases 1 and 2 [72]. Additionally, a proliferative probiotic
Bifidobacterium strain in the gut can ameliorate the progression of metabolic disorders
through microbiota modulation and acetate elevation [73]. A recent study showed that
sodium acetate has a bidirectional regulatory effect on macrophages and can also affect
lipid accumulation in hepatocytes [74]. Acetate has also been found to improve Canavan
disease [75], prevent hypertension [76] and suppress non-alcoholic fatty liver disease [66].
As the major SCFA produced by the gut microbiota, the regulatory role of acetate in host
metabolic control is important. However, there are many issues that require extensive work
to fully understand the roles of acetate in host metabolic control and to provide better
strategies for the prevention and treatment of human diseases.

4.2. Propionate
4.2.1. Biosynthesis, Distribution and Physiology

Propionate is produced via the succinate, acrylate or propanediol pathways [14]. Propi-
onate production is dominated by relatively few bacterial genera. Akkermansia municiphilla
has been identified as a key propionate-producing species that degrades mucin [64]. Propi-
onate is absorbed by the intestinal tract into the portal vein and metabolized in the liver,
and it is only present at low concentrations in the peripheral circulation [3]. Despite the
low peripheral concentration, propionate affects peripheral organs indirectly by activating
the hormonal and nervous systems [8].

Propionate activates intestinal gluconeogenesis via the gut–brain neural circuit, thereby
promoting metabolic benefits on body weight and glucose control [77]. As an endogenous
HDAC2 inhibitor, propionate can decrease the levels of apoptosis of intestinal epithe-
lial cells caused by oxidative stress [78]. Propionate has also been shown to promote
colonic homeostasis and health [79]. Propionate protects from cardiac damage and reduces
atherosclerosis in experimental hypertension, and its effects may depend on Tregs [80].
Lesley et al. (2018) found that propionate also has a beneficial protective effect on the
blood–brain barrier, where the mechanism is due to inhibiting inflammation and oxidative
stimulation [81].

4.2.2. Propionate and Diseases

Propionate is a major microbial fermentation metabolite in the gut of many animals
including humans, and it exerts versatile health-promoting effects systemically beyond
the gut [82], including the attenuation of cardiac hypertrophy, fibrosis and vascular dys-
function [81] and the amelioration of colonic inflammation [83]. These studies suggest
that propionate in the gut can modulate the pathogenesis of systemic diseases and gut-
specific immune responses [61]. Propionate-producing bacteria play a critical role in the
protection from inflammatory arthritis [84]. The level of propionate on the skin surface
was significantly lower in atopic dermatitis (AD) patients than in healthy individuals,
and topical application of propionate attenuated skin inflammation in mice with MC903-
induced AD-like dermatitis by inhibiting IL-33 production in keratinocytes [85]. With
both human and animal model studies, Arash et al. (2022) demonstrated that propionate
attenuates atherosclerosis through the immune-dependent regulation of intestinal choles-
terol metabolism [86]. Si et al. (2024) found that Achyranthis bidentatae could attenuate
renal injury in STZ/HFD mice by modulating the abundance of beneficial flora, thereby
promoting the production of propionic and isobutyric acids [87]. Propionate supplemen-
tation promotes the expansion of peripheral regulatory T cells in patients with end-stage
renal disease (ESRD) [88]. The cardioprotective effect of propionate is also dependent
on Tregs [80]. These studies highlight the immunomodulatory role of propionate and its
importance for cardiovascular health.
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4.3. Butyrate
4.3.1. Biosynthesis, Distribution and Physiology

Butyrate can be produced via the phosphotransbutyrylase/butyrate kinase path-
way and the butyryl-CoA:acetate CoA transferase pathway [12,89]. In addition, some
microorganisms in the gut (Anaerostipes spp., Coprococcus catus, Eubacterium rectale, Eu-
bacterium hallii, Faecalibacterium prausnitzii, Roseburia spp.) can also synthesize butyrate
from lactate and acetate, which prevents the accumulation of lactic acid and stabilizes
the intestinal environment [8]. Butyrate is the preferred energy source for colon cells [8],
and it is estimated that up to 95% of microbial-produced butyrate is consumed by the
colon, where it plays an important regulatory role in intestinal barrier function and inflam-
mation [90]. There is also a small amount of butyrate transported through the intestine
into the blood circulation, affecting the function and metabolism of peripheral tissues [3].
Despite the low peripheral concentrations, butyrate can indirectly affect physiological
functions by activating hormones and the nervous system [8]. As a major product of gut
microbial fermentation, butyrate has been recognized as an important mediator of gut
microbiota regulation in whole body energy homeostasis [91]. Butyrate increases per-
oxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) expression and
adenosine monophosphate-activated kinase (AMPK) phosphorylation in muscle and liver
tissue and PGC-1α and mitochondrial uncoupling protein-1 (UCP-1) expression in brown
adipose tissue, promoting fatty acid oxidation and thermogenesis [92]. Like propionate, bu-
tyrate can also activate intestinal gluconeogenesis via the gut–brain neural circuit, thereby
promoting metabolic benefits for weight and glucose control [77]. Significant changes in
SCFAs, particularly the butyrate concentrations in blood or tissues, cause inflammatory,
immunological and metabolic diseases [93]. Appropriate concentrations of butyrate help to
maintain normal metabolism in the prevention and treatment of diseases [94]. In a limited
number of investigations conducted to date, butyrate or sodium butyrate has been used
therapeutically in diseases in vivo and in vitro. Research conducted on the application of
butyrate in diseases is summarized in Table 3.

Table 3. The effects of butyrate on diseases.

Disease Model Design Results Refs

Obesity Female C57BL/6 mice on
Western-style diet

5% (W/W) sodium butyrate
supplementation in food for 12 weeks

BW ↓; TG ↓; liver weight ↓; Occludin ↑; plasma
endotoxin ↓; GPR43 ↓; GPR41 ↑; GPR109A ↑ [95]

Type 1 diabetes Female NOD mice 150 mM sodium butyrate in the
drinking water for 36 weeks

BG ↓; Insulitis ↓; loss of insulin-positive cells ↓;
serum C-peptide ↑; cTregs ↑; CXCL12 ↑ [96]

Type 2 diabetes Male Sprague–Dawley rats on
HFD

Pretreated with HFD for 4 weeks and
one dose of STZ (35 mg/kg, IP), then
sodium butyrate treatment at a dose
of 500 mg/kg/day (IP) for 6 weeks

BG ↓; HOMA-IR values ↓; fasting serum
insulin levels ↓; TC ↓; TG ↓; Bax ↓; cleaved

caspase-3 ↓; caspase-12 ↓; Bcl-2 ↑;
p-PERK ↓; CHOP ↓

[97]

Diabetes STZ-induced male C57BL/6 mice 5% (W/W) sodium butyrate
supplementation in diet for 20 weeks

3-NT ↓; 4-HNE ↓; VCAM-1 ↓; ICAM-1 ↓; NRF2
↑; NQO1 ↑; t-NRF2 ↑; c-NRF2 ↑; HDAC ↓;

ROS ↓; MDA ↓
[98]

Insulin resistance Male C57BL/6J mice on HFD 5% (W/W) sodium butyrate
supplementation in diet for 12 weeks

BW ↓; BG ↓; insulin ↓; IR ↓; AMPK ↑; PGC-1α
↑; p38 ↑; CPT1b ↑; COX-I ↑; PPAR-δ ↑;

TG ↓; TC ↓
[19]

Diabetic inflammation Male db/db mice on HFD Orally treated with sodium butyrate
(0.5 g/kg/day) for 5 weeks

BW ↓; BG ↓; blood Cr ↓; BUN ↓; WBC ↓; ALYs
↓; IL-1β ↓; MCP-1 ↓; TNF-α ↓; IL-8 ↑; ZO-1 ↑;

ICAM-1 ↓; ROS ↓; MDA ↓
[99]

Diabetic retinopathy STZ-induced male C57BL/6J mice Daily gavage with sodium butyrate
(500 mg/kg) for 12 weeks BG (↓); ZO-1 ↑; Occludin ↑; SCFA ↑ [100]

Diabetic
nephropathy Male db/db mice 1% (W/W) sodium butyrate

supplementation in diet for 12 weeks

IL-6 ↓; TNF-α ↓; IL-1β ↓; CRP ↓; Muc2 ↑; TJ
proteins ↑; ZO-1 ↑; Occludin ↑; LC3II ↓; p62 ↑;

ROS ↓; MDA ↓; p-PI3K ↑; p-Akt ↑;
p-mTOR ↑; FFA2 ↑

[101]

Diabetic nephropathy Male db/db mice 1% (W/W) sodium butyrate
supplementation in diet for 12 weeks

CoIV ↓; PAI-1 ↓; α-SMA ↓; CTGF ↓;
TGF-β1 ↑; P311 ↓ [102]

Diabetic nephropathy STZ-induced male C57BL/6 mice 5% (W/W) sodium butyrate
supplementation in diet for 20 weeks

UACR ↓; TGF-β1 ↓; CTGF ↓; PAI-1 ↓; BIP ↓;
CHOP ↓; MDA ↓; iNOS ↓; 3-NT ↓; Ho1 ↑; Nqo1

↑; n-NRF2 ↑; HDAC ↓
[103]
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Table 3. Cont.

Disease Model Design Results Refs

Diabetic nephropathy Male db/db mice Daily gavage with sodium butyrate
(1000 mg/kg) for 12 weeks

BW ↓; BG ↓; BUN ↓; Ucr ↓; TG ↓; TC ↓; UAE ↓;
glucose tolerance ↓; IR ↓; SREBP-1c ↓; FAS ↓;

PPAR-γ ↑; CPT-1 ↑; PPARα ↑; ACOX1 ↑;
cleaved caspase 3 ↓; Bax ↓; Bcl-2 ↑;

PGC-1α ↑; p-AMPK ↑

[104]

Inflammation Male db/db mice Sodium butyrate (1.0 g/kg, IP) every
other day for 6 weeks

BW ↓; Glucose ↓; EAT ↓; SAT ↓; IL-1 ↓; IL-6 ↓;
TNF-α ↓; NLRP3 ↓ [105]

Non-alcoholic fatty liver
disease Male C57BL/6J mice on HFD Daily gavage with sodium butyrate

(200 mg/kg) for 8 weeks

BW ↓; ZO-1 ↑; MCP-1 ↓; TNF-α ↓; TGF-β1 ↓;
α-SMA ↓; Smad7 ↓; Smad2 ↓; MCP-1 ↓; IL -1 ↓;
IL -2 ↓; IL-6 ↓; IFN-γ ↓; TLR4 ↓; Myd88 ↓; IL-4

↑; IL-10 ↑; PPAR-γ ↑
[106]

Non-alcoholic fatty liver
disease Male C57BL/6 J mice on HFD

Fed with HFD for 16 weeks and daily
gavage with sodium butyrate (200

mg/kg) for the latter 8 weeks

BW ↓; IL-1β ↓; IL-6 ↓; TNF- α ↓; TC ↓; TG ↓;
LDL-C ↓; HDL-C ↓; ALT ↓; AST ↓;

CXCR4 ↓; miR-150 ↑
[107]

Neurological disease Male C57BL/6J mice on HFD Gavage with butyrate (100 mg/kg
q.d.) for 6 weeks

BW ↓; TG ↓; CHOL ↓; leptin ↓; ADP ↓; TNF-α
↓; IL-1β ↓; IL-6 ↓; IL-10 ↑; ROS ↓; MDA ↓; GSH
↑; GSH/GSSG ↑; SOD ↑; Aconitase ↑; BDFF ↑

[108]

ACOX1, Acyl-CoA Oxidase 1; ADP, adiponectin; ALYs, abnormal lymphocytes; AMPK, AMP-activated protein
kinase; Bax, Apoptosis Regulator; BIP, binding immunoglobulin protein; blood Cr, blood creatinine; BG, body
glucose; BUN, urea nitrogen; BW, body weight; CHOL, cholesterol; CHOP, C/EBP homologous protein; CPT-1,
Carnitine Palmitoyltransferase 1; CTGF, connective tissue growth factor; EAT, epididymal adipose tissue; FAS,
Fatty acid synthase; GSH, glutathione; GSSG, oxidized glutathione; HDAC, histone deacetylase; HOMA-IR,
homeostasis model assessment of insulin resistance; IL-6, interleukin-6; IL-1β, interleukin-1β; IL-8, interleukin-8;
iNOS, inducible nitric oxide synthase; IR, insulin resistance; MCP-1, monocyte chemotactic protein-1; MDA,
Malondialdehyde; Nqo1, dehydrogenase quinone; n-NRF2, nuclear NRF2; Ho1, Heme oxygenase 1; 3-NT,
3-Nitrotyrosine; PAI-1, plasminogen activator inhibitor-1; p-AMPK, phosphorylated AMP kinase; P311, an RNA-
binding protein; PPARα, Peroxisome Proliferator Activated Receptor Alpha; PPAR-γ, Peroxisome Proliferator
Activated Receptor Gamma; ROS, reactive oxygen species; SAT, subcutaneous adipose tissue; SCFA, short chain
fatty acid; SOD, superoxide dismutase; SREBP-1c, Sterol-regulatory element binding proteins; STZ, streptozotocin;
TC, total cholesterol; TG, triglyceride; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α;
UAE, urinary albumin; ZO-1, zona occludens-1.

4.3.2. Butyrate and Diseases
Obesity

The prevalence of overweight and obesity is increasing. It has been estimated by the
Global Burden of Disease Obesity Collaborators that >107.7 million children and >603.7 mil-
lion adults are obese [109]. Obesity and overweight are important determinants of a range
of health problems and increase the risk of many related diseases including type 2 diabetes
mellitus (T2DM), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD),
cognitive impairment and others [94]. The role of butyrate in obesity has been studied in
humans, as well as in vitro and in vivo animal studies [110–112]. In HFD-induced obese
mice, treatment with butyrate leads to improved energy metabolism via reducing energy
intake and enhancing fat oxidation by activating brown adipose tissue (BAT) [113,114]. In
mouse models of obesity, dietary supplementation with butyrate can prevent and treat
diet-induced obesity and insulin resistance [19]. According to a study involving 205 women
at 16 weeks gestation, the butyrate production capacity was decreased in obese pregnant
women [115]. Another study found that the abundance of butyrate-producing bacteria
was significantly decreased in non-alcoholic steatohepatitis (NASH) [116]. These findings
suggest that butyrate plays an important role in the development of obesity.

Diabetes

Butyrate exhibits correlative beneficial effects in glucose homeostasis. A reduction in
butyrate-producing bacteria has consistently been found in individuals with T2DM, as well
as in those with prediabetes [117]. Transplantation of T2DM-susceptible bacteria can also
reduce SCFA levels and GPR41/43 expression in rats [118]. In addition to its preventive
effects on body weight and adiposity, butyrate supplementation has also been associated
with the mitigation of insulin resistance in several animal models [110,119]. For example,
sodium butyrate supplementation (5% wt/wt) into the HFD of C57BL/6J mice prevented
HFD-induced adiposity and insulin resistance [120]. The pathogeneses of T2DM include
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glucose toxicity, oxidative stress, endoplasmic reticulum stress (ERS) and inflammation [97].
A study exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate
and measured inflammatory gene expression and nitric oxide (NO) production; the results
showed that butyrate inhibited IL-1β-induced inflammatory gene expression and NO
production by suppressing NF-κB activation and thereby possibly preserved beta cell
function [121,122]. Hu et al. (2018) suggested that sodium butyrate protects islet cells
from apoptosis through inhibiting the PERK-CHOP pathway of endoplasmic reticulum
stress [97]. Jia et al. (2020) found that non-obese diabetic (NOD) model mice that were given
butyrate by drinking water were protected against vancomycin-accelerated type 1 diabetes
mellitus (T1DM) in maternal mice and their female offspring [123]. In addition, oral
butyrate does not affect innate immunity and islet autoimmunity in individuals with
long-standing T1DM [124].

Long-term elevated blood glucose levels can lead to diabetic complications such
as cardiovascular disease, diabetic kidney disease and diabetic retinopathy [125]. Bu-
tyrate has been shown to have a beneficial effect on kidney disease in humans. Post-
treatment of juvenile diabetic rats with butyrate showed that sodium butyrate treatment
improved renal function and ameliorated the histological alterations, fibrosis, apoptosis
and DNA damage in the kidney [126]. The in vitro and in vivo experiments showed that
sodium butyrate can activate the kidney mitochondrial AMPK/PGC-1-α signaling path-
way, thereby improving mitochondrial dysfunction in diabetic nephropathy (DN) [104]. Du
et al. (2020) found that butyrate alleviated DN by mediating the miR-7a-5p/P311/TGF-β1
pathway [102]. Furthermore, butyrate provides a protective effect in db/db mice and
HG/LPS-induced C2C12 myoblasts by suppressing autophagy and oxidative stress and
activating the PI3K/AKT/mTOR pathway [50,101]. Sodium butyrate supplementation
also ameliorates diabetic inflammation, diabetic retinopathy and diabetes-induced aortic
endothelial dysfunction [98–100].

Taken together, these findings demonstrate the microbiota-regulating and diabetic
therapeutic effects of butyrate, which can be used as a potential treatment for diabetes.

Inflammation

Butyrate is a particularly important SCFA with anti-inflammatory properties and is
generally present at lower levels in inflammatory diseases associated with gut microbiota
dysbiosis in mammals [127,128]. The principle mechanisms through which butyrate exerts
its anti-inflammatory effects are the suppression of NF-κB activation, the inhibition of
interferon γ production and the upregulation of peroxisome proliferator-activated receptor
γ (PPAR γ), which may result from the inhibition of HDAC [129]. Oral administration of
butyrate markedly ameliorated mucosal inflammation in DSS-induced murine colitis by
inhibiting neutrophil-associated immune responses such as pro-inflammatory mediators
and NET formation [27]. Sodium butyrate can effectively inhibit the inflammation of adi-
pose tissue mediated by the NLRP3 pathway [105]. Butyrate attenuates lung inflammation
by negatively modulating Th9 cells [130]. Sodium butyrate supplementation modulates
the neuroinflammatory response aggravated by antibiotic treatment in a mouse model of
binge-like ethanol drinking [131]. Patients with acute pancreatitis showed a decrease in
butyrate producers compared to healthy subjects [132]. Butyrate supplementation shows a
protective effect against inflammation.

Cancer

Butyrate provides energy for colorectal epithelial cells and inhibits inflammation and
tumor formation [62]. Clostridium Butyricum: C. butyricum, which produces butyrate,
inhibits proliferation and induces apoptosis in colorectal cancer (CRC) cells by interacting
with the Wnt/β-catenin signaling pathway modulating the composition of the gut micro-
biota [133,134]. This decreases atherosclerosis and the secretion of secondary bile acids
(BAs) closely related to cancer development, enhances the secretion of SCFAs and activates
GPRs including GPR43 and GPR109A that suppress tumor progression [134]. Butyrate acts
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as a potent HDAC inhibitor in colon cancer cells, enabling cell cycle arrest, differentiation
and apoptosis at physiological concentrations [135]. SIRT1, a member of the HDAC family,
is known to be positively correlated with tumor growth [136]. In the study of the anti-tumor
effect of butyrate on HCT116 colorectal cancer cells and its molecular mechanism, it was
found that butyrate treatment inhibited cell proliferation and induced apoptosis by inhibit-
ing the activation of the mTOR/S6K1 signaling pathway, partly via SIRT1 inhibition [137].
It is consistent with previous findings that the abundance of butyrate-producing bacteria
and the rate of butyrate production are greatly diminished in the colon during ulcerative
colitis and colon cancer [138,139]. Nagendra et al. (2014) found a tumor suppressor role for
GPR109A-butyrate signaling in the colon, suggesting that commensals in the gut protect
the host not only against colonic inflammation but also against colon cancer [62].

Recently, a study found that supplementation with a high-fiber diet and butyrate could
significantly inhibit gastric cancer (GC) development, promote apoptosis of GC cells and
inhibit their proliferation [140]. The study highlighted that the restoration of gut microbial
butyrate enhanced CD8+ T-cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC
carcinogenesis, suggesting a novel theoretical basis for GC management [140]. In addition,
another study found that butyrate induced ROS-mediated apoptosis by modulating the
miR-22/SIRT-1 pathway in liver cancer cells [141]. Butyrate supplementation can also
interfere with pancreatic cancer biology and the response to treatment and can alleviate
some damage associated with cancer itself or to chemotherapy [142]. As an HDAC inhibitor,
butyrate has great potential for future therapy against various cancers [143].

Kidney Diseases

An altered gut microbiota composition has been reported in patients with chronic kid-
ney disease (CKD), including those with ESRD, compared with healthy controls [144,145].
Butyrate producers decreased with CKD severity [146]. Supplementation with Faecalibac-
terium prausnitzii, a beneficial butyrate-producing bacterium, reduced kidney dysfunction,
kidney inflammation and the serum levels of various uremic toxins in CKD mice, and
this was, at least in part, attributed to the butyrate-mediated GPR43 signaling in the
kidney [147]. The mechanism by which butyrate improves kidney dysfunction remains
unknown and thus requires further exploration [148]. In the adriamycin-induced nephropa-
thy model, butyrate protects against proteinuric kidney disease through epigenetic- and
GPR109A-mediated mechanisms [149]. In the kidney of rats subjected to contrast-induced
nephropathy, sodium butyrate decreases the activation of NF-κB, thereby reducing in-
flammation and oxidative damage [150]. Wu et al. (2020) found that sodium butyrate
may attenuate deoxycorticosterone acetate/salt-induced hypertension and renal damage
by inhibiting the MR/SGK1 pathway [151]. The use of butyrate or butyrate-producing
diets holds promise for the prevention and treatment of CKD. Gut dysbiosis has been
reported in CKD, but the results of clinical trials testing probiotic supplementation were
disappointing [147].

Neurological/Psychiatric Diseases

Accumulating evidence has shown that butyrate can reduce neurotoxicity, neuroin-
flammation and behavioral abnormalities, with benefits for a variety of central nervous
system diseases through inhibiting HDAC [152,153]. Sodium butyrate prevents excessive
ROS through NADPH oxidase 2 (NOX2) suppression and superoxide dismutase 1 (SOD1)
upregulation through the p21/NRF2 (Nuclear factor erythroid 2-related factor 2) pathway
in an HFD-induced obesity mouse model of Alzheimer’s disease (AD), which is critical for
inhibiting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)-dependent amy-
loidogenesis in neuronal cells exposed to a high cholesterol environment [154]. Butyrate
supplementation in mice improves neuroinflammation and mitochondrial impairment in
the cerebral cortex and synaptic fraction in an animal model of diet-induced obesity [108].
Collectively, SCFAs influence the development of neurological disease by inhibiting histone
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acetylation, regulating the expression of tight junction proteins, or affecting microglial
morphology and function [155].

4.4. Others

The primary source of SCFAs in humans is the metabolic by-products of complex starch
fermentation in the gut, where commensal bacteria produce 1–6 carbon structures, mainly
including acetate, propionate, butyrate, valerate and caproate [30]. Valerate and caproate
are two kinds of short chain fatty acid subtypes produced by the gut microbiota [156], and
unfortunately, valerate and caproate have not been studied as extensively as other SCFAs;
thus, little is known about their physiological role.

According to a study involving 71 males and 29 females with DN, valerate and
caproate concentrations decreased significantly in the advanced DN group, suggesting that
lower serum levels of valerate and caproate predict the progression from DN to ESRD [156].
However, another study showed that the plasma valerate levels were significantly higher
in patients with the primary or secondary outcome of coronary artery disease (CAD)
or cardiovascular disease (CVD) than in those without CAD or CVD [157,158]. Zhang
et al. (2024) found that valeric acid and isovaleric acid were significantly elevated in the
serum of depressed patients compared to healthy people [159]. The association of the
gut microbiome and its metabolites with different diseases appears to be diverse under
different conditions, such as the host’s age, sex, genotype, diet and geography [157,158].
However, the concentration of SCFAs in healthy people is independent of age and sex [160].
This indicates that it is necessary to further investigate the variation in the gut microbiome
and its metabolites in different diseases, so as to further clarify the association among
SCFAs and diseases, and to establish a laboratory foundation for treating diseases based on
the gut microbiota and its metabolites [156].

5. Conclusions and Outlook

As the major SCFAs produced by the gut microbiota, acetate, propionate and butyrate
have attracted more and more attention from researchers, and a growing body of evidence
supports SCFAs as key mediators that may help to prevent, reverse and delay the progres-
sion of diseases. Supplementation with endogenous or exogenous SCFAs improves body
weight, glucose regulation, lipid metabolism and inflammation and is beneficial for a large
number of people with metabolic diseases (Figure 3). As HDAC inhibitors, SCFAs can
inhibit tumor cell proliferation, induce tumor cell apoptosis, inhibit inflammation and play
important roles in the onset and development of cancer and inflammation. By activating
GPCRs, SCFAs can reduce inflammation, improve islet metabolism and mitochondrial func-
tion and affect multiple tissues such as the cardiovascular system, pancreas and brain. In
addition, it has been suggested that the activation of thermogenesis in brown adipose tissue
and white adipose tissue may also be related to increased concentrations of SCFAs [161].
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However, some of the mechanisms of SCFAs in physiology or pathology are still
unclear. For example, in the inflammatory response, SCFAs exhibit both pro-inflammatory
and anti-inflammatory opposing effects. The possible mechanisms are uncertain and re-
main to be further explored. In addition to acetate, propionate and butyrate, there are a
few studies on valerate and caproate. Moreover, some studies have suggested that SCFAs
may be harmful. A study found that increased acetate production due to a gut microbiota–
nutrient interaction in high-fat-fed rodents leads to the activation of the parasympathetic
nervous system resulting in increased ghrelin secretion and glucose-stimulated insulin
secretion [162]. This generates a positive feedback loop resulting in hyperphagia, hyper-
triglyceridemia, ectopic lipid deposition in liver and skeletal muscle and insulin resistance
in liver and muscle [162]. The tissue-specific effects of SCFAs have been demonstrated in
the case of propionate, where propionate-dependent gluconeogenesis in the small intestine
improves metabolic health, whereas hepatic gluconeogenesis is detrimental [8]. Adminis-
tration of exogenous high-dose propionate in mice and humans results in rapid activation
of the sympathetic nervous system, leading to increases in both glucagon and fatty acid-
binding protein 4 [163]. The increases in both of these fasting hormones in the postprandial
state drive enhanced endogenous glucose production, likely due to glycogenolysis, lead-
ing to hyperglycemia and compensatory hyperinsulinemia [163]. Thus, repeated daily
exposure to propionate over prolonged periods may have important health implications.
The effect of butyrate on glycolipid metabolism also remains controversial. Butyrate is
capable of increasing lipid synthesis from acetyl-CoA or ketone bodies via the β-hydroxy-
β-methylglutaryl-CoA pathway, which may contribute to obesity [164]. A small fraction
of butyrate could be transported via the portal vein to the liver, where it is metabolized
to yield acetyl-CoA and influences glycolipid metabolism [165]. As discussed above, the
concentration of SCFAs plays an important role in the occurrence and development of the
disease. Further basic experiments and well-designed clinical trials are needed to determine
the mechanisms of SCFAs in the physiology and pathophysiology of the gut and other
tissues or organs in the organism.

SCFAs are the major metabolite of the intestinal flora. More and more studies have
shown that the composition of the intestinal flora is closely related to the occurrence and
progression of various diseases. The disorder of the intestinal flora leads to a decrease in
the fluctuation of biochemical factors and the contents of SCFAs, bile acids and endocrine-
regulating peptides and, conversely, to an increase in the content of LPS, which then induces
the occurrence of diseases [166]. On the contrary, a balanced intestinal flora could not only
promote the body’s metabolism but also strengthen the body’s immune function [166].
Recent approaches to regulate the gut microbiota for the treatment of disease have mainly
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focused on probiotics, prebiotics, synthetics, fecal microbial transplantation, dietary inter-
ventions, bacteriophages, microbiota-targeted drugs and postbiotics. In addition, there
is growing evidence that some natural herbal medicines can effectively improve disease
by regulating the gut microbiota. As a commonly used natural herbal medicine in the
clinical treatment of diabetes, mulberry leaves have been shown to regulate the composition
of the intestinal flora, reverse the state of dysbiosis, increase the abundance of intestinal
SCFA-producing bacteria and the levels of SCFAs in the intestinal tract, inhibit the level of
inflammation in the body, regulate glucose–lipid metabolism and improve insulin secretion
and insulin resistance [167]. Although common hypoglycemic drugs such as metformin
are effective, they are prone to various adverse effects that make their use unsafe. Mulberry
leaf, as a plant with the same origin as medicine and food, can ensure its safety while
exerting its therapeutic effect. These treatments include natural herbal medicines and FMT,
among others, which may be used in the future to regulate the intestinal flora and thus the
concentration of SCFAs to improve the health of the organism. With the increasing aware-
ness of the relationship between SCFAs and disease, we can hold high expectations that
SCFA-related pharmacological agents may provide better strategies for health maintenance
and disease prevention.
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