

Systematic Review

Is Endoscopic Ultrasound-Guided Hepaticogastrostomy Safe and Effective after Failed Endoscopic Retrograde Cholangiopancreatography?—A Systematic Review and Meta-Analysis

Saqr Alsakarneh ¹^(D), Mahmoud Y. Madi ², Dushyant Singh Dahiya ³^(D), Fouad Jaber ¹, Yassine Kilani ⁴, Mohamed Ahmed ⁵, Azizullah Beran ⁶, Mohamed Abdallah ⁷, Omar Al Ta'ani ⁸, Anika Mittal ¹^(D), Laith Numan ²^(D), Hemant Goyal ^{9,*}^(D), Mohammad Bilal ¹⁰ and Wissam Kiwan ²

- ¹ Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; s.alsakarneh@umkc.edu (S.A.)
- ² Department of Gastroenterology and Hepatology, Saint Louis University, Saint Louis, MO 63103, USA
- ³ Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66103, USA
- ⁴ Department of Internal Medicine, Weill Cornell University, New York, NY 10065, USA
- ⁵ Department of Gastroenterology and Hepatology, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- ⁶ Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- ⁷ Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- ⁸ Department of Internal Medicine, Allegheny General Hospital, Allegheny, PA 15212, USA
- ⁹ Division of Gastroenterology and Hepatology, Borland Groover, Jacksonville, FL 32207, USA
- ¹⁰ Division of Gastroenterology and Hepatology, University of Minnesota, Minneapolis, MN 55455, USA
 - Correspondence: doc.hemant@yahoo.com

Abstract: Background/Objectives: Endoscopic ultrasound-guided hepaticogastrostomy (EUS-HGS) has emerged as an alternative option for biliary drainage in cases of failed endoscopic retrograde cholangiopancreatography (ERCP). Limited data exist on the safety and efficacy of EUS-HGS. In this comprehensive meta-analysis, we aim to study the safety and efficacy of EUS-HGS in cases of failed conventional ERCP. Methods: Embase, PubMed, and Web of Science databases were searched to include all studies that evaluated the efficacy and safety of EUS-HGS. Using the random effect model, the pooled weight-adjusted event rate estimate for clinical outcomes in each group were calculated with 95% confidence intervals (CIs). The primary outcomes were technical and clinical success rates. Secondary outcomes included overall adverse events (AEs), rates of recurrent biliary obstruction (RBO), and rates or re-intervention. Results: Our analysis included 70 studies, with a total of 3527 patients. The pooled technical and clinical success rates for EUS-HGS were 98.1% $([95\% \text{ CI}, 97.5-98.7]; I^2 = 40\%)$ and $98.1\% ([95\% \text{ CI}, 97.5-98.7]; I^2 = 40\%)$, respectively. The pooled incidence rate of AEs with EUS-HGS was 14.9% (95% CI, 12.7-17.1), with bile leakage being the most common (2.4% [95% CI, 1.7–3.2]). The pooled incidence of RBO was 15.8% [95% CI, 12.2–19.4], with a high success rate for re-intervention (97.5% [95% CI, 94.7–100]). Conclusions: Our analysis showed high technical and clinical success rates of EUS-HGS, making it a feasible and effective alternative to ERCP. The ongoing development of dedicated devices and techniques is expected to make EUS-HGS more accessible and safer for patients in need of biliary drainage.

Keywords: endoscopic ultrasound-guided hepaticogastrostomy; endoscopic ultrasound; hepaticogastrostomy; endoscopic retrograde cholangiopancreatography; outcomes

Dahiya, D.S.; Jaber, F.; Kilani, Y.; Ahmed, M.; Beran, A.; Abdallah, M.; Al Ta'ani, O.; Mittal, A.; et al. Is Endoscopic Ultrasound-Guided Hepaticogastrostomy Safe and Effective after Failed Endoscopic Retrograde Cholangiopancreatography?—A Systematic Review and Meta-Analysis. J. Clin. Med. **2024**, 13, 3883. https://doi.org/10.3390/ jcm13133883

Citation: Alsakarneh, S.; Madi, M.Y.;

Academic Editor: Jun Kato

Received: 28 April 2024 Revised: 22 June 2024 Accepted: 26 June 2024 Published: 1 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Endoscopic retrograde cholangiopancreatography (ERCP) is the gold standard therapy for biliary obstruction for a variety of benign and malignant pancreaticobiliary disorders, with a success rate reaching up to 95% [1–3]. However, in cases with surgically altered anatomy or malignant duodenal obstruction, it can be very challenging and has a failure rate ranging from 5–7% in achieving biliary drainage [4]. For years, the standard alternative in this situation was limited to percutaneous transhepatic biliary drainage (PTBD). However, in recent years, endoscopic ultrasound (EUS)-guided biliary interventions have emerged as effective alternate treatment options. EUS-guided biliary drainage (EUS-BD) techniques include EUS guided rendezvous ERCP, EUS-guided choledochoduodenostomy, and EUS-guided hepaticogastrostomy (EUS-HGS) [5].

Among the EUS-BD techniques, EUS-guided hepaticogastrostomy (EUS-HGS) has gained popularity as a novel drainage technique that provides biliary decompression from the left intrahepatic duct (IHD) to the stomach [6]. This method leverages the power of endoscopic ultrasound to access the biliary system, offering distinct advantages over other conventional techniques.

Despite its overall efficacy and safety, clinicians continue to have significant concerns for bile leak and stent migration with EUS-HGSs [7,8]. Therefore, EUS-guided antegrade stenting (EUS-AGS) has emerged as a valuable alternative to EUS-HGS, particularly for patients with an inaccessible ampulla, due to its potential to establish normal bile flow [9]. Despite the fact that these techniques have been around for almost a decade, there are concerns around the safety and efficacy of these modalities. Therefore, we have conducted a systematic review and meta-analysis to evaluate the efficacy and safety of EUS-HGS and EUS-AGS in cases of unsuccessful conventional ERCP.

2. Methods

2.1. Search Strategy and Study Eligibility

Two independent reviewers (S.A. and M.M.) identified studies published before 1 October 2023, that reported on the outcomes of EUS-HGS and EUS-AGS in cases of unsuccessful conventional ERCP. We systematically searched the online MEDLINE, Embase, Cochrane, and Scopus databases using key words in different combinations: (EUS, Endoscopic Ultrasound, Ultrasound) and (Hepaticogastrostomy, biliary drainage, anterograde stenting). Additionally, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we screened the reference lists of the articles and corresponded with study investigators [10]. There was no restriction based on language as long as study outcomes were mentioned in the text. A third reviewer (O.T.) resolved any disagreement.

2.2. Study Inclusion and Exclusion

The inclusion criteria for studies in this analysis were as follows:

- Prospective or retrospective studies with a study population comprising patients with biliary obstruction.
- (2) Studies involving the use of EUS-HGS or EUS-AGS as the primary intervention.
- (3) Evaluation of clinical safety and efficacy as the primary outcomes.

Studies were excluded if they were case reports, case series, animal studies, editorial articles, meta-analyses, review articles, or had sample sizes smaller than 10. Studies without relevant clinical data on clinical success or adverse events were also excluded.

2.3. Data Extraction and Quality Assessment

All relevant data were extracted according to a table independently predefined by S.A. and M.M. The following parameters were extracted: first author, year of publication, country, study design, patient demographics, stent type, cause of prior failed ERCP, stent patency time, technical success, functional success, and outcomes of interest. Using the

Newcastle–Ottawa Scale, the methodological quality of the included cohort studies was assessed independently by two investigators (S.A. and O.T.). In the case of a discrepancy, a third independent individual (A.M) was consulted.

2.4. Definitions of Outcomes

The endpoint outcomes include stent patency, stent occlusion, and overall adverse events (AEs). The American Society for Gastrointestinal Endoscopy lexicon was used for the grading of the severity of procedural AEs with endoscopy [11]. Technical success of both EUS-HGS and EUS-AGS was generally defined as the successful biliary drainage as planned. Clinical success was defined as a reduction in serum bilirubin level by more than 50% at 2 to 4 weeks. Recurrent biliary obstruction was considered in case of stent migration, occlusion, or malignancy invasion of stent. Our primary outcome is technical and clinical success rate. Secondary outcomes include stent patency, stent occlusion, and adverse events.

2.5. Data Synthesis and Statistical Analysis

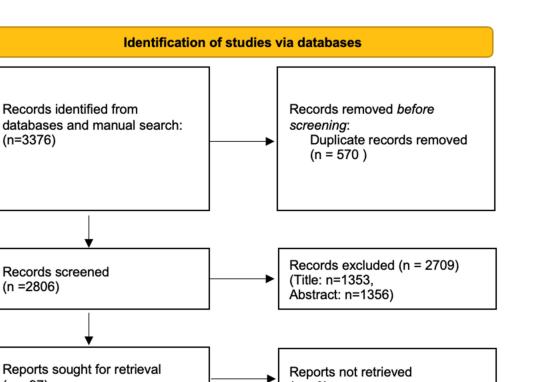
We used R version 3.2.3 (R Project for Statistical Computing) with Meta and Metaprop packages for all analyses. Using the Freeman–Tukey double arcsine transformation (FTT) method, the pooled, weight-adjusted event rate estimate for the clinical outcomes in each group was calculated using the Metaprop package. Continuity correction of 0.5 in studies with zero cell frequencies was used. Between-study heterogeneity was assessed using the Cochrane Q-statistic (I^2) , which represents the percentage of total between-study variation that cannot be attributed solely to chance. Between-study heterogeneity was rated as low if $25\% < I^2 \le 50\%$, moderate if $50\% < I^2 \le 75\%$, and high if $I^2 > 75\%1$. A leave-1-out metaanalysis was performed to assess the influence of the outcome by excluding each study and identifying influential studies that may contribute to heterogeneity. A subgroup analysis was performed for studies that reported the outcomes of EUS-HGS with anterograde stent. Statistical tests were 2-sided and used a significance threshold of p < 0.05. The assessment of publication bias was investigated by evaluation of funnel plot asymmetry and sensitivity analysis. In addition to the ethical standards of the competent institution for human subjects, this meta-analysis was conducted in compliance with the Helsinki Declaration [12].

3. Results

3.1. Literature Search and Study Characteristics

A total of 3276 unique records were identified according to the above search strategy. After title and abstract screening, 70 studies with a total of 3527 patients were included in the study. PRISMA flowchart illustrates our selection process as shown in Figure 1. Supplementary Table S1 shows the baseline characteristics of the included studies and their quality analysis. Of these studies, 53 were from Asia. The study design was prospective in 19 studies, and 23 were multi-center studies. Among the included studies, 43 were of good quality, 21 were of fair quality, and 6 were of poor quality. Supplementary Table S2.

3.2. Baseline Characteristics of Patients and Qualitative Procedure Outcomes


Table 1 shows the baseline characteristic of patients in the studies included and procedure outcomes including: gender, age, underlying cause of obstruction, reason for prior unsuccessful ERCP, overall survival, stent patency time, median procedural time, type of stent, and location of stricture. While 61 studies included only patients with malignant obstruction, 8 included mixed malignant and benign obstruction, and 1 study included only benign obstruction. The most common cause of obstruction was pancreatic cancer. Distal bile strictures were the most common location of stricture. Metal stents were the most commonly used type.

Identification

(n=3376)

Records screened

(n =2806)



Figure 1. PRISMA flow chart.

Study Name	Malignant/Beni; Number	gn Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) \pm SD
Anderloni 2022 [13]	22 malignant	7	Mean: 66.0 ± 10.0	18 Pancreatic Cancer; 2 Cholangiocarcinoma; 1 Gallbladder Cancer; 1 Duodenal Caner	4 Infiltrated Papilla; 9 Unreachable Papila; 4 Altered Anatomy; 5 Incomplete Biliary Drainage	n/a	22 Metal	Mean: 43.3 ± 26.8	2	n/a	n/a	Mean: 10.8 ± 3.1 months
Artifon 2015 [14]	25 malignant	11	Mean: 66.25 ± 14.28	16 Pancreatic Cancer; 5 Metatstatic Adenopathy; 2 Papillary Cancer; 1 Malignent Neuroendocrine Cancer; 1 Duodenal Cancer	n/a	25 Distal	Metal	Mean: 47.8	n/a	n/a	Mean: 75.08 (5.29)	n/a
Attasaranya 2012 [15]	23 malignant	14	Mean: 58.03 ± 16.89	17 Periampullary or Pancreatic Cancer; 1 Gastric Cancer; 1 Duodenal Cancer; 1 Pancreatic Inflammatory Pseudotumor; 2 Metastatic Cancer; 3 Choledochojejunos- tomy Stenosis; 1 Gallstone with Cholecystitis; 1 Post-ERCP Cholecystitis; 1 CBD Stone; 1 Bile Leak; 1 Hilar Cholangiocarcinoma; 1 Biloma with Postlaparoscopic Cholecystectomy	14 Failed ERCP for Biliary Cannulation; 10 Inaccessible ERCP due to Luminal Stenosis Secondary to Tumor Invasion of Gastric Antrum or Duodenum; 4 Surgically Altered Anatomy; 2 Acute Cholecystitis with Unfit Condition for Surgery; 1 Biloma	n/a	Metal	n/a	3	3/3	n/a	n/a
Bories 2007 [16]	8 malignant 3 benign	7	Mean (Range): 64 (47–80)	4 Pancreatic Cancer; 2 Hilar Cholangiocarcinoama; 1 Duodenal Cancer; 1 Gastric Cancer; 3 Benign	Failed ERCP	n/a	4 Plastic; 3 Metal	n/a	3	3/3	n/a	n/a

 Table 1. Comprehensive characteristics of included studies.

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Cho 2017 [17]	21 malignant	16	Median (Range): 66.3 (44– 82)	11 Cholangiocarcinoma; 3 Pancreatic Cancer; 3 Gallbladder Cancer; 4 Other Malignancy	14 High Grade Biliary Stricture; 6 Duodenal Obstruction; 1 Previous Operation	n/a	21 metal	Median (range): 18 (11–45)	10	5/6	Median (range): 173 (76.8–269.1)	Mean: 166.3
Cho 2022 [18]	106 malignant	68	Mean: 71.5 ± 11.2	28 Pancreatic Cancer; 42 Cholangiocarcinoma; 14 Gallbladder Cancer; 6 Ampullary Cancer; 16 Other Metastatic Disease	19 Failed ERCP; 35 Insufficient Drainiage of IHD; 32 Gastric Outlet Obstruction; 20 Surgically Altered Anatomy	41 Distal; 65 Hilar	Metal	Mean: 18.4	26	n/a	Median (IQR): 178.0 (147.7–208.3)	Median (IQR): 138.0 (70.1–205.9)
Emmanuel 2020 [19]	20 malignant	16	Mean: 71.8 ± 7.6	13 Pancreatic Cancer; 4 Periampullary Tumor; 2 Cholangiocarcinoma; 1 Metastatic Colon Cancer	16 Inaccesible Papillae; 1 Surgical Anatomy; 3 Failed Cannulation	19 Distal CBD; 1 Proximal CBD	10 Metal	Mean: 39.9 ± 1.3	1	1/1	n/a	n/a
Fujii 2022 [20]	50 malignant	28	DGW Median (IQR): 69 (56-76) SGW Median (IQR): 68 (58-72)	25 Pancreatic Cancer; 10 Biliary Cancer; 15 Other Malignancy; 4 Benign Stricture	35 Duodenal Obstruction; 14 ERCP Failure; 5 Intractable Cholangitis	34 Distal Bile Duct; 7 Perihilar Bile Duct; 13 Hepaticoje- junostomy Anastomosis	11 Plastic; 42 Metal	Metal Mean (range): 47 (32–62) Plastic Mean (range): 54 (44–65)	n/a	n/a	n/a	n/a
Harai 2022 [21]	95 malignant	50	Median (IQR): 68 (58–75)	38 Pancreatic Cancer; 20 Bile Duct Cancer; 37 Other Malignancy	54 Duodenal Obstruction; 22 Surgical Anatomy; 19 Nonsuccessful ERCP	66 Distal; 29 Hilar	95 Metal	Median (IQR): 26 (17–37)	10	10/10	Median: 154 (95.0% CI 108–363)	n/a
Hashimoto 2022 [22]	85 malignant	48	Median (Range): 72 (55–90)	59 Pancreatobiliary Cancer; 26 Other Malignancy	55 Inaccessible Papilla or Ileobillary Anastomosis; 30 Accessible Papilla but Inaccessible Target Bile Duct	Distal 61; Perihilar 24	28 Plastic; 57 Metal	Median (range): 41 (11–173)	19	n/a	Median: 88 (95% CI 62.8–113.2)	Metal Range: 72–329; Plastic Range: 89–272

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Hathorn 2022 [23]	130	101	Mean: 62.9 (14.7)	Cholangiocarcinoma 25, Gastric cancer 4, Pancreatic cancer 61, Ovarian cancer 1, Colorectal cancer 13, Lung cancer 5, Breast cancer 4, Ampullary carcinoma 2, Hepatocellular carcinoma 5, Pancreatic neuroendocrine tumor 2, Gallbladder 2, Vulvar cancer 1, Renal cell carcinoma 1, Duodenal adenocarcinoma 1, Malignant stricture NOS 3	n/a	n/a	Metal	n/a	n/a	n/a	n/a	n/a
Hattori 2023 [24]	37 malignant 12 benign	30	Drill Dilator Median (Range): 72 (59–92) Balloon Catheter Median (Range): 76 (48–91)	21 Pancreatic Cancer; 12 Cholangiocarcinoma; 4 Duodenal Cancer; 3 Hepaticojejunostomy Stricture; 9 Other Malignancy	27 Duodenal Obstruction; 20 Surgically Altered Anatomy; 2 Failed Biliary Cannulation	n/a	Plastic	Drill Dilator Mean: $22.7 \pm 8.01;$ Balloon Catheter Mean: 11.1 ± 6.06	14	19/19	n/a	n/a
Honjo 2018 [25]	38 malignant	35	Mean: 68.9 ± 13.8	38 Malignant Biliary Stricture; 7 Bilioenteric Anastomosis Stricture; 4 Choledocolithiasis with Roux-en-Y	n/a	n/a	56 Plastic; 6 Metal	Mean: 21.9 ± 10.2	n/a	n/a	n/a	n/a
Imai 2017 [26]	42 malignant	24	Mean: 67.3 ± 13.9	13 Pancreatic Cancer; 18 Bile Duct Cancer; 11 Lymph Node Metastasis	n/a	n/a	Metal	Mean: 73.5 ± 29.4	n/a	n/a	68 (5–185)	Mean: 68 (5–185)
Inoue 2023 [27]	57 malignant	34	Median (IQR): 79 (69–85)	57 Pancreatic Cancer	44 Inability to Reach/Recognize the Ampulla; 13 Inability to Cannulate	57 Distal	57 Metal	Median (IQR): 25 (19–33)	16	16/16	Median: 167 (120–204)	n/a

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Ishii 2023 [28]	37 malignant	22	Median (IQR): 70 (62–76)	20 Pancreatic Cancer; 6 Biliary Tract Cancer; 4 Gastric or Duodenal Cancer; 1 HCC; 6 Metastatic Lymph Node	20 Duodenal Tumor Invasion; 7 Difficult to Approach Targt; 3 Altered Anatomy; 1 Unsuccessful Biliary Cannulation; 1 History of AE from ERCPs	22 Distal; 15 Hilar	37 Metal	Median (IQR): 18 (15–24)	11	10/11	Median: 4.0 (2.0–6.1)	n/a
Ishiwatari 2021 [29]	96 malignant	58	Median (IQR): 70 (64–78)	53 Pancreatic Cancer; 15 Bliary Cancer; 28 Other Malignancy	51 MBO; 28 Surgical Anatomy	78 Distal; 18 Hilar	28 Plastic; 67 Metal	Median (IQR): 33 (26–44)	n/a	n/a	n/a	n/a
Ishiwatari 2022 [30]	58 malignant	33	Median (IQR): 71 (64–78)	31 Pancreatic Cancer; 7 Biliary Cancer; 20 Others Malignancy	44 Duodenal Obstruction; 8 Surgical Anatomy; 6 Others	B2:21; B3:37	6 Plastic; 52 Metal	Median (IQR): 30 (24–39)	15	15/15	Median: 123	n/a
Iwashita 2017 [31]	20 malignant	10	Median (Range): 69 (56–92)	10 Dissemination; 5 Lymph Node Recurrent Malignancy; 4 Direction Invasion; 1 Anastomotic Recurrence	n/a	n/a	Metal	Median (range): 36.5 (10–80)	3	2/3	Median: 100.5	n/a
Iwashita 2022 [32]	21 malignant	15	Median (IQR): 71 (59.5–79)	21 Malignant Bowel Obstruction; 3 Anastomosis Stricutre; 2 Biliary Stone	n/a	n/a	Plastic or Metal	Median (IQR): 32 (27.75–49.25)	n/a	n/a	n/a	n/a
Jagielski 2021 [33]	53 malignant	38	Mean (Range): 74.66 (56–89)	19 Pancreatic Cancer; 14 Cholangiocarcinoma; 6 Gallbladder Cancer; 3 Hepatocellular Carcinoma; 6 Major Duodenal Papillary Cancer; 1 Duodenal Cancer; 1 Duodenal Cancer; 2 Metastatic Colorectal Cancer; 1 Metastatic Breast Cancer; 1 Metastatic Cancer of Unknown Origin	25 Duodenal Obstruction; 23 Periampullary Tumor Infiltration; 5 Failed Biliary Cannulation	n/a	Metal	Mean: 31.2 ± 15.0	3	n/a	n/a	n/a

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) ± SD
Kawakubo 2014 [34]	20 malignant	14	Median (IQR): 72 (64–81)	11 Pancreatic Cancer; 3 Bile Duct Cancer; 1 Gallbladder Cancer; 1 Ampullary Cancer; 4 Metastatic Lymph Node; 13 Previous Biliary Drainage	14 Periamplullary Tumor Invasion; 2 Recurrent Ascending Cholangitis Due to Stent; 4 Altered GI Anatomy	n/a	Plastic and Metal	n/a	6	6/6	Median: 102 (61–262)	Mean: 51
Khashab 2016 [35]	61 malignant	38	Mean: 63.6 ± 13.8	n/a	18 Obscured Ampulla; 24 Distorted Anatomy; 14 Gastric Outlet Obstruction; 6 Others	Distal	7 Plastic; 54 Metal	Mean: 45.3 ± 34.6	12	n/a	Median: 142 (95% CI 82–256)	n/a
Kitagawa 2022 [36]	21 malignant; 2 benign	14	Mean: 73	11 Pancreatic Cancer; 1 Uterine Cancer; 4 Bile Duct Cancer; 1 Gastric Cancer; 2 Gallbladder Cancer; 1 Duodenal Cancer; 1 Intrahepatic Stone; 2 Choledocojejunal Anastomosis Stenosis	n/a	n/a	Plastic	n/a	8	4/4	n/a	n/a
Kobori 2022 [37]	20 malignant	12	Median (Range): 72 (47-90)	9 Gastric Cancer; 6 Pancreatic Cancer; 3 Bile Duct Cancer; 2 Duodenal Caner; 1 Intrahepatic Gallstone	12 Dificulty Reaching the Papilla; 7 Surgically Altered Anatomy; 3 Difficulty Cannulating the Bile Duct; 4 Presence of Cholantigis before EUS-HGS	14 Distal; 5 Hilar; 3 Anastomosis	Plastic	Median (range): 45.5 (15–90)	7	n/a	n/a	n/a
Marx 2022 [38]	205 malignant	104	Mean: 68 ± 12	64 Pancreatic Cancer; 8 Vaterian Ampuloma; 31 Cholangiocarcionma; 102 Metastasis	76 Duodenal Infiltration; 29 Altered Anatomy; 9 Failed Papillary Cannulation; 91 Hilar Stenosis with Undrained Left Liver	n/a	FCMS	n/a	47	n/a	Median: 5.3 (2.9–7.5)	Mean: 153
Marx 2022 [39]	35 malignant	28	Mean: 64 ± 11.2	n/a	n/a	n/a	Metal	n/a	10	n/a	n/a	n/a

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Matsunami 2021 [40]	57 benign	28	Median (Range): 68 (7–90)	28 Bilioenteric Anastomotic Stricture; 8 Intrahepatic Biliary Stones; 15 Common Bile Duct Stones; 2 Alcoholic Chronic Pancreatitis; 1 Walled Off Necrosis; 1 Idiopathic Retroperitoneal Fibrosis; 1 Left Lobe Hepatic Injury; 1 Bile Duct Polyp	51 Surgical Anatomy; 4 Gastric Outlet Obsruction; 2 Unsuccessful ERCP	n/a	Plastic or Metal	Median (range): 22 (7–71)	n/a	n/a	n/a	n/a
Minaga 2017 [41]	30 malignant	11	Median (Range): 66 (52–87)	12 Cholangiocarcinoma; 6 Gallbladder Cancer; 5 Pancreatic Cancer; 1 Hepatocellular Carcinoma; 5 Liver Mets; 1 Lypmh Node Metastasis	4 Failed Duodenal Scope Insertion; 5 Failed Papilla Access After Duodenal Stent Insertion; 21 Failed Intrahepatic Biliary Drainage	30 Hilar	Plastic and Metal	Median (Range): 39.5 (21–68)	7	5/5	Median (range): 64 (31–314)	Mean: 62.5 (31-210)
Minaga 2022 [42]	33 malignant	22	Median (IQR): 72 (67–76)	9 Gastric Cancer; 9 Bile Duct Cancer; 8 Pancreatic Cancer; 3 Hepatocellular Cancer; 4 Other Malignancy	11 Failure of Duodenal Scope Insertion; 10 Surgically Altered Anatomy; 12 Failure of Biliary Cannulation	18 Distal; 15 proximal	33 Metal	Median (IQR): 27 (20–40)	33	n/a	Median: 140 (95% CI, 70.8–209.2)	Mean: 394 days (95% CI, 85.7–702.3 days)
Miwa 2023 [43]	52 malignant	34	Median (IQR): 73 (69–80)	20 Pancreatic Cancer; 12 Biliary Cancer; 7 Colorectal Cancer; 13 Other Malignancy	27 Duodenal Obstruction; 13 Hilar Biliary Obstruction; 9 Altered Anatomy; 3 Difficult Cannulation	n/a	19 Plastic; 33 Metal	Median (IQR): 20.5 (17–30)	n/a	n/a	n/a	n/a
Miyano 2018 [44]	27 malignant	27	Extra Scope Median (Range): 70 (57–82) Intra Scope Median (Range): 75 (57–88)	13 Pancreatic Cancer; 14 Bile Duct Cancer; 14 Other Malignancy	31 Duodenal Obstruction; 10 Surgical Anatomy	B2: 3; B3: 38	Metal	n/a	na	n/a	Median: 132 (95% CI 69.3–196.3)	Extra Scope Mean: 107 days (95% CI 68.8 to 145.6); Intrascope Mean: 116 days (95% CI 57.1 to 1775.3

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Moryoussef 2017 [45]	18 malignant	11	Mean: 68.8 ± 16.4	8 Pancreatic Cancer; 5 Hilar Cholangiocarcinoma; 3 Colorectal Cancer; 2 Gastric Cancer	10 Surgical Anatomy; 7 Impassible Stricture; 1 Duodenal Obstruction	18 Hilar	Metal	n/a	3	3/3	Median (range): 79 (5–390)	n/a
Nakai 2016 [46]	33 malignant	19	Median (IQR): 70 (63–77)	17 Pancreatic Cancer; 8 Biliary Tract Cancer; 2 Gastic Cancer; 2 Duodenal Cancer; 1 Hepatocellular Carcinoma; 3 Meastatic Lymph Nodes	25 Gastric Outlet Obstruction; 5 Altered Anatomy; 3 HX of Adverse ERCP	26 Distal; 7 Hilar	33 Metal	Median (IQR): 45 (30–80)	8	8/8	Median: 8.7 months (95% CI 3.1–12.6)	n/a
Nakamura 2023 [47]	166 malignant	109	Median (Range): 76 (20–94)	59 Pancreatic Cancer; 24 Cholangiocarcinoma; 16 Hepaticojejunostomy Stricture; 26 Bile Duct Stone; 14 Gastric Cancer; 8 Duodenal Cancer; 7 Gallbladder Cancer; 9 Other Malignancy	84 Duodenal Invasion; 75 Surgical Altered Anatomy; 7 Failed ERCP	n/a	Plastic or Metal	Mean: 14.1 ± 8.5	n/a	n/a	n/a	n/a
Ochiai 2021 [48]	47 malignant	30	Median (IQR): 71 (50–93)	24 Pancreatic Cancer; 8 Biliary Tract Cancer; 2 Gallbladder Cancer; 4 Gastric Cancer; 2 Hepatocellular Carcionoma; 8 Other	27 Gastric Outlet Obstruction; 10 Alterd Anatomy; 10 Failed ERCP; 1 High Risk ERCP	39 Distal; 9 Hilar	47 SEMS	Median (IQR): 42 (29–55)	n/a	n/a	n/a	n/a
Ogura 2016 [49]	26 malignant	13	Mean: 70 ± 8.1	21 Pancreatobililliary Cancer; 5 Others	n/a	n/a	Metal	n/a	2	n/a	Median: 113	Median: 113

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Ogura 2017 [50]	49 malignant	25	Median (Range): 72 (43–96)	19 Gastric Cancer; 13 Bile Duct Cancer; 11 Pancreatic Cancer; 6 Other Malignancy	22 Duodenal Obstruction; 19 Surgical Anatomy; 8 Failed ERCP	5 Left Hepatic Bile Duct; 9 Hepatic Hilum; 3 Upper Common Bile Duct; 13 Middle Common Bile Duct; 19 Lower Common Bile Duct	Metal	n/a	7	6/6	Median: 114 (95% C.I 73.012– 154.988)	Mean: 320 days (95% CI, 269.899–772.037 days)
Ogura 2021 [51]	14 malignant	8	Median (IQR): 3 (1–6)	9 Pancreatic Cancer; 3 Gastric Cancer; 2 Bile Duct Cancer	11 Duodenal Obstruction; 3 Surgically Altered Anatomy	n/a	14 Metal	Median (IQR): 7 (5–10)	1	n/a	n/a	Mean: 101 days
Oh 2016 [52]	113 malignant	81	Mean: 62.2 ± 13	n/a	52 Failure of the Guidewire Pass Across the Tight Stricture; 37 Surgically Altered Anatomy; 15 Obscured Ampulla Due to Metallic Enteral Stent; 13 Duodenal Obstruction; 10 Obscured Ampulla Due to Invasive Cancer; 2 Removal of Intrahepatic Duct Stones in Surgically Altered Anatomy	n/a	Plastic	Mean: 30.1 ± 13.1	6	5/6	n/a	Mean: 137.1 ± 243.5
Ohno 2022 [53]	72 malignant	42	Dilation + Median (Range): 69 (36–93) Dilation- Median (Range): 73 (38–92)	32 Pancreatic Cancer; 18 Biliary Tract; 8 Gastric Cancer; 14 Others Malignancy	46 Surgically Alterd Anatomy; 22 Duodenal Obstruction; 4 Unsuccessful ERCP	n/a	Dilation + 35; Dilation- 3	Dilation + Median (range): 72 (29–133); Dilation- Median (range): 44 (24–153)	1	1/1	n/a	n/a

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) \pm SD
Okuno 2018 [54]	20 malignant	12	Median: 68	9 Gastric Cancer; 1 Colon Cancer; 2 Gallbladder Cancer; 7 Pancreatic Cancer; 1 Duodenal Cancer	13 Duodenal Obstruction; 7 Altered Upper GI Anatomy	20 Distal	20 Metal	n/a	1	n/a	n/a	Mean: 87 days
Okuno 2022 [55]	55 malignant 6 benign	35	Median (Range): 68 (38–87)	28 Pancreatic Cancer; 5 Duodenal Cancer; 4 Gastric Cancer; 4 Gallbladder Cancer; 3 Colon Cancer; 3 Cholangiocellular Carcinoma; 8 Other; 6 Benign	41 Primary Drainage; 20 Salvage Drainage	7 Proximal	44 FCEMS; 16 Plastic; 1 None	Median (range): 24 (8–70)	0	n/a	n/a	n/a
Okuno 2023 [56]	18 malignant 2 benign	12	Median (Range): 70 (38–82)	6 Pancreatic Cancer; 6 Biliary Tract Cancer; 2 Gastric Cancer; 2 Hepatocellular; 1 Cholangiocellular Carcinoma; 1 Colon Cancer; 2 Anastomosis Stricture	12 Primary Drainage; 8 Salvage Drainage	n/a	Metal	Median (range): 13 (7–25)	n/a	n/a	n/a	n/a
Paik 2017 [57]	16 malignant	13	Mean: 67.6 ± 9.3	7 Cholangiocarcinoma; 2 Pancreatic Cancer; 2 Ampulla of Vater; 2 Galibladder Cancer; 1 Hepatocellular Carcinoma; 2 Peribilary Metastasis	n/a	Distal	Metal	Mean (SD): 33.4 (20.6)	n/a	n/a	n/a	Mean: 402 days
Paik 2018 [58]	25 malignant 3 benign	20	Median (Range): 63 (29–87)	10 Cholangiocarcinoma; 5 Pancreatic Cancer; 2 Galtbladder Cancer; 2 Gastric Cancer; 1 Ampulla of Vater Malignancy; 1 Colon Cancer; 1 Duodenal Cancer; 1 Hepatocellular Carcinoma; 1 Intraductal Papillary Neoplasm of Bile Duct; 1 Lymphoma; 3 Benign	n/a	n/a	Metal	Mean: 15.6 ± 5.8	n/a	n/a	Median (range): 7.5 (5.0–12.0)	Mean: 150 (5-295) days

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Park 2011 [59]	51 malignant 6 benign	35	61.7 (13)	Pancreatic cancer 12, Hilar cholangiocarcinoma 14, Ampulla of Vater cancer 5, Common bile duct cancer 3, Gallbladder cancer 2, Hepatocellular carcinoma 1, Duodenal cancer 2, Advanced gastric cancer 6, Metastatic lymph node 6	n/a	n/a	FCMS	Mean: 132	n/a	n/a	n/a	n/a
Park 2013 [7]	45 malignant	28	Mean: 64.9 ± 13	10 Pancreatic Cancer; 6 Hilar Cholangiocarcinoma; 6 Amplulla Cancer; 3 Common Bile Duct Cancer; 3 Gallbladder Cancer; 2 Hepatocellular Carcinoma; 1 Colon Cancer; 3 Lymphoma; 4 Advanced Gastric Cancer; 1 Breast Malignancy; 6 Bengin	N/A	n/a	n/a	Median: 50	n/a	n/a	n/a	n/a
Park 2015 [60]	32 malignant	20	DH Mean: 66.2 ± 11 FC Mean: 68.8 ± 13	11 Pancreatic Cancer; 13 Hilar Cholangiocarcinoma; 2 Distal Common Bile Duct Malignancy; 6 Other Malignancy	7 Surgical Anatomy; 13 High Grade Hilar Obstruction; 12 Duodenal Invastion	n/a	Metal	Median (range): 13 (10–21)	2	2/2	n/a	Mean: 121 ± 11.2 days

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) \pm SD
Poincloux 2015 [61]	98 malignant	58	Mean (Range): 70 (38–91)	51 Pancreatic Cancer; 12 Cholangiocarcinoma; 8 Ampulla Carcinoma; 3 Gallbladder Cancer; 2 Hepatocellular Carcinoma; 2 Duodenal Caner; 5 Gastric Cancer; 4 Colorectal Cancer; 3 Breast Cancer; 3 Ovarian Cancer; 2 Unknown Adenocarcinoma; 1 Pulmonary Malignancy; 1 Renal Malignancy; 3 Benign	25 Duodenal Stenosis; 7 Surgical Anatomy; 40 Periampulary Tumor Infiltration; 1 Altered Ampula Position; 1 Biliary Fistula; 27 Incomplete Draininge of High Grade Hilar Tumors	n/a	Plastic and Metal	n/a	4	n/a	n/a	n/a
Prachayakul 2013 [62]	21 malignant	10	Mean (Range): 62.8 (46–84)	9 Pancreatic Cancer; 4 Cholangiocarcinoma; 4 Gallbladder Cancer; 4 Other Malignancy	20 Obstrucive Jaundice	n/a	21 Metal	n/a	n/a	n/a	n/a	Mean: 93 days
Ragab 2023 [63]	91 malignant	59	Median (IQR): 61 (55–69)	75 Ampullary Tumor; 7 Altered Anatomy; 5 Cholangiocarcinoma; 4 Undiferentiated Common Bile Duct Malignancy	55 Inability to Achieve Deep Cannulation; 13 Duodenal Infiltration; 15 Gastric Outlet Obstruction; 8 Altered Anatomy	91 Distal	Metal, Plastic, Half to Half, Partially Covered, Fully Covered	Median (Range): 20 (15–27)	n/a	n/a	n/a	n/a
Samanta 2023 [64]	43 malignant 6 benign	23	Median (Range): 52.0 (28–76)	20 Pancreatic Cancer; 13 Gallbladder Cancer; 8 Periampullary Carcinoma; 2 Other Malignancy; 6 Benign Causes	25 Duodenal Obstruction/ Inaccessible Papilla; 4 Altered Anatomy; 20 Failed ERCP	19 Hilar; 30 Distal	Metal	n/a	9	n/a	3 Month Mortality 11/49	n/a

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% CI), Days	Stent Patency, Mean (d) \pm SD
Sassatelli 2019 [65]	36 malignant	15	Mean: 69.3 ± 12.4	25 Pancreatic Adnocarcinoma; 3 Metastatasis; 3 Cholangiocarcionma; 3 Gastric Cancer; 2 Gallbladder Cancer	13 Ampulary Obstruction by Invasive Cancer; 12 Postsurgical Anatomy; 10 Hepaticojejunostomy Stricture or Duodenal Obstruction	n/a	9 Plastic; 24 Metal	n/a	n/a	n/a	Median: 49 ± 156.7	TG-BD Mean: 72.7 ± 136.4 days TD-BD Mean: 128.5 ± 176.8 days
Schoch 2022 [66]	34 malignant	17	Median (IQR): 76 (67–83)	25 Perihilar Cholangiocarcinoma; 9 Gallbladder Cancer	22 ERCP Failure; 8 Duodenal Stricture; 2 Altered Anatomy; 2 Isolated Left Hepatic Duct Dilation	34 Perihilar	Metal	n/a	9	n/a	Median (IQR): 91 (31–263)	Mean (IQR): 145 (30–222)
Sekine 2022 [67]	144 malignant	54	B2 Mean (Range): 66.9 (32–90) B3 Mean (Range): 68.6 (32–87)	66 Pancreatic Cancer; 42 Biliary Tract; 27 Gastroduodenal Cancer; 9 Malignant Disease; 4 Bile Duct Stone; 13 Benign Disease	n/a	Distal 89; Perihilar 65; 3 Anastomosis; 1 Ampulla of Vater 1; 3 No Stenosis	114 Plastic; 47 Metal	B2 Mean (Range): 35.2 (8–110); B3 Mean (Range): 47.0 (9–187)	n/a	n/a	n/a	n/a
Shibuki 2023 [68]	154 malignant	102	Plastic Median (Range): 70 (32–85) Metal Median (Range): 69 (32–90)	62 Pancreatic Cancer; 41 Bile Duct Cancer; 28 Gastric Cancer; 21 Other Malignancy	55 Inaccessible Papilla; 33 Isolated Intrahepatic Bile Duct Obstruction; 21 Recurrent Ascenting Cholangitis; 22 Surgically Altered Anatomy; 21 Failed Biliary Cannulation	89 Distal; 63 Perihilar	109 Plastic; 43 Metal	Plastic Median (range): 30 (8–187); Metal Median (range): 41 (15–150)	47	plastic 30/35, metal 12/12	Plastic Median (range): 189 (99–270); Metal Median (range): 164 (95–281)	n/a
Shin 2023 [69]	24 malignant	7	Median (IQR): 67 (61–76)	16 Cholangiocarcinoma; 2 Pancreatic Cancer; 4 Gallbladder Cancer; 2 Ampullary Cancer	12 Failed ERCP; 7 Surgical Anatomy; 5 Gastric Outlet Obstruction	n/a	Metal	Median (IQR): 19.3 (18.4–21.2)	7	7/7	n/a	Mean: 6.7 months

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) \pm SD
Song 2014 [70]	27 malignant	13	Median (Range): 67 (29–86)	2 Pancreatic Cancer; 8 Hilar Cholangiocarcinoma; 2 Pancreatic Cancer Neuroendocrine Tumors; 2 Gallbladder Cancer; 1 Ampulla of Vater Cancer; 1 Advanced Gastric Cancer; 1 Rectal Cancer	11 Pyloric or Duodenal Obstruction; 9 High Grade Biliary Stricture; 7 Periampullary Tumor Infiltration	n/a	Metal	Median (range): 22 (14–35)	2	2	n/a	n/a
Sportes 2017 [71]	31 malignant	17	Mean: 69.2	22 Pancreatic Cancer; 5 Metatstatic Lymphadenopathy; 3 Cholangiocarcinoma; 1 Periampullary Cancer	13 Prior Surgery; 9 Duodenal Stenosis; 5 Periampullary Tumor Infiltration; 4 Impassable Stricture	n/a	Metal	n/a	2	2	Median (IQR): 71 (30–95)	n/a
Takenaka 2022 [72]	45 malignant	33	Median (IQR): 73 (65–77)	15 Pancreatic Cancer; 10 Gastric Cancer; 6 Cholangiocarcinoma; 6 Hepatocellular Carcinoma; 8 Other Malignancy	21 Failed Biliary Cannulation; 18 Surgical Anatomy; 6 Duodenal Obstruction	n/a	Plastic or Metal	Median (IQR): 15.8 (11.7–19.7)	9	9/9	n/a	n/a
Tyberg 2022 [73]	89 malignant	52	Mean: 69.9 ± 12.7	1 Ampullary Adenocarcionma; 5 Gallbladder Cancer; 19 Cholangiocarcinoma; 42 Pancreatic Cancer; 6 Colorectal Cancer; 16 Other Malignancy; 1 Choledocolithiasis	75 Obstructive Jaundice; 25 Cholangitis	n/a	8 Plastic; 82 Metal	n/a	n/a	12	n/a	n/a
Umeda 2015 [74]	15 malignant	15	Median: 77	5 Common Bile Duct Stone; 2 Ampullary Cancer; 2 Post Op Stricture; 9 Pancreatic Cancer; 1 Metastatic Lymph Nodes; 1 Bile Duct Cancer; 1 Duodenal Caner	9 Periampullary Tumor Invasion; 7 Altered Anatomy; 3 Failed Duodenal Intubation; 4 Prior ERCP Failure	n/a	Plastic	Median: 22.8	n/a	n/a	n/a	Median (Range): 4 months (0.5–9)

Study Name	Malignant/Benign Number	Male Number	Age	Underlying Cause/Diagnosis	Reason for Prior Unsuccessful ERCP (Reason and Number) for Example: 4 Due to Inability to Puncture the Bile Ductetc.	Location of the Bile Duct Stricture (e.g., Distal: 10, Proxima: 20)	Type of Stent (e.g., PS, FCMS, MS, CMS) and Number of Each if any	Median Procedural Time in Minutes with SD	Incidence of RBO, n	Number of Successful Reinterventions (i.e., Successful Endoscopic Reintervention for RBO) Number	Median Overall Survival (95% Cl), Days	Stent Patency, Mean (d) \pm SD
Vila 2012 [75]	34 malignant	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Yagi 2022 [76]	27 malignant	24	Median (Range): 69 (36–84)	18 Pancreatic Cancer; 9 Billiary Cancer	n/a	26 Distal; 9 Hilar; 3 Postoperative Anastomosis	38 Metal	Median (range): 35.5 (17–80)	6	6/6	n/a	n/a
Yamamoto 2018 [77]	23 malignant	14	Median: 69 ± 12.2	11 Pancreatic Cancer; 2 Gastric Cancer; 2 Ampullary Cancer; 1 Duodenal Cancer; 1 Bile Duct Cancer; 6 Metastasis of Other Cancer	3 Failed ERCP	n/a	23 Plastic	n/a	0	n/a	Median (Range): 96 (36–656)	Mean (Range): 66 (36–462)
Yamamura 2022 [78]	31 malignant	23	Median (range): 74 (55–87)	20 Pancreatic Cancer; 9 Bile Duct Cancer; 2 Gastric Cancer	16 Duodenal Obstruction; 15 Surgically Altered Anatomy	31 Segment 3	Metal	Mean: 17.7 ± 3.76	n/a	n/a	n/a	Median: 97 (95% CI, 88–99)
Yane 2023 [79]	36 malignant	21	Median (Range): 71 (40–88)	17 Pancreatic Cancer; 10 Gastric Cancer; 2 Gallbladder Cancer; 2 Bile Duct Cancer; 5 Other Malignancy; 1 Choledocolithiasis	20 Surgical Anatomy; 10 Duodenal Obstruction; 2 Obscured Ampulla due to Invasive Cancer; 5 Segmental Cholangitis Difficult to Control with ERCP	27 Distal; 6 Hilar; 2 Chole- docojejunal Anastomosis; 1 Distal plus Hilar; 1 n/a	7 Plastic; 6 Metal; 24 Both	Median (range): 35 (16–125)	0	0	n/a	n/a
Yasuda 2023 [80]	10 malignant	6	Median (Range): 66.5 (58–77)	3 Pancreatic Cancer; 5 Gastric Cancer; 1 Metastatic Colorectal Cancer; 1 Metastatic Cervical Cancer	2 Failed Biliary Cannulation	n/a	10 Metal	Median (range): 20 (15–44)	3	3/3	n/a	Mean (Range): 43 (13–215)
Zhang 2022 [81]	24 malignant	4	Mean: 69.3 ± 6.8	n/a	19 Surgically Altered Anatomy; 5 Gastrointestinal Obstruction	n/a	24 Plastic	n/a	1	1/1	n/a	Mean: 141.0 ± 73.6

3.3. Clinical and Technical Success

A total of 64 studies with 3015 patients showed the pooled clinical success rate for EUS-HGS was 90.9% (95% Confidence Interval [CI], 89.2–92.7; $I^2 = 68\%$) (Figure 2). Data from 3349 patients showed a pooled technical success rate of 98.1% [95% CI, 97.5–98.7]; $I^2 = 40\%$ (Figure 3). On subgroup analysis, the reported pooled clinical and technical success rates of HGAS were 95.2% [95% CI, 91.7–98.9] and 93.8% [95% CI, 89.3–98.2], respectively Table 2.

EUS-HGS clinical success rate

Study	Events 1	Fotal		Proportion	95%-CI	Weight
Anderloni, 2022	20	22	+	- 0.9091	[0.7084; 0.9888]	1.2%
Artifon, 2015	22	25		0.8800	[0.6878; 0.9745]	1.1%
Bories, 2007	10	11	+ -	- 0.9091	[0.5872; 0.9977]	0.8%
Cho, 2017	18	21			[0.6366; 0.9695]	0.9%
Cho, 2022	88	106	- -		[0.7450; 0.8961]	1.9%
Emmanuel, 2020	19	20			[0.7513; 0.9987]	1.5%
Fujii, 2022 Harai, 2022	46 91	54 95			[0.7288; 0.9338] [0.8957; 0.9884]	1.5% 2.4%
Hashimoto, 2022	73	85			[0.7664; 0.9249]	1.8%
Hathorn, 2022	89	102			[0.7919; 0.9304]	2.0%
Hattori, 2023	48	49	-	0.9796	[0.8915; 0.9995]	2.4%
Imai, 2017	65	79	- 		[0.7206; 0.8996]	1.7%
Inoue, 2023	52	57			[0.8070; 0.9709]	1.9%
Ishii, 2023 Ishiwatari, 2021	33 95	37 98			[0.7458; 0.9697] [0.9131; 0.9936]	1.4% 2.5%
Ishiwatari, 2021 Ishiwatari, 2022	92	96			[0.8967; 0.9885]	2.3%
Iwashita, 2017	19	20			[0.7513; 0.9987]	1.5%
Iwashita, 2022	21	21		_	[0.8389; 1.0000]	2.0%
Jagielski, 2021	46	53			[0.7466; 0.9452]	1.6%
Khashab, 2016	50	61	_ _		[0.7002; 0.9064]	1.5%
Kitagawa, 2022	20	23			[0.6641; 0.9722]	1.0%
Kobori, 2022 Marx, 2018	20 143	22 153			[0.7084; 0.9888]	1.2% 2.4%
Marx, 2022	20	25			[0.8831; 0.9682] [0.5930; 0.9317]	0.9%
Matsunami, 2021	44	49			[0.7777; 0.9660]	1.7%
Minaga, 2017	22	30	_		[0.5411; 0.8772]	0.8%
Minaga, 2022	27	33	-	0.8182	[0.6454; 0.9302]	1.1%
Miyano, 2018	41	41	H		[0.9140; 1.0000]	2.5%
Moryoussef, 2017	13	18	_		[0.4652; 0.9031]	0.6%
Nakai, 2016 Ochioi 2021	33 43	33 48			[0.8942; 1.0000]	2.4%
Ochiai, 2021 Ogura, 2016	43 24	46 26			[0.7734; 0.9653] [0.7487; 0.9905]	1.6% 1.4%
Ogura, 2017	40	42			[0.8384; 0.9942]	2.0%
Ogura, 2021	14	14			[0.7684; 1.0000]	1.6%
Oh, 2017	105	129			[0.7359; 0.8770]	2.0%
Ohno, 2022	67	72	-		[0.8453; 0.9771]	2.1%
Okuno, 2018	19	20			[0.7513; 0.9987]	1.5%
Okuno, 2022 Okuno, 2023	53 20	61 20			[0.7578; 0.9416] [0.8316; 1.0000]	1.7% 2.0%
Paik, 2017	13	16			[0.5435; 0.9595]	0.6%
Paik, 2018	24	28			[0.6733; 0.9597]	1.1%
Park, 2011	27	31			[0.7017; 0.9637]	1.2%
Park, 2013	14	15			[0.6805; 0.9983]	1.1%
Park, 2015	18	20			[0.6830; 0.9877]	1.1%
Poincloux, 2015	61 14	66 15			[0.8320; 0.9749]	2.0% 1.1%
Prachayakul, 2013 Ragab, 2023	29	35			[0.6805; 0.9983] [0.6635; 0.9344]	1.1%
Samanta, 2023	15	19	_		[0.5443; 0.9395]	0.7%
Sassatelli, 2019	15	20			[0.5090; 0.9134]	0.6%
Schoch, 2022	22	34			[0.4649; 0.8025]	0.8%
Sekine, 2022	141	161			[0.8147; 0.9224]	2.2%
Shibuki, 2023	136	154			[0.8216; 0.9292]	2.2%
Shin, 2023 Song, 2014	22 10	24 10			[0.7300; 0.9897] [0.6915; 1.0000]	1.3% 1.2%
Sportes, 2017	25	31			[0.6253; 0.9255]	1.0%
Takenaka, 2022	58	63			[0.8244; 0.9737]	2.0%
Tyberg, 2022	75	95			[0.6938; 0.8664]	1.7%
Umeda, 2015	23	23			[0.8518; 1.0000]	2.1%
Yagi, 2022	32	38	 +.		[0.6875; 0.9398]	1.2%
Yamamoto, 2018	23	23			[0.8518; 1.0000] [0.7858; 0.9921]	2.1%
Yamamura, 2022 Yane, 2023	29 35	31 37			[0.7858; 0.9921]	1.6% 1.9%
Yasuda, 2023	9	10			[0.5550; 0.9975]	0.7%
Zhang, 2022	45	45	Ī		[0.9213; 1.0000]	2.6%
Random effects model			· · · · · · · · · · · · · · · · · · ·	0.9096	[0.8922; 0.9270]	100.0%
Heterogeneity: $I^2 = 68\%$, τ	t = 0.0028,	<i>p</i> < 0.01	0 0.2 0.4 0.6 0.8	1		
			0 0.2 0.4 0.0 0.8			

Figure 2. Forest plot of clinical success rat [7,13–81].

EUS-HGS technical success rate

Study	Events 1	Total	Proportion 95%–Cl	Weight
Anderloni, 2022	22	22	1.0000 [0.8456; 1.0000]	1.0%
Artifon, 2015	24	25	0.9600 [0.7965; 0.9990]	0.6%
Attasaranya, 2012	13	16	0.8125 [0.5435; 0.9595]	0.1%
Bories, 2007	10	11	• 0.9091 [0.5872; 0.9977]	0.1%
Cho, 2017	21	21	1.0000 [0.8389; 1.0000]	
Cho, 2022	102	106	0.9623 [0.9062; 0.9896]	2.1%
Emmanuel, 2020	20	20		0.8%
Fujii, 2022 Harai, 2022	51 95	54 95		
Hashimoto, 2022	85	90		1.4%
Hathorn, 2022	204	215	0.9488 [0.9103; 0.9742]	2.8%
Hattori, 2023	49	49	1.0000 [0.9275; 1.0000]	
Honjo, 2018	49	49		3.0%
Imai, 2017	72	79		0.9%
Inoue, 2023	52	57		
Ishii, 2023	36	37	0.9730 [0.8584; 0.9993]	1.2%
Ishiwatari, 2021	96	98	0.9796 [0.9282; 0.9975]	3.0%
Ishiwatari, 2022	96	98		
Iwashita, 2017	19 21	20 21		0.4% 0.9%
Iwashita, 2022 Jagielski, 2021	53	53		
Kawakubo, 2014	19	20	0.9500 [0.7513; 0.9987]	0.4%
Khashab, 2016	56	61		0.8%
Kitagawa, 2022	22	23	0.9565 [0.7805; 0.9989]	
Kobori, 2022	20	22	• 0.9091 [0.7084; 0.9888]	0.3%
Marx, 2022	33	35	0.9429 [0.8084; 0.9930]	0.6%
Matsunami, 2021	45	49	—— 0.9184 [0.8040; 0.9773]	0.6%
Minaga, 2017	29	30	0.9667 [0.8278; 0.9992]	0.9%
Minaga, 2022	33	33		
Miwa, 2023	52	52	- 1.0000 [0.9315; 1.0000] - 1.0000 [0.9140: 1.0000]	
Miyano, 2018 Moryoussef, 2017	41 17	41 18	1.0000 [0.9140; 1.0000] 	
Nakai, 2016	33	33	1.0000 [0.8942; 1.0000]	
Nakamura, 2023	164	166	■ 0.9880 [0.9572; 0.9985]	
Ochiai, 2021	48	48	1.0000 [0.9260; 1.0000]	
Ogura, 2016	26	26	1.0000 [0.8677; 1.0000]	
Ogura, 2017	42	49	0.8571 [0.7276; 0.9406]	0.4%
Ogura, 2021	14	14	1.0000 [0.7684; 1.0000]	
Oh, 2017	120	129		1.6%
Ohno, 2022	72	79		
Okuno, 2018 Okuno, 2022	20 60	20 61		
Okuno, 2023	20	20		
Paik, 2017	16	16	1.0000 [0.7941; 1.0000]	
Paik, 2018	27	28	0.9643 [0.8165; 0.9991]	
Park, 2011	31	31	1.0000 [0.8878; 1.0000]	1.7%
Park, 2013	14	15	0.9333 [0.6805; 0.9983]	0.2%
Park, 2015	20	20	1.0000 [0.8316; 1.0000]	
Poincloux, 2015	65	66	0.9848 [0.9184; 0.9996]	2.8%
Prachayakul, 2013	14	15	• 0.9333 [0.6805; 0.9983]	0.2%
Ragab, 2023	32 19	35 19		
Samanta, 2023 Sassatelli, 2019	20	20	1.0000 [0.8235; 1.0000] 1.0000 [0.8316; 1.0000]	0.8%
Schoch, 2022	33	34	0.9706 [0.8467; 0.9993]	
Sekine, 2022	160	161	0.9938 [0.9659; 0.9998]	5.6%
Shibuki, 2023	152	154	0.9870 [0.9539; 0.9984]	
Shin, 2023	24	24	1.0000 [0.8575; 1.0000]	1.1%
Song, 2014	10	10	1.0000 [0.6915; 1.0000]	
Sportes, 2017	31	31	1.0000 [0.8878; 1.0000]	
Takenaka, 2022	63	69	0.9130 [0.8203; 0.9674]	
Tyberg, 2022	87	95		
Umeda, 2015 Vila, 2012	23 22	23 34	1.0000 [0.8518; 1.0000] 0.6471 [0.4649; 0.8025]	
Yagi, 2022	32	38		
Yamamoto, 2018	23	23	1.0000 [0.8518; 1.0000]	
Yamamura, 2022	31	31	1.0000 [0.8878; 1.0000]	
Yane, 2023	37	37	- 1 .0000 [0.9051; 1.0000]	
Yasuda, 2023	10	10	1.0000 [0.6915; 1.0000]	
Zhang, 2022	45	45	- 1.0000 [0.9213; 1.0000]	2.7%
Random effects mode			0.9814 [0.9751; 0.9878]	100.0%
Heterogeneity: $I^2 = 40\%$,	$\tau^{-} = 0.0001,$	ρ<0.	0 0.2 0.4 0.6 0.8 1	

Figure 3. Forest plot of technical success rate [7,13-81].

	EUS-HGS	HGAS
	Success rate	
Clinical success	90.9 (89.2–92.7)	95.2 (91.7–98.9)
Technical success	98.1 (97.5–98.7)	93.8 (89.3–98.2)
	Adverse events	
Overall adverse events	14.9 (12.7–17)	10.8 (6.6–15.0)
Bile leakage	2.4 (1.7–3.2)	0.1 (0.0–1.1)
Bleeding	1.3 (0.8–1.8)	1.6 (0.5–2.7)
Peritonitis	1.27 (0.7–1.8)	1.1 (0.6–1.6)
Cholangitis	0.5 (0.1–0.8	0.5 (0–2.5)
Mortality	0.1 (0.0–0.3)	0 (0.0–0.5)
Abdominal pain	0.13 (0.0–0.4)	0 (0.0–1.2)
Stent migration	0.3 (0.1–0.6)	0 (0.0–1.5)
Sepsis	0.5 (0.1–0.8)	0 (0.0–1.3)
Pneumoperitoneum	0.1 (0.0–0.4)	0 (0.0–1.0)
Perforation	0.1 (0.0–0.3)	0 (0.0–1.1)
Cholecystitis	0.1 (0.0–0.6)	0 (0.0–0.9)
	ASGE lexicon classification of adve	rse events severity
Mild	7 (4.3–9.7)	NA
Moderate	2.7 (1-4.5)	NA
Severe	0.9 (0.1–1.7)	NA
Fatal	0.03 (0.0–4.6)	NA
	Recurrent obstruction and reinterve	ention success rate
RBO	15.8 (12.2–19.4)	NA
Reintervention success	97.5 (94.7–100)	NA

Table 2. Details of clinical and technical success rates and adverse events associated with EUS-HGS and HGAS.

Values are percentages (%) with the corresponding (95% confidence interval) EUS-HGS: Endoscopic Ultrasound Hepaticogastostomy. HGAS: EUS-guided antegrade stenting.

3.4. Overall Adverse Events

Overall, a total of 68 studies (3454 patients) reported the total number of AEs related to EUS-HGS. The pooled incidence rate of AEs with EUS-HGS was 14.9% (95% CI, 12.7–17.1; I^2 = 71%). A total of 20 studies reported the severity of AEs according to the ASGE Lexicon classification system. The results were as the following: mild: 7% [95% CI, 4.3–9.7]; moderate: 2.7 [95% CI, 1–4.5]; severe: 0.9% [95% CI, 0.1–1.7]; fatal 0.03% [95% CI, 0.0–4.6]. For the HGAS group, the pooled incidence of total AEs was 10.8% [95% CI, 6.6–15.0].

3.5. Individual Adverse Events

Table 1 shows the number of studies and patients and pooled incidence rate of individual AEs. The most common reported AE was bile leakage (2.4% [95% CI, 1.7–3.2]), followed by bleeding and peritonitis, with pooled incidences of 1.30% [95% CI, 0.8–1.8] and 1.27% [95% CI, 0.7–1.8], respectively. A pooled incidence of 0.5% [95% CI, 0.1–0.8] was reported for cholangitis. The pooled incidence of mortality related to the procedure was low at 0.1% [95% CI, 0.0–0.3]. The most common reported symptom was abdominal pain, with a pooled incidence of 0.13% [95% CI, 0.0–0.4]. Stent migration was reported at rate of 0.3% [95% CI, 0.1–0.6]. AEs were less frequent in HGAS group, with the most frequent reported AEs being pancreatitis with a pooled incidence of 4.7% [95% CI, 0.6–8.8].

3.6. Recurrent Biliary Obstruction (RBO) and Re-Intervention

A total of 43 studies (1919 patients) reported the rate of RBO after EUS-HGS. The pooled incidence was 15.8% [95% CI, 12.2–19.4]. However, the success rate for reintervention was high with a pooled rate of 97.5% [95% CI, 94.7–100].

3.7. Assessment of Publication Bias and Sensitivity Analysis

A funnel plot of included studies is shown in Figure 4, which indicates no publication bias. The symmetry of the plot around the central line suggests an even distribution of study results, implying that both positive and negative outcomes were equally likely to be published. This balanced spread of effect sizes across studies of varying sizes supports the conclusion that there is no selective publication bias affecting the meta-analysis results. Additionally, the influence of a single study on the overall meta-analysis estimate was investigated by omitting one study at a time. The omission of any study resulted in no significant difference, indicating that our results were statistically reliable.

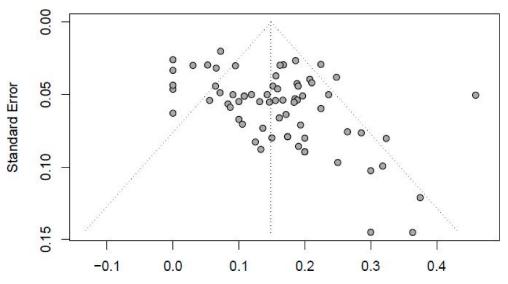


Figure 4. Funnel plot.

4. Discussion

In this comprehensive systematic review and metanalysis of 70 studies with 3643 patients, the pooled clinical success of EUS-HGS after unsuccessful ERCP was 90.9% and the technical success rate was 98.1%. Our analysis showed that the pooled incidence of AEs with EUS-HGS was 14.9% with bile leak being the most common AE at 2.4%. To our knowledge, this is the largest analysis including 70 studies focused on EUS-HGS. Our analysis provides valuable insights into the efficacy and safety of EUS-HGS with or without EUS-AGS when conventional ERCP fails or is not feasible.

Biliary obstruction is a challenging medical condition that can often necessitate a wide variety of interventions via endoscopic retrograde cholangiopancreatography (ERCP). When ERCP is unsuccessful, endoscopic ultrasound-guided hepaticogastrostomy (EUS-HGS) emerges as a promising alternative for biliary drainage [82]. Numerous studies have provided insights into the efficacy and safety of EUS-HGS as an option for biliary drainage [83–85]. The high success rates make EUS-HGS a viable alternative when conventional ERCP is not feasible, particularly in cases involving surgically altered anatomy or inaccessible papilla. Our meta-analysis showed results further supporting this expanding body of evidence, with a pooled clinical success rate of 90.9%, and a pooled technical success rate of 98.1%. Compared to endoscopic retrograde biliary drainage (ERBD) and percutaneous transhepatic biliary drainage (PTBD), EUS-HGS shows comparable success rates [86,87]. Moreover, EUS-HGS has the added advantage of being accessible in cases where ERBD is not feasible due to anatomical challenges.

Stent patency in EUS-HGS is a crucial aspect of its long-term effectiveness. Although theoretically, stent patency might be longer in EUS-HGS than in ERBD, various factors influence the duration of patency [88]. Reported stent patency durations for EUS-HGS have varied widely, ranging from 62 to 402 days. While EUS-HGS may have fewer instances of tumor ingrowth or overgrowth, it can be more susceptible to stent migration and clogging, potentially shortening stent patency. In our review which included 70 studies, there was a significant variation in the stent patency duration, ranging from 31 to 771 days with a pooled average stent patency of 155 days. The location and degree of biliary stricture, presence of gastric or duodenal obstruction, type and length of the stent used, presence of liver metastasis, and other factors all contribute to the stent patency of EUS-HGS.

In the studies included in our meta-analysis, we observed a notable variation in the reported types of stents utilized. Out of the 70 total studies, 36 (51.4%) mentioned the deployment of metal stents, while 8 studies (11.4%) specifically indicated the use of plastic stents. Additionally, 24 studies (34.3%) scrutinized the utilization of both metal and plastic stents. In contrast, 2 studies (2.9%) did not provide information regarding the type of stent used.

A recent prospective study compared stent patency between EUS-guided biliary drainage (EUS-HGS and EUS-choledochoduodenostomy) and ERBD, showing that EUS-guided drainage had significantly longer stent patency [6]. However, it is essential to consider patient survival when interpreting these results, as many patients with biliary obstruction have a short survival time. Shorter survival may reduce the likelihood of observing stent dysfunction because patients may not live long enough for the stent to fail. This distinction is crucial for understanding the actual efficacy and reliability of the stent.

EUS-HGS has been shown to produce fewer procedure-related adverse events than PTBD, making it a safer alternative [6]. The overall previously reported rate of adverse events in EUS-HGS is approximately 18%, with common adverse events including abdominal pain, self-limiting pneumoperitoneum, bile leak, cholangitis, and bleeding. However, in rare cases, serious adverse events like perforation, intraperitoneal stent migration, and mediastinitis have been reported. Notably, our analysis indicates a pooled adverse events incidence rate of 14.89%, with the most frequently encountered adverse events being bile leakage (2.4%), bleeding (1.3%), and peritonitis (1.27%).

Compared to EUS-HGS, EUS-choledochoduodenostomy (EUS-CDS) was shown to result in less early adverse events and shorter procedure time [20]. This suggests that EUS-CDS might be a safer option for novice practitioners, while EUS-HGS should be reserved for experienced operators [89]. The learning curve for EUS-HGS is steep, and it is a technically challenging procedure. Studies suggest that achieving proficiency in EUS-HGS may require a significant number of cases, with some reports indicating that more than 33 cases may be needed to reach a plateau in the learning curve [52]. While EUS-HGS is still technically challenging, one approach to mitigate the learning curve is the conversion of PTBD to EUS-HGS for beginners [90]. This transition can offer several advantages, including the ability to identify the optimal puncture site in the intrahepatic duct via opacification through a PTBD catheter. Furthermore, it allows practitioners to become more familiar with EUS-HGS while potentially reducing the risk of adverse events, such as cholangitis or bile leak.

Despite its advantages, EUS-HGS has several limitations and challenges that need to be considered [6]. Some of these limitations include the technical complexity of the procedure, the lack of dedicated devices for EUS-HGS, the risk of serious adverse events, and the need for skilled practitioners. Additionally, there are technical challenges in draining the right liver in cases of bilateral stenosis and difficulties in patients with a non-dilated biliary system [91].

It is imperative to address the limitations inherent in our meta-analysis. A substantial portion of the studies incorporated in our analysis adopted a retrospective design. This approach has the potential to result in an overestimation of technical and clinical success rates, particularly when populations of patients initially assigned to EUS-HGS or EUS-AGS were subsequently transitioned to an alternative method, such as EUS-choledochoduodenostomy, and labeled as such. Furthermore, several essential parameters that might be of interest, such as the stratification of adverse events and outcomes based on common bile duct size or stent dimensions, were frequently omitted in the studies we reviewed. In recent years, various new devices, including dedicated stent systems, have been developed to make EUS-HGS more accessible [36]. These innovations aim to simplify the procedure, increase its success rate, and decrease the risk of adverse events. Continued development in this area is essential to improve the safety and feasibility of EUS-HGS.

5. Conclusions

EUS-HGS has emerged as a valuable alternative for biliary drainage when conventional ERCP is not feasible. The technique has shown high technical and clinical success rates and potentially longer stent patency compared to ERBD [6]. However, it is not without its challenges, including a steep learning curve, the need for skilled practitioners, and potential risks of adverse events. The ongoing development of dedicated devices and techniques is expected to address these challenges, making EUS-HGS more accessible and safer for patients in need of biliary drainage.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/jcm13133883/s1, Table S1: Baseline characteristics of the included studies and their quality level; Table S2: Quality assessment of included studies using Newcastle-Ottawa Scale.

Author Contributions: Conception and design: S.A., M.Y.M., D.S.D., H.G., M.B. and W.K. Administrative support: S.A., M.Y.M., D.S.D. and W.K. Provision, collection, and assembly of data: S.A., M.Y.M., D.S.D., F.J., Y.K., M.A. (Mohammad Ahmed), A.B., H.G., M.B. and W.K. Statistical analysis: S.A. and A.B. Review of literature: All authors. Drafting the manuscript: All Authors. Revision of key components of manuscript: All authors. Final approval of manuscript: All Authors. Agreement to be accountable for all aspects of the work: all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The data utilized in this study are available publicly. Hence, an analysis did not require Institutional Review Board (IRB) approval as per guideline put forth by our institutional IRB.

Informed Consent Statement: The data utilized in this study is available publicly. Hence, patient consent was not required.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Gravito-Soares, E.; Gravito-Soares, M.; Gomes, D.; Almeida, N.; Tomé, L. Clinical applicability of Tokyo guidelines 2018/2013 in diagnosis and severity evaluation of acute cholangitis and determination of a new severity model. *Scand. J. Gastroenterol.* 2018, 53, 329–334. [CrossRef] [PubMed]
- Smith, A.C.; Dowsett, J.F.; Russell, R.C.; Hatfield, A.R.; Cotton, P.B. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bileduct obstruction. *Lancet* 1994, 344, 1655–1660. [CrossRef] [PubMed]
- 3. EASL. Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J. Hepatol. 2016, 65, 146–181. [CrossRef] [PubMed]
- Coté, G.A.; Singh, S.; Bucksot, L.G.; Lazzell-Pannell, L.; Schmidt, S.E.; Fogel, E.; McHenry, L.; Watkins, J.; Lehman, G.; Sherman, S. Association between volume of endoscopic retrograde cholangiopancreatography at an academic medical center and use of pancreatobiliary therapy. *Clin. Gastroenterol. Hepatol.* 2012, *10*, 920–924. [CrossRef] [PubMed]
- Lesmana, C.R.A.; Paramitha, M.S.; Gani, R.A. Therapeutic interventional endoscopic ultrasound in pancreato-biliary disorders: Does it really replace the surgical/percutaneous approach? World J. Gastrointest. Surg. 2021, 13, 537–547. [CrossRef] [PubMed]

- Paik, W.H.; Park, D.H. Outcomes and limitations: EUS-guided hepaticogastrostomy. *Endosc. Ultrasound* 2019, 8 (Suppl. S1), S44–S49. [PubMed]
- Park, D.H.; Jeong, S.U.; Lee, B.U.; Lee, S.S.; Seo, D.W.; Lee, S.K.; Kim, M.H. Prospective evaluation of a treatment algorithm with enhanced guidewire manipulation protocol for EUS-guided biliary drainage after failed ERCP (with video). *Gastrointest. Endosc.* 2013, 78, 91–101. [CrossRef] [PubMed]
- Ogura, T.; Kurisu, Y.; Masuda, D.; Imoto, A.; Hayashi, M.; Malak, M.; Umegaki, E.; Uchiyama, K.; Higuchi, K. Novel method of endoscopic ultrasound-guided hepaticogastrostomy to prevent stent dysfunction. *J. Gastroenterol. Hepatol.* 2014, 29, 1815–1821. [CrossRef] [PubMed]
- 9. Nguyen-Tang, T.; Binmoeller, K.F.; Sanchez-Yague, A.; Shah, J.N. Endoscopic ultrasound (EUS)-guided transhepatic anterograde self-expandable metal stent (SEMS) placement across malignant biliary obstruction. *Endoscopy* **2010**, *42*, 232–236. [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ* 2021, 372, n71. [CrossRef]
- Cotton, P.B.; Eisen, G.M.; Aabakken, L.; Baron, T.H.; Hutter, M.M.; Jacobson, B.C.; Mergener, K.; Nemcek, A.; Petersen, B.T.; Petrini, J.L.; et al. A lexicon for endoscopic adverse events: Report of an ASGE workshop. *Gastrointest. Endosc.* 2010, 71, 446–454. [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [PubMed]
- Anderloni, A.; Fugazza, A.; Spadaccini, M.; Colombo, M.; Capogreco, A.; Carrara, S.; Maselli, R.; Ferrara, E.; Galtieri, P.; Pellegatta, G.; et al. Feasibility and safety of a new dedicated biliary stent for EUS-guided hepaticogastrostomy: The FIT study (with video). *Endosc. Ultrasound* 2023, 12, 59. [CrossRef]
- Artifon, E.L.; Marson, F.P.; Gaidhane, M.; Kahaleh, M.; Otoch, J.P. Hepaticogastrostomy or choledochoduodenostomy for distal malignant biliary obstruction after failed ERCP: Is there any difference? *Gastrointest. Endosc.* 2015, *81*, 950–959. [CrossRef] [PubMed]
- Attasaranya, S.; Netinasunton, N.; Jongboonyanuparp, T.; Sottisuporn, J.; Witeerungrot, T.; Pirathvisuth, T.; Ovartlarnporn, B. The spectrum of endoscopic ultrasound intervention in biliary diseases: A single center's experience in 31 cases. *Gastroenterol. Res. Pr.* 2012, 2012, 680753. [CrossRef] [PubMed]
- 16. Bories, E.; Pesenti, C.; Caillol, F.; Lopes, C.; Giovannini, M. Transgastric endoscopic ultrasonography-guided biliary drainage: Results of a pilot study. *Endoscopy* **2007**, *39*, 287–291. [CrossRef] [PubMed]
- 17. Cho, D.H.; Lee, S.S.; Oh, D.; Song, T.J.; Park, D.H.; Seo, D.W.; Lee, S.K.; Kim, M.-H. Long-term outcomes of a newly developed hybrid metal stent for EUS-guided biliary drainage (with videos). *Gastrointest. Endosc.* **2017**, *85*, 1067–1075. [CrossRef] [PubMed]
- Cho, J.H.; Park, S.W.; Kim, E.J.; Park, C.H.; Park, D.H.; Lee, K.J.; Lee, S.S. Long-term outcomes and predictors of adverse events of EUS-guided hepatico-gastrostomy for malignant biliary obstruction: Multicenter, retrospective study. *Surg. Endosc.* 2022, 36, 8950–8958. [CrossRef] [PubMed]
- 19. Emmanuel, J.; Omar, H.; See, L.T. Endoscopic ultrasound-guided hepaticogastrostomy using a partially covered metal stent in patients with malignant biliary obstruction after failedEndoscopic retrograde cholangiopancreatography. *JGH Open* **2020**, *4*, 1059–1064. [CrossRef]
- 20. Fujii, Y.; Kato, H.; Himei, H.; Ueta, E.; Ogawa, T.; Terasawa, H.; Yamazaki, T.; Matsumoto, K.; Horiguchi, S.; Tsutsumi, K.; et al. Double guidewire technique stabilization procedure for endoscopic ultrasound-guided hepaticogastrostomy involving modifying the guidewire angle at the insertion site. *Surg. Endosc.* **2022**, *36*, 8981–8991. [CrossRef]
- Harai, S.; Hijioka, S.; Nagashio, Y.; Ohba, A.; Maruki, Y.; Sone, M.; Saito, Y.; Okusaka, T.; Fukasawa, M.; Enomoto, N. Usefulness
 of the laser-cut, fully covered, self-expandable metallic stent for endoscopic ultrasound-guided hepaticogastrostomy. *J. Hepato- Biliary-Pancreatic Sci.* 2022, 29, 1035–1043. [CrossRef]
- 22. Hashimoto, S.; Iwashita, Y.; Taguchi, H.; Tanoue, S.; Ohi, T.; Shibata, R.; Haraguchi, T.; Kamikihara, Y.; Toyodome, K.; Kojima, I.; et al. Comparison of recurrent biliary obstruction with the use of metal and plastic stents in EUS-guided biliary drainage: A propensity score-matched analysis. *Endosc. Ultrasound* 2023, *12*, 64–73. [CrossRef] [PubMed]
- 23. Hathorn, K.E.; Canakis, A.; Baron, T.H. EUS-guided transhepatic biliary drainage: A large single-center U.S. experience. *Gastrointest. Endosc.* 2022, 95, 443–451. [CrossRef] [PubMed]
- Hattori, N.; Ogura, T.; Ueno, S.; Okuda, A.; Nishioka, N.; Miyano, A.; Yamamoto, Y.; Bessho, K.; Uba, Y.; Tomita, M.; et al. Clinical evaluation of a novel drill dilator as the first-line tract dilation technique during EUS-guided biliary drainage by nonexpert hands (with videos). *Gastrointest. Endosc.* 2023, 97, 1153–1157. [CrossRef] [PubMed]
- Itoi, T.; Honjo, M.; Tsuchiya, T.; Tanaka, R.; Tonozuka, R.; Mukai, S.; Sofuni, A.; Nagakawa, Y.; Iwasaki, H.; Kanai, T. Safety and efficacy of ultra-tapered mechanical dilator for EUS-guided hepaticogastrostomy and pancreatic duct drainage compared with electrocautery dilator (with video). *Endosc. Ultrasound* 2018, 7, 376–382. [CrossRef] [PubMed]
- 26. Imai, H.; Takenaka, M.; Omoto, S.; Kamata, K.; Miyata, T.; Minaga, K.; Yamao, K.; Sakurai, T.; Nishida, N.; Watanabe, T.; et al. Utility of endoscopic ultrasound-guided hepaticogastrostomy with antegrade stenting for malignant biliary obstruction after failed endoscopic retrograde cholangiopancreatography. *Oncology* 2017, 93 (Suppl. S1), 69–75. [CrossRef] [PubMed]

- Inoue, T.; Kitano, R.; Ibusuki, M.; Sakamoto, K.; Kimoto, S.; Kobayashi, Y.; Sumida, Y.; Nakade, Y.; Ito, K.; Yoneda, M. Endoscopic ultrasound-guided hepaticogastrostomy with antegrade stenting without dilation device application for malignant distal biliary obstruction in pancreatic cancer. *Dig. Dis. Sci.* 2022, *68*, 2090–2098. [CrossRef]
- Isayama, H.; Ishii, S.; Sasahira, N.; Matsubara, S.; Nakai, Y.; Fujisawa, T.; Tomishima, K.; Sasaki, T.; Ishigaki, K.; Kogure, H.; et al. A pilot study of spring stopper stents: Novel partially covered self-expandable metallic stents with anti-migration properties for EUS-guided hepaticogastrostomy. *Endosc. Ultrasound* 2023, 12, 266–272. [CrossRef] [PubMed]
- Ishiwatari, H.; Satoh, T.; Sato, J.; Kaneko, J.; Matsubayashi, H.; Yabuuchi, Y.; Kishida, Y.; Yoshida, M.; Ito, S.; Kawata, N.; et al. Bile aspiration during EUS-guided hepaticogastrostomy is associated with lower risk of postprocedural adverse events: A retrospective single-center study. *Surg. Endosc.* 2021, *35*, 6836–6845. [CrossRef]
- Ishiwatari, H.; Ishikawa, K.; Niiya, F.; Matsubayashi, H.; Kishida, Y.; Yoshida, M.; Kawata, N.; Imai, K.; Hotta, K.; Ono, H. Endoscopic ultrasound-guided hepaticogastrostomy versus hepaticogastrostomy with antegrade stenting for malignant distal biliary obstruction. *J. Hepato-Biliary-Pancreatic Sci.* 2022, 29, 703–712. [CrossRef]
- Iwashita, T.; Yasuda, I.; Mukai, T.; Iwata, K.; Doi, S.; Uemura, S.; Mabuchi, M.; Okuno, M.; Shimizu, M. Endoscopic ultrasoundguided antegrade biliary stenting for unresectable malignant biliary obstruction in patients with surgically altered anatomy: Single-center prospective pilot study. *Dig. Endosc.* 2017, 29, 362–368. [CrossRef] [PubMed]
- Iwashita, T.; Ogura, T.; Ishiwatari, H.; Nakai, Y.; Iwata, K.; Mukai, T.; Shimizu, M.; Isayama, H.; Yasuda, I.; Itoi, T. Utility of dedicated bougie dilator for a 0.018-inch guidewire during EUS-guided biliary drainage: A multi-center retrospective cohort study. J. Hepato-Biliary-Pancreatic Sci. 2022, 29, 810–816. [CrossRef] [PubMed]
- Jagielski, M.; Zieliński, M.; Piątkowski, J.; Jackowski, M. Outcomes and limitations of endoscopic ultrasound-guided hepaticogastrostomy in malignant biliary obstruction. BMC Gastroenterol. 2021, 21, 202. [CrossRef] [PubMed]
- Kawakubo, K.; Isayama, H.; Kato, H.; Itoi, T.; Kawakami, H.; Hanada, K.; Ishiwatari, H.; Yasuda, I.; Kawamoto, H.; Itokawa, F.; et al. Multicenter retrospective study of endoscopic ultrasound-guided biliary drainage for malignant biliary obstruction in Japan. J. Hepato-Biliary-Pancreatic Sci. 2014, 21, 328–334. [CrossRef]
- Khashab, M.A.; Messallam, A.A.; Penas, I.; Nakai, Y.; Modayil, R.J.; De la Serna, C.; Hara, K.; El Zein, M.; Stavropoulos, S.N.; Perez-Miranda, M.; et al. International multicenter comparative trial of transluminal EUS-guided biliary drainage via hepatogastrostomy vs. choledochoduodenostomy approaches. *Endosc. Int. Open* 2016, *4*, E175–E181. [CrossRef] [PubMed]
- 36. Kitagawa, K.; Mitoro, A.; Minami, R.; Nagamatsu, S.; Ozutsumi, T.; Fujinaga, Y.; Nishimura, N.; Sawada, Y.; Namisaki, T.; Akahane, T.; et al. Efficacy of a dedicated plastic stent in endoscopic ultrasound-guided hepaticogastrostomy during the learning curve: Cumulative multi-center experience. *Scand. J. Gastroenterol.* 2023, *58*, 296–303. [CrossRef] [PubMed]
- 37. Kobori, I.; Hashimoto, Y.; Shibuki, T.; Okumura, K.; Sekine, M.; Miyagaki, A.; Sasaki, Y.; Takano, Y.; Katayama, Y.; Kuwada, M.; et al. Safe performance of track dilation and bile aspiration with ERCP catheter in eus-guided hepaticogastrostomy with plastic stents: A retrospective multicenter study. J. Clin. Med. 2022, 11, 4986. [CrossRef] [PubMed]
- Marx, M.; Caillol, F.; Sfumato, P.; Romero, J.; Ratone, J.-P.; Pesenti, C.; Godat, S.; Hoibian, S.; Dahel, Y.; Boher, J.M.; et al. EUS-guided hepaticogastrostomy in the management of malignant biliary obstruction: Experience and learning curve in a tertiary referral center. *Dig. Liver Dis.* 2022, 54, 1236–1242. [CrossRef]
- Marx, M.; Caillol, F.; Autret, A.; Ratone, J.-P.; Zemmour, C.; Boher, J.; Pesenti, C.; Bories, E.; Barthet, M.; Napoléon, B.; et al. EUS-guided hepaticogastrostomy in patients with obstructive jaundice after failed or impossible endoscopic retrograde drainage: A multicenter, randomized phase II Study. *Endosc. Ultrasound* 2022, *11*, 495–502. [CrossRef]
- Itoi, T.; Matsunami, Y.; Sofuni, A.; Tsuchiya, T.; Ishii, K.; Tanaka, R.; Tonozuka, R.; Honjo, M.; Mukai, S.; Nagai, K.; et al. EUS-guided hepaticoenterostomy with using a dedicated plastic stent for the benign pancreaticobiliary diseases: A single-center study of a large case series. *Endosc. Ultrasound* 2021, 10, 294–304. [CrossRef]
- Minaga, K.; Takenaka, M.; Kitano, M.; Chiba, Y.; Imai, H.; Yamao, K.; Kamata, K.; Miyata, T.; Omoto, S.; Sakurai, T.; et al. Rescue EUS-guided intrahepatic biliary drainage for malignant hilar biliary stricture after failed transpapillary re-intervention. *Surg. Endosc.* 2017, 31, 4764–4772. [CrossRef]
- 42. Minaga, K.; Kitano, M.; Uenoyama, Y.; Hatamaru, K.; Shiomi, H.; Ikezawa, K.; Miyagahara, T.; Imai, H.; Fujimori, N.; Matsumoto, H.; et al. Feasibility and efficacy of endoscopic reintervention after covered metal stent placement for EUS-guided hepaticogastrostomy: A multicenter experience. *Endosc. Ultrasound* **2022**, *11*, 478–486. [CrossRef]
- Miwa, H.; Sugimori, K.; Matsuoka, Y.; Endo, K.; Oishi, R.; Nishimura, M.; Tozuka, Y.; Kaneko, T.; Numata, K.; Maeda, S. Loop technique for guidewire manipulation during endoscopic ultrasound-guided hepaticogastrostomy. *JGH Open* 2023, 7, 358–364. [CrossRef]
- Miyano, A.; Ogura, T.; Yamamoto, K.; Okuda, A.; Nishioka, N.; Higuchi, K. clinical impact of the intra-scope channel stent release technique in preventing stent migration during EUS-guided hepaticogastrostomy. *J. Gastrointest. Surg.* 2018, 22, 1312–1318. [CrossRef]
- 45. Moryoussef, F.; Sportes, A.; Leblanc, S.; Bachet, J.B.; Chaussade, S.; Prat, F. Is EUS-guided drainage a suitable alternative technique in case of proximal biliary obstruction? *Ther. Adv. Gastroenterol.* **2017**, *10*, 537–544. [CrossRef]
- 46. Nakai, Y.; Isayama, H.; Yamamoto, N.; Matsubara, S.; Ito, Y.; Sasahira, N.; Hakuta, R.; Umefune, G.; Takahara, N.; Hamada, T.; et al. Safety and effectiveness of a long, partially covered metal stent for endoscopic ultrasound-guided hepaticogastrostomy in patients with malignant biliary obstruction. *Endoscopy* **2016**, *48*, 1125–1128. [CrossRef]

- Nakamura, J.; Ogura, T.; Ueno, S.; Okuda, A.; Nishioka, N.; Uba, Y.; Tomita, M.; Bessho, K.; Hattori, N.; Nishikawa, H. Liver impaction technique improves technical success rate of guidewire insertion during EUS-guided hepaticogastrostomy (with video). *Ther. Adv. Gastroenterol.* 2023, *16*, 17562848231188562. [CrossRef]
- Ochiai, K.; Fujisawa, T.; Ishii, S.; Suzuki, A.; Saito, H.; Takasaki, Y.; Ushio, M.; Takahashi, S.; Yamagata, W.; Tomishima, K.; et al. Risk factors for stent migration into the abdominal cavity after endoscopic ultrasound-guided hepaticogastrostomy. *J. Clin. Med.* 2021, 10, 3111. [CrossRef]
- 49. Ogura, T.; Chiba, Y.; Masuda, D.; Kitano, M.; Sano, T.; Saori, O.; Yamamoto, K.; Imaoka, H.; Imoto, A.; Takeuchi, T.; et al. Comparison of the clinical impact of endoscopic ultrasound-guided choledochoduodenostomy and hepaticogastrostomy for bile duct obstruction with duodenal obstruction. *Endoscopy* **2016**, *48*, 156–163. [CrossRef]
- 50. Ogura, T.; Kitano, M.; Takenaka, M.; Okuda, A.; Minaga, K.; Yamao, K.; Yamashita, Y.; Hatamaru, K.; Noguchi, C.; Gotoh, Y.; et al. Multicenter prospective evaluation study of endoscopic ultrasound-guided hepaticogastrostomy combined with antegrade stenting (with video). *Dig. Endosc.* **2018**, *30*, 252–259. [CrossRef]
- Ogura, T.; Ueno, S.; Okuda, A.; Nishioka, N.; Yamada, M.; Matsuno, J.; Ueshima, K.; Yamamoto, Y.; Higuchi, K. Technical feasibility and safety of one-step deployment of EUS-guided hepaticogastrostomy using an 8-mm diameter metal stent with a fine-gauge stent delivery system (with video). *Endosc. Ultrasound* 2021, *10*, 355–360. [CrossRef]
- Oh, D.; Park, D.H.; Song, T.J.; Lee, S.S.; Seo, D.-W.; Lee, S.K.; Kim, M.-H. Optimal biliary access point and learning curve for endoscopic ultrasound-guided hepaticogastrostomy with transmural stenting. *Ther. Adv. Gastroenterol.* 2017, 10, 42–53. [CrossRef]
- Ohno, A.; Fujimori, N.; Kaku, T.; Takamatsu, Y.; Matsumoto, K.; Murakami, M.; Teramatsu, K.; Takeno, A.; Hijioka, M.; Kawabe, K.; et al. Feasibility and efficacy of endoscopic ultrasound-guided hepaticogastrostomy without dilation: A propensity score matching analysis. *Dig. Dis. Sci.* 2022, 67, 5676–5684. [CrossRef]
- 54. Okuno, N.; Hara, K.; Mizuno, N.; Kuwahara, T.; Iwaya, H.; Ito, A.; Kuraoka, N.; Matsumoto, S.; Polmanee, P.; Niwa, Y. Efficacy of the 6-mm fully covered self-expandable metal stent during endoscopic ultrasound-guided hepaticogastrostomy as a primary biliary drainage for the cases estimated difficult endoscopic retrograde cholangiopancreatography: A prospective clinical study. J. *Gastroenterol. Hepatol.* 2018, 33, 1413–1421. [CrossRef]
- Hara, K.; Okuno, N.; Mizuno, N.; Haba, S.; Kuwahara, T.; Kuraishi, Y.; Tajika, M.; Tanaka, T.; Onishi, S.; Yamada, K.; et al. B2 puncture with forward-viewing EUS simplifies EUS-guided hepaticogastrostomy (with video). *Endosc. Ultrasound* 2022, 11, 319–324. [CrossRef]
- Okuno, N.; Hara, K.; Haba, S.; Kuwahara, T.; Kuraishi, Y.; Yanaidani, T.; Ishikawa, S.; Yasuda, T.; Yamada, M.; Fukui, T. Novel drill dilator facilitates endoscopic ultrasound-guided hepaticogastrostomy. *Dig. Endosc.* 2022, 35, 389–393. [CrossRef]
- 57. Paik, W.H.; Lee, N.K.; Nakai, Y.; Isayama, H.; Oh, D.; Song, T.J.; Lee, S.S.; Seo, D.-W.; Lee, S.K.; Kim, M.-H.; et al. Conversion of external percutaneous transhepatic biliary drainage to endoscopic ultrasound-guided hepaticogastrostomy after failed standard internal stenting for malignant biliary obstruction. *Endoscopy* 2017, 49, 544–548. [CrossRef]
- Paik, W.H.; Park, D.H.; Choi, J.H.; Choi, J.H.; Lee, S.S.; Seo, D.W.; Lee, S.K.; Kim, M.H. Lee Simplified fistula dilation technique and modified stent deployment maneuver for EUS-guided hepaticogastrostomy. *World J. Gastroenterol.* 2014, 20, 5051–5059. [CrossRef]
- Park, D.H.; Jang, J.W.; Lee, S.S.; Seo, D.-W.; Lee, S.K.; Kim, M.-H. EUS-guided biliary drainage with transluminal stenting after failed ERCP: Predictors of adverse events and long-term results. *Gastrointest. Endosc.* 2011, 74, 1276–1284. [CrossRef]
- 60. Park, D.H.; Lee, T.H.; Paik, W.H.; Choi, J.; Song, T.J.; Lee, S.S.; Seo, D.; Lee, S.K.; Kim, M. Feasibility and safety of a novel dedicated device for one-step EUS-guided biliary drainage: A randomized trial. *J. Gastroenterol. Hepatol.* **2015**, *30*, 1461–1466. [CrossRef]
- Poincloux, L.; Rouquette, O.; Buc, E.; Privat, J.; Pezet, D.; Dapoigny, M.; Bommelaer, G.; Abergel, A. Endoscopic ultrasound-guided biliary drainage after failed ERCP: Cumulative experience of 101 procedures at a single center. *Endoscopy* 2015, 47, 794–801. [CrossRef]
- 62. Prachayakul, V. A novel technique for endoscopic ultrasound-guided biliary drainage. *World J. Gastroenterol.* **2013**, *19*, 4758–4763. [CrossRef]
- Ragab, K.; Abdel-Hameed, M.; Gouda, M.; Katamish, H.; Madkour, A.; Atalla, H.; Hamed, H.; Shiha, G.; Abdallah, O.; Agwa, R.; et al. Endoscopic ultrasound-guided biliary drainage for distal malignant biliary obstruction: A prospective 3-year multicenter Egyptian study. *Acta Gastro Enterol. Belg.* 2023, *86*, 26–35. [CrossRef]
- 64. Samanta, J.; Sundaram, S.; Dhar, J.; Mane, K.; Gupta, P.; Gupta, V.; Patil, P.; Sinha, S.K.; Kochhar, R.; Mehta, S. EUS-guided biliary drainage in patients with moderate–severe cholangitis is safe and effective: A multi-center experience. *Surg. Endosc.* 2023, *37*, 298–308. [CrossRef]
- 65. Sassatelli, R.; Cecinato, P.; Lupo, M.; Azzolini, F.; Decembrino, F.; Iori, V.; Sereni, G.; Tioli, C.; Cavina, M.; Zecchini, R.; et al. Endoscopic ultrasound-guided biliary drainage for malignant biliary obstruction after failed ERCP in low performance status patients. *Dig. Liver Dis.* **2020**, *52*, 57–63. [CrossRef]
- Napoléon, B.; Schoch, A.; Lisotti, A.; Walter, T.; Fumex, F.; Leblanc, S.; Artru, P.; Desramé, J.; Brighi, N.; Marsot, J.; et al. Efficacy of EUS-guided hepaticogastrostomy in prolonging survival of patients with perihilar cholangiocarcinoma. *Endosc. Ultrasound* 2022, 11, 487–494. [CrossRef]
- 67. Sekine, M.; Hashimoto, Y.; Shibuki, T.; Okumura, K.; Kobori, I.; Miyagaki, A.; Sasaki, Y.; Takano, Y.; Matsumoto, K.; Mashima, H. A retrospective multicenter study comparing the punctures to B2 and B3 in endoscopic ultrasound–guided hepaticogastrostomy. *DEN Open* **2023**, *3*, e201. [CrossRef]

- Shibuki, T.; Okumura, K.; Sekine, M.; Kobori, I.; Miyagaki, A.; Sasaki, Y.; Takano, Y.; Hashimoto, Y. Covered self-expandable metallic stents versus plastic stents for endoscopic ultrasound-guided hepaticogastrostomy in patients with malignant biliary obstruction. *Gastrointest. Endosc.* 2023, 56, 802–811. [CrossRef]
- 69. Shin, I.S.; Moon, J.H.; Lee, Y.N.; Myeong, J.H.; Lee, T.H.; Yang, J.K.; Cho, Y.D.; Park, S.-H.; Giovannini, M. Preliminary feasibility study of a new partially covered self-expandable metal stent with an anchoring flange for EUS-guided hepaticogastrostomy (with videos). *Gastrointest. Endosc.* 2023, *98*, 848–856. [CrossRef]
- 70. Song, T.J.; Lee, S.S.; Park, D.H.; Seo, D.W.; Lee, S.K.; Kim, M.-H. Preliminary report on a new hybrid metal stent for EUS-guided biliary drainage (with videos). *Gastrointest. Endosc.* **2014**, *80*, 707–711. [CrossRef]
- Sportes, A.; Camus, M.; Greget, M.; Leblanc, S.; Coriat, R.; Hochberger, J.; Chaussade, S.; Grabar, S.; Prat, F. Endoscopic ultrasoundguided hepaticogastrostomy *versus* percutaneous transhepatic drainage for malignant biliary obstruction after failed endoscopic retrograde cholangiopancreatography: A retrospective expertise-based study from two centers. *Ther. Adv. Gastroenterol.* 2017, 10, 483–493. [CrossRef] [PubMed]
- 72. Takenaka, M.; Rehani, M.M.; Hosono, M.; Yamazaki, T.; Omoto, S.; Minaga, K.; Kamata, K.; Yamao, K.; Hayashi, S.; Nishida, T.; et al. Comparison of Radiation Exposure between Endoscopic Ultrasound-Guided Hepaticogastrostomy and Hepaticogastrostomy with Antegrade Stenting. *J. Clin. Med.* **2022**, *11*, 1705. [CrossRef] [PubMed]
- 73. Kahaleh, M.; Tyberg, A.; Napoleon, B.; Robles-Medranda, C.; Shah, J.; Bories, E.; Kumta, N.; Yague, A.; Vazquez-Sequeiros, E.; Lakhtakia, S.; et al. Hepaticogastrostomy versus choledochoduodenostomy: An international multicenter study on their long-term patency. *Endosc. Ultrasound* 2022, *11*, 38–43. [CrossRef] [PubMed]
- 74. Umeda, J.; Itoi, T.; Tsuchiya, T.; Sofuni, A.; Itokawa, F.; Ishii, K.; Tsuji, S.; Ikeuchi, N.; Kamada, K.; Tanaka, R.; et al. A newly designed plastic stent for EUS-guided hepaticogastrostomy: A prospective preliminary feasibility study (with videos). *Gastrointest. Endosc.* **2015**, *82*, 390–396.e2. [CrossRef] [PubMed]
- 75. Vila, J.J.; Pérez-Miranda, M.; Vazquez-Sequeiros, E.; Abadia, M.A.-S.; Pérez-Millán, A.; González-Huix, F.; Gornals, J.; Iglesias-Garcia, J.; De la Serna, C.; Aparicio, J.R.; et al. Initial experience with EUS-guided cholangiopancreatography for biliary and pancreatic duct drainage: A Spanish national survey. *Gastrointest. Endosc.* **2012**, *76*, 1133–1141. [CrossRef] [PubMed]
- 76. Yagi, S.; Kurita, Y.; Sato, T.; Hasegawa, S.; Hosono, K.; Kobayashi, N.; Endo, I.; Saigusa, Y.; Kubota, K.; Nakajima, A. Utility of Fine-Gauge Balloon Catheter for EUS-Guided Hepaticogastrostomy. J. Clin. Med. 2022, 11, 5681. [CrossRef] [PubMed]
- 77. Itoi, T.; Yamamoto, K.; Tsuchiya, T.; Tanaka, R.; Tonozuka, R.; Honjo, M.; Mukai, S.; Fujita, M.; Asai, Y.; Matsunami, Y.; et al. EUS-guided antegrade metal stenting with hepaticoenterostomy using a dedicated plastic stent with a review of the literature (with video). *Endosc. Ultrasound* 2018, 7, 404–412. [CrossRef]
- Yamamura, M.; Ogura, T.; Ueno, S.; Okuda, A.; Nishioka, N.; Yamada, M.; Ueshima, K.; Matsuno, J.; Yamamoto, Y.; Higuchi, K. Partially covered self-expandable metal stent with antimigratory single flange plays important role during EUS-guided hepaticogastrostomy. *Endosc. Int. Open* 2022, 10, E209–E214. [CrossRef]
- 79. Yane, K.; Yoshida, M.; Imagawa, T.; Morita, K.; Ihara, H.; Hanada, K.; Hirokawa, S.; Tomita, Y.; Minagawa, T.; Okagawa, Y.; et al. Usefulness of endoscopic ultrasound-guided transhepatic biliary drainage with a 22-gauge fine-needle aspiration needle and 0.018-inch guidewire in the procedure's induction phase. *DEN Open* **2024**, *4*, e297. [CrossRef]
- Yasuda, T.; Hara, K.; Mizuno, N.; Haba, S.; Kuwahara, T.; Okuno, N.; Kuraishi, Y.; Yanaidani, T.; Ishikawa, S.; Yamada, M.; et al. Safety of endoscopic ultrasound-guided hepaticogastrostomy in patients with malignant biliary obstruction and ascites. *Clin. Endosc.* 2024, 57, 246–252. [CrossRef]
- Zhang, Y.; Wang, X.; Sun, K.; Chen, J.; Zhang, Y.; Shi, L.; Fan, Z.; Liu, L.; Chen, B.; Ding, Y. Application of endoscopic ultrasoundguided hepaticogastrostomy combined with antegrade stenting in patients with malignant biliary obstruction after failed ERCP. *Surg. Endosc.* 2022, *36*, 5930–5937. [CrossRef] [PubMed]
- Fugazza, A.; Colombo, M.; Spadaccini, M.; Vespa, E.; Gabbiadini, R.; Capogreco, A.; Repici, A.; Anderloni, A. Relief of jaundice in malignant biliary obstruction: When should we consider endoscopic ultrasonography-guided hepaticogastrostomy as an option? *Hepatobiliary Pancreat. Dis. Int.* 2022, 21, 234–240. [CrossRef] [PubMed]
- 83. Gupta, K.; Perez-Miranda, M.; Kahaleh, M.; Artifon, E.L.; Itoi, T.; Freeman, M.L.; De-Serna, C.; Sauer, B.; Giovannini, M.; InEBD Study Group. Endoscopic ultrasound-assisted bile duct access and drainage: Multicenter, long-term analysis of approach, outcomes, and complications of a technique in evolution. *J. Clin. Gastroenterol.* **2014**, *48*, 80–87. [CrossRef] [PubMed]
- 84. Giovannini, M.; Moutardier, V.; Pesenti, C.; Bories, E.; Lelong, B.; Delpero, J.R. Endoscopic ultrasound-guided bilioduodenal anastomosis: A new technique for biliary drainage. *Endoscopy* **2001**, *33*, 898–900. [CrossRef]
- Facciorusso, A.; Mangiavillano, B.; Paduano, D.; Binda, C.; Crinò, S.F.; Gkolfakis, P.; Ramai, D.; Fugazza, A.; Tarantino, I.; Lisotti, A.; et al. Methods for Drainage of Distal Malignant Biliary Obstruction after ERCP Failure: A Systematic Review and Network Meta-Analysis. *Cancers* 2022, 14, 3291. [CrossRef] [PubMed]
- Mao, K.; Hu, B.; Sun, F.; Wan, K. Choledochoduodenostomy versus Hepaticogastrostomy in Endoscopic Ultrasound-guided Drainage for Malignant Biliary Obstruction: A Meta-analysis and Systematic Review. *Surg. Laparosc. Endosc. Percutaneous Tech.* 2021, 32, 124–132. [CrossRef]
- 87. Nennstiel, S.; Weber, A.; Frick, G.; Haller, B.; Meining, A.; Schmid, R.M.; Neu, B. Drainage-related Complications in Percutaneous Transhepatic Biliary Drainage: An Analysis over 10 Years. *J. Clin. Gastroenterol.* **2015**, *49*, 764–770. [CrossRef]
- 88. Ogura, T.; Higuchi, K. Endoscopic Ultrasound-Guided Hepaticogastrostomy: Technical Review and Tips to Prevent Adverse Events. *Gut Liver* **2021**, *15*, 196–205. [CrossRef]

- 89. Li, J.; Tang, J.; Liu, F.; Fang, J. Comparison of Choledochoduodenostomy and Hepaticogastrostomy for EUS-Guided Biliary Drainage: A Meta-Analysis. *Front. Surg.* **2022**, *9*, 811005. [CrossRef]
- 90. Morita, S.; Sugawara, S.; Suda, T.; Hoshi, T.; Abe, S.; Yagi, K.; Terai, S. Conversion of percutaneous transhepatic biliary drainage to endoscopic ultrasound-guided biliary drainage. *DEN Open* **2021**, *1*, e6. [CrossRef]
- 91. Chantarojanasiri, T.; Ratanachu-Ek, T.; Pausawasdi, N. What You Need to Know before Performing Endoscopic Ultrasoundguided Hepaticogastrostomy. *Clin. Endosc.* 2021, 54, 301–308. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.