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Abstract: Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with
20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role
in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal
transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β
signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from
the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins
are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This
review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis,
highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β
promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms.
Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells,
fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic
role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming
to identify new therapeutic options.
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1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide
and ranks second in cancer-related mortality [1,2]. Its incidence is 25% higher in males and
differs greatly between countries. In the European Union, CRC was estimated to account
for 12.7% of all new cancer diagnoses and 12.4% of all cancer-related deaths in 2020 [3].

In patients with CRC, 5-year survival varies from 28.5% to 57% in men and 30.9%
to 60% in women, depending on the stage of the disease at the moment of diagnosis.
The 5-year survival drops to <10% for patients diagnosed at stage IV [2]. At the time of
diagnosis, 20% of patients present with metastatic disease [4], mainly liver, peritoneum,
and lung but also brain and bone [5].

Although there are new surgical approaches and loco-regional treatments for liver
and lung metastases, the prognosis of patients with metastatic CRC (mCRC) remains poor.
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Therefore, it is required to identify the underlying mechanisms of cancer development and
metastatization in order to optimize the therapeutic strategies [6,7].

Transforming growth factor-beta (TGF-β) signaling is one of the most important
pathways playing critical roles in many biological processes, including cell growth, differ-
entiation, proliferation, apoptosis, epithelial–mesenchymal transition (EMT), extracellular
matrix (ECM) remodeling, angiogenesis, and cellular immune responses and homeosta-
sis [6]. The TGF-β superfamily contains more than forty members, including TGF-βs,
Nodal, Activin, and bone morphogenetic proteins (BMPs). In the early stages of tumorige-
nesis TGF-β protein has a suppressive role by inducing cell cycle arrest and apoptosis in
the early stages of tumor formation. During cancer progression, tumor cells gradually be-
come resistant and secrete TGF-β themselves [8], working, in turn, as immunosuppressors
facilitating neo-angiogenesis and tumor invasion and metastasis [9].

TGF-β ligands are regulatory cytokines that play an important role in different tumori-
genic processes [6,8]. Alterations of TGF-β signaling can determine the development of
a variety of tumors, including esophageal cancer, hepatocellular, pancreatic, gastric, and
colorectal cancer [10–12].

In the present manuscript, we analyzed TGF-β signaling and investigated the role
of TGF-β-dependent pathway in CRC pathogenesis. Moreover, we have described the
mechanisms by which TGF-β influences metastases development, recognizing the involved
key components. We also looked into potential clinical applications as therapeutic targets.

2. TGF-β Signaling Pathway

TGF-β superfamily signaling involves 30 components, categorized into two main
subfamilies: the TGF-β-activin-nodal subfamily and the BMP subfamily [6,13,14]. There
are three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-β3, each interacting with specific
surface receptors known as TGF-βR1, TGF-βR2, and TGF-βR3 [14]. TGF-β ligands are
secreted in an inactive form within the extracellular matrix and can be activated by integrins
αvβ6 or αvβ8 [15,16].

Upon activation, TGF-β ligands bind to TGF-βR2, prompting the formation of a
hetero-tetrameric complex with TGF-βR1 [10,17]. This complex phosphorylates TGF-βR1,
which then phosphorylates the SMAD2 and SMAD3 proteins. SMAD proteins are central
mediators of the TGF-β signaling pathway and are divided into three categories: receptor-
regulated SMADs (R-SMADs, like SMAD2 and SMAD3), inhibitory SMADs (I-SMADs),
and common-mediator SMADs (Co-SMADs, like SMAD4) [18].

Once phosphorylated, R-SMADs (SMAD2 and SMAD3) form a complex with SMAD4,
which translocates to the nucleus to regulate gene expression [19,20]. In the nucleus, they
influence various cellular processes, such as proliferation, differentiation, and apoptosis.
After engaging in gene transcription, the linker region of R-SMADs is phosphorylated
by cyclin-dependent kinase 8 (CDK8). Subsequently, glycogen synthase kinase 3 (GSK3)
phosphorylates R-SMADs, creating a binding site for SMAD ubiquitination regulatory
factor 1 (SMURF1) and other E3 ubiquitin ligases, leading to their ubiquitination and
degradation by the proteasome [15].

Mutations in TGF-β receptors and SMAD proteins are common in CRC. In a study
of 128 metastatic CRC (mCRC) patients, 17% had alterations in the TGF-β pathway [16].
Another study of 579 patients undergoing colorectal liver metastasis (CRLM) resection
found TGF-β mutations in 11.2% of cases [19]. High microsatellite instability (MSI-
H) CRC often has frequent inactivating mutations in the TGF-βR2 gene, leading to
truncated receptors [21].

Mutations in SMAD2 and SMAD4 can disrupt TGF-β signaling, resulting in uncon-
trolled cell growth and tumor progression. In sporadic CRC, SMAD4, SMAD2, and SMAD3
mutations were found in 8.6%, 3.4%, and 4.3% of cases, respectively, including various
types of mutations [22]. SMAD7, an inhibitory protein, is often increased in CRC and is
linked to a poor prognosis due to its amplification caused by single nucleotide polymor-
phisms [23]. Dysregulation of BMPs may also play a role in the development of sporadic
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CRC [24]. Additionally, the loss of SMAD4 in mCRC, occurring in about 30% of cases,
contributes to resistance to chemotherapy [9,25]. Mutations in the TGF-β pathway often
occur alongside other signaling pathway variations, suggesting a synergistic effect on CRC
metastasis, rather than being the primary drivers [26].

Several non-canonical pathways contribute to epithelial-mesenchymal transition and
neoangiogenesis, influencing the tumor microenvironment. These include the mitogen-
activated protein kinase (MAPK) pathway, the Rho-associated kinase (ROCK) pathway,
and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway [17].

In TGF-β-sensitive intestinal and lung epithelial cells, both TGF-β receptors (TGF-β
RI and TGF-β RII) activate RAS, which is crucial for regulating specific cell cycle events
and inhibiting the mitogenic response in intestinal epithelial cells. Activation of MAPKs
SAPK and Erk via Ras and TGF-β receptors is necessary for the autoinduction of TGF-β RI.
Additionally, TGF-β-induced activation of the Ras/MAPK pathway positively influences
the Smad1 signaling pathway [27,28] (Figure 1).
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Figure 1. A schematic representation of the TGF-β signaling pathway illustrates its key components
and interactions in both canonical and non-canonical pathways.

3. The Role of TGF-β in Epithelial Mesenchymal Transition (EMT)

EMT is crucial during embryogenesis and plays a key role in cancer metastasis. During
EMT, cells lose E-cadherin expression and redistribute Zonula Occludens (ZO) proteins,
claudins, and occludins, altering cell polarity and reorganizing the cytoskeleton [29]. This
transcriptional change activates mesenchymal genes and increases the expression of ex-
tracellular proteases, which degrade extracellular matrix proteins and enable invasive
behavior [30]. Consequently, cells undergoing EMT acquire a mobile and invasive pheno-
type [31,32]. Mesenchymal cancer cells are associated with poor prognoses and chemother-
apy resistance [33]. A key step in EMT is the loss of E-cadherin, caused by epigenetic
modifications like hypermethylation of its gene promoter, leading to its transcriptional
silencing. This loss triggers cytoskeletal reorganization and activates signaling pathways,
such as TGF-β and Wnt, which further suppress E-cadherin and promote a mesenchymal
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phenotype. These pathways lead to the upregulation of mesenchymal proteins, such as
vimentin, enhancing the invasive capabilities of cancer cells [34,35].

During EMT, increased deposition of extracellular matrix proteins forms focal adhesion
complexes that facilitate cell migration [36]. The expression of N-cadherin also increases,
making cells more mobile and invasive [37]. These changes result in the loss of apical-basal
polarity in epithelial cells, enhancing their migration [38]. TGF-β activates various cellular
signals and mechanisms that contribute to tumor progression, promoting EMT and cancer
stem cell (CSC) proliferation [39–41]. In hepatocarcinoma stem cells, TGF-β increases the
expression of the stem cell marker CD133 and the adhesion molecule CD44 via the SMAD-
dependent pathway. In glioma stem cells, the same pathway induces self-renewal through
the LIF-Janus kinase-STAT pathway [41–43]. Both SMAD-dependent and independent
pathways influence cell junction complexes [17,44,45]. While similar processes may occur
in CRC, further research is needed to confirm these observations.

The role of SMAD4 in tumorigenesis and EMT is complex. SMAD4 can act as a
tumor suppressor in some cells and as an EMT inducer in others. TGF-β-induced, SMAD-
mediated EMT increases the expression of ZEB proteins and HLH transcription factors, as
well as Snail, Slug, and Twist, which repress E-cadherin expression [38,46–48].

SMAD-independent pathways also promote EMT by dissolving cell junctions and
remodeling the cytoskeleton. This involves both the canonical pathway (inducing Snail
and Zeb expression) and the non-canonical pathway (downregulating Par3 and degrading
RhoA) [17,49,50]. These changes activate ERK, which forms a complex with SHC and GRB2,
enhancing SMAD transcriptional activity and promoting invasion and metastasis [51–53].

The PI3K-AKT-mTOR pathway is another non-SMAD pathway involved in TGF-β-
mediated EMT. TGF-β activates AKT via PI3K and E3 ligase TRAF6, which also activates
JNK and p38 kinases, playing a central role in EMT [54,55]. Additionally, TGF-β upregulates
PDGF receptors and ligands, leading to PI3K activation and the initiation of EMT via the
SRC/STAT3 pathway [56].

Recent evidence suggests that miRNAs contribute to EMT via TGF-β signaling.
TGF-β modulates miRNA expression at both transcriptional and post-transcriptional
levels [57,58]. Gregory et al. found that the microRNA-200 family (miR-200a, miR-200b,
miR-200c, miR-141, and miR-429) and miR-205 are significantly downregulated in cells
undergoing EMT in response to TGF-β. Enforced expression of these miRNAs can prevent
EMT [59]. TGF-β influences miR-200 family expression through a TGF-β/ZEB/miR-200
feedback loop mediated by SMAD4. The miR-200 family regulates E-cadherin repressors,
so their downregulation leads to the overexpression of ZEB1 and ZEB2, which are transcrip-
tional repressors of E-cadherin. In CRC cells, upregulation of ZEB1 at the tumor’s invasive
front is linked to basement membrane loss and EMT [60]. Gregory et al. also demonstrated
that the inhibition of miR-200 alone induces a mesenchymal-like phenotype [61,62].

Recent studies show that TGF-β regulates the expression of long non-coding RNAs
(lncRNAs), which are increasingly recognized as TGF-β effectors [58]. In CRC, taurine-
upregulated lncRNA gene 1 (TUG1) mediates TGF-β-induced EMT, enhancing migration,
invasion, and risk of pulmonary metastases via the TWIST1/EMT pathway. However, the
regulation of TUG1 by TGF-β is not fully understood [63]. In mCRC, TGF-β signaling via
SMAD2 downregulates lncRNA LINC01133, which normally prevents EMT by inhibiting
the EMT promoter SRSF6. Conversely, it upregulates lncRNA-ATB, which suppresses
E-cadherin expression [64,65].

TGF-β also promotes the generation of myofibroblasts from mesenchymal precursors,
aiding in tumor invasion [66]. The TGF-β receptor variant TGF-BR1*6A can switch TGF-
β1′s role from inhibiting to stimulating growth, significantly increasing cell invasion in
mCRC via pathways like Ras/MAPK, JNK, and PI3K/AKT [67]. Zhou et al. found that
cells with the TGF-BR1*6A allele had increased activity of the p38 and ERK1/2 MAPK
pathways, independent of TGF-β itself, potentially due to secondary signaling mediated
by the cleaved signal sequence in the cytoplasm [68]. Additionally, the inactivation of
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TGF-βR2 in intestinal epithelial cells promotes tumor transformation and invasion initiated
by APC mutation in a cell-autonomous manner [69].

Cross-talk between Hypoxia Inducible Factor (HIF)-1α and TGF-β has been pro-
posed, especially in renal carcinoma. HIF-1α upregulates TGF-β and activates its SMAD-
dependent pathway in early tumor progression. The Von Hippel-Lindau (VHL) protein
inhibits ALK5 and HIF-1α/2α under normoxia, while hypoxia increases their expression.
ALK5 further enhances HIF-1α/HIF-2α expression under normoxia.

During hypoxia, HIF-1α increases hypoxia-response elements like N-Cadherin through
Snail’s transcriptional activity. TGF-β and HIF-1α form a feed-forward loop, enhancing
EMT [70]. Preclinical studies with sanguinarine show that inhibiting HIF-1α reduces EMT,
Snail translocation, and activation of the Smad and PI3K-AKT pathways [71–73] (Figure 2).
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4. The Role of TGF-β in Angiogenesis

Angiogenesis, a hallmark of cancer, involves the formation of new blood vessels to sup-
ply tumors with oxygen and nutrients, facilitating their growth and spread [74,75]. These
new vessels also help cancer cells enter the bloodstream and metastasize to distant sites [76].

TGF-β can act as either an angiogenic or angiostatic factor, depending on interactions
between tumor cells, normal epithelial cells, and the tumor microenvironment [77]. TGF-β
stimulates angiogenesis by accelerating endothelial cell migration and proliferation [78]. It
increases VEGF expression in endothelial cells via Sp1-dependent transcriptional activation,
promoting proliferation, migration, and survival by binding to VEGFR-1/2 [79,80]. In
a mouse model of liver metastases, inhibiting TGF-β-induced ig-h3 protein suppresses
CRC cell angiogenesis and inhibits CRC liver metastases progression [81]. TGF-β also pro-
motes pericyte differentiation during blood vessel formation through a SMAD-dependent
pathway [82,83]. Additionally, TGF-β activates the Notch1/Twist1 pathway, upregulating
platelet-derived growth factor D (PDGF-D), which promotes CRC cell growth, migration,
and angiogenesis [84].

TGF-β induces proangiogenic factors such as connective tissue growth factor (CTGF)
and insulin-like growth factor-binding protein 7 (IGFBP-7) in epithelial cells and fibrob-
lasts [85]. TGF-β1, through TGFβRII-mediated SMAD2 and p38 pathways, along with
thrombospondin 1, induces Runt-Related Transcription Factor-1 (RUNX1) overexpression
in mCRC tumor cells, enhancing cell motility for new vessel formation [86].

Conversely, an SMAD4-dependent pathway can act as a tumor suppressor. Downregula-
tion of SMAD4 expression leads to VEGF overexpression, promoting neoangiogenesis and
metastasis in mCRC [25]. In pancreatic cancer cells, restoring SMAD4 expression suppresses
neoangiogenesis by reducing VEGF and increasing Thrombospondin 1 (TSP1) [87]. (Figure 3).
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5. The Role of TGF-β in the Tumor Microenvironment

The tumor microenvironment (TME) is crucial for carcinogenesis, progression, immune
evasion, and metastasis. TGF-β signaling influences various elements of TME, promoting
tumor progression.

Increased TGF-β secretion aids tumor immune evasion. Tauriello et al. [88] showed
that higher TGF-β levels in the TME cause T cell exhaustion and inhibit the Th1-effector
phenotype, leading to an immunologically cold environment and poor prognosis. Com-
bining TGF-β inhibitors with anti-PD1/PDL1 treatment increases lymphocyte infiltration
and T-bet expression and reduces T-cell exhaustion, enhancing the immune response and
improving susceptibility to anti-PD1/PDL1 drugs.

Increased TGF-β signaling also promotes the conversion of fibroblasts into cancer-
associated fibroblasts (CAFs), accelerating disease progression and metastasis [89].
Peng et al. [90] demonstrated that integrin αvβ6 expression in CRC cells induces fibroblast
conversion, marked by increased α-SMA and FAP expression.

TGF-β plays a pivotal role in activating CAFs, which promote CRC metastasis through
several mechanisms. Activated CAFs secrete SDF-1, activating the SDF-1/CXCR4 axis,
thereby enhancing CRC cell metastasis [91]. Additionally, IL11, secreted by TGF-β-activated
CAFs, triggers GP130/STAT3 signaling in CRC cells, providing a survival advantage for
metastatic cells [91]. An important study from Spain in 2015 [92] demonstrated that
increased TGF-β expression enhances adhesion between CAFs and CRC cells, leading to
increased proliferation, invasion, and liver metastases in vivo. Inhibiting TGF-β with P17
blocks CAF-CRC cell adhesion and reduces liver metastasis in experimental models [92].
Furthermore, CAFs can self-stimulate through a positive feedback loop. Zhang et al. [93]
found that miR-17-5p produced by CAFs increases TGF-β production and secretion by
CRC cells. In turn, TGF-β stimulates CAFs to produce more miR-17-5p through the
RUNX3/MYC/TGF-β1 pathway, promoting a metastatic phenotype.

TGF-β undergoes regulatory mechanisms to control its expression; recent findings
indicate that Thrombospondin Type 1 Domain Containing 4 (THSD4) can hinder TGF-β
binding to its receptor by interacting with microfibrils [94,95]. Conversely, Zinc Finger
Protein 37A (ZNF37A), often upregulated in undifferentiated CRCs, inhibits THSD4 tran-
scription by binding to its promoter, thereby promoting TGF-β signaling and facilitating
stromal fibroblast conversion into CAFs, which enhances tumor metastasis [89].

Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvi-
ronment (TME), as the predominant infiltrating immune cells. TAMs are known pro-
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moters of cancer metastasis, although the specific mechanisms involved are not fully
understood [96–98]. TGF-β produced by TAMs has been shown to activate HIF1α through
glycolysis, which subsequently activates the TRIB3/β-catenin/Wnt signaling pathway,
thereby enhancing tumor progression. Inhibition of HIF1α signaling by GN44028 has
demonstrated potential anti-cancer effects when combined with chemotherapy, reducing
tumor progression [99].

GDF15, a member of the TGF-β superfamily secreted by macrophages, promotes invasion
and metastasis by enhancing ERK 1/2 phosphorylation of c-Fos [100]. Hypersecretion of TGF-β
by TAMs in response to oxaliplatin-based chemotherapy induces PDL1 upregulation, fostering
an immunosuppressive tumor microenvironment. Targeting TGF-β or its upstream regulators
to inhibit PDL1 expression could potentially enhance CRC sensitivity to chemotherapy [101].

CRC cells stimulate M2-type macrophage polarization, characterized by an inflamma-
tory and pro-tumorigenic phenotype, through the secretion of CTHRC1 and activation of
the TGF-β signaling pathway. CTHRC1 interacts directly with TGFβR-2 and -3, stabilizing
the ligand-receptor complex [102]. M2-type TAMs, in turn, promote Tregs generation
via the TGF-β/SMAD signaling pathway [103], and induce EMT through the SMAD2,3-
4/Snail/E-cadherin signaling pathway [99], thereby enhancing metastasis.

TME encompasses various cell components, including tumor-associated neutrophils,
myeloid cells, monocytes, and T cells, all positively correlated with CRC progression and
metastasis through distinct mechanisms. Neutrophil infiltration, induced by TGF-β and
NOTCH1 activation, enhances liver metastasis [104]. Additionally, TGF-β upregulation
correlates with the increased expression of Th17 and Treg-related genes, promoting cytokine
release that contributes to CRC progression [105]. For a summary, see Figure 4.
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6. Additional Roles of TGF-β in mCRC Development

Recent evidence indicates that radiation increases TGF-β production by CRC cells,
leading to elevated expression of podocalyxin-like protein (PODXL) and enhanced depo-
sition of the extracellular matrix. This effect strengthens the migratory and invasive
properties of cancer cells. Inhibition of the TGF-β pathway by Galunisertib in CRC
cells exposed to radiation suppresses PODXL activation, thereby inhibiting cell invasion
and migration [106].
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Downregulation of the TGF-β pathway contributes to the formation of tumor spheres
with inverted polarity (TSIPs) through the ROCK pathway, particularly involving SMAD2.
Unlike normal epithelial tissue, TSIPs exhibit inverted apical-basolateral polarity, with the
apical pole oriented outward. Recent studies have linked TSIPs to the process of CRC
metastasis to the peritoneum [107].

In MSI-H CRC, mutations in the TGF-βR2 gene are frequent, occurring in approx-
imately 74% of cases. These mutations are associated with increased vascular invasion,
which contributes to tumor progression due to TGF-β-mediated inhibition of epithelial cell
growth. Lack of responsiveness to TGF-β signaling enhances cell growth and invasion [21].
Importantly, there are no statistically significant differences in overall survival between
MSI-H patients with TGF-βR2 mutations and those without [108].

Moreover, TGF-βR2 mutations are often found alongside alterations in other signaling
pathways in mCRC. The accumulation of these mutations synergistically enhances the
metastatic process of CRC. For instance, the Kirsten rat sarcoma virus (KRAS) G12D
mutation, commonly co-occurring with TGF-βR2 mutations in mCRC, induces EMT-like
cell morphology and increases the incidence of liver metastasis in animal models.

In mouse models, the presence of only the KRAS G12D mutation does not lead to an
increase in liver metastasis. This underscores the critical role of the TGF-β pathway as a
mediator of invasiveness, specifically in KRAS mutant mCRCs [109].

Mutations in the APC gene, commonly found in patients with familial adenomatous
polyposis (FAP), are associated with deregulation of the Wnt signaling pathway. Studies
indicate that dysregulation of both TGF-β and Wnt signaling pathways synergistically
promotes colorectal tumorigenesis [110].

Carcinoembryonic antigen (CEA) serves as a tumor marker in mCRC, and its periodic
measurement is a routine part of clinical assessment during both the follow-up and active
treatment phases. Elevated CEA levels influence the abnormal activation of the TGF-β
pathway through the MAPK-NFκB pathway and HNRMP/CEAR, ultimately converging
on NF-κB [111] (Figure 5).
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7. TGF-β as a Therapeutic Target

TGF-β plays a critical role in CRC progression by promoting EMT and angiogenesis
and by creating an immunosuppressive microenvironment. Targeting TGF-β signaling is a
promising therapeutic approach under investigation.
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Several monoclonal antibodies have been explored in this regard, albeit with mixed
outcomes. SAR4349459 initially showed promise but was discontinued due to toxicity and
a low objective response rate [112,113]. Another monoclonal antibody, PF-03446962, which
blocks TGF-βRI, was studied in various tumors but demonstrated unacceptable toxicity
and limited clinical activity in a phase Ib trial (REGAL-1) when combined with Regorafenib
in CRC [114].

Bintrafusp alfa, combining PDL1 and TGF-βRII inhibition, demonstrated clinical
activity but yielded mixed results in CRC patients, particularly effective in CMS4 subtype
cases [115]. However, trials in oligometastatic CRC and MSI-H cancers did not show
significant anti-tumor effects [116,117].

NIS793, a TGF-β-targeting monoclonal antibody, combined with spartalizumab, an
anti-PD1 antibody, showed promising results in a phase Ib trial with advanced solid
tumors. Among 60 patients, partial responses were seen in renal cell carcinoma and MSS-
CRC cohorts, with no dose-limiting toxicity reported. Evidence included increased TGF-
β/NIS793 complexes and reduced active TGF-β levels in peripheral blood. Tumor biopsies
showed decreased TGF-β target gene expression and enhanced immune signatures [118].

Dalutrafusp alpha (GS-1423), targeting CD73-adenosine production and TGF-β sig-
naling, was well tolerated in a phase I study of CRC patients. Grade 3 or 4 adverse events
occurred in 42.9% of patients, with two cases of Grade 5 events (pulmonary embolism and
progressive disease) deemed unrelated to dalutrafusp alpha. Responses varied among the
four CRC patients, with mixed responses observed [119].

Most clinical trials targeting TGF-β in humans have fallen short of expectations.
This discrepancy with preclinical data could be attributed to several factors. Timing of
administration differs significantly between preclinical and clinical trials: in preclinical
studies, anti-TGF-β agents are initiated early, whereas in clinical trials, they are often
used in heavily pre-treated and advanced patients, limiting efficacy. Moreover, animal
models may not fully reflect human conditions, especially concerning components like
cancer-associated fibroblasts (CAFs) and their interaction with TGF-β in the extracellular
matrix. The TGF-β pathway is intricately regulated by feedback mechanisms; therefore,
stopping TGF-β inhibition may lead to increased receptor responsiveness, resembling a
flare-up scenario. Other strategies are still in the preclinical stages of investigation.

Kinase inhibitors have shown promising initial results in both in vitro and in vivo
studies. LY2109761, a TGF-β receptor inhibitor, effectively blocked liver metastasis in mouse
models [120]. Combining Galunisertib (LY2157299) with adoptive NK cells also resulted
in the eradication of liver metastases [121]. Furthermore, Galunisertib combined with an
AXL inhibitor, Bemcentinib, reduced colony formation and migration in mesenchymal-type
human CRC cell lines [122].

lncRNAs are RNA transcripts over 200 nucleotides long that do not translate into
proteins [123]. While lncRNA therapies are not yet standard, they show promise as drug
targets due to their tissue specificity, potentially reducing off-target effects [124]. For
instance, MIR503HG and HOXC-AS3 have been identified as upstream inhibitors of TGF-
β2; their overexpression inhibits the migration and invasion of CRC cells [125]. Conversely,
silencing lncRNAs like EZR-AS1 blocks TGF-β signaling, stimulates apoptosis, and reduces
migration [126]. Similarly, targeting LINC00941 theoretically could inhibit migration
and invasion [127].

Sitagliptin, a DPP-4 inhibitor used in type 2 diabetes, was investigated by Varela-
Calviño et al. in 2021 for its effects on CD26+ (DPP4) CRC cell lines. They found that
Sitagliptin not only antagonizes DPP-4 directly but also interferes with TGF-β1 effects on
EMT and cell cycle, thus limiting metastasis [128] (Table 1).

However, Principe et al. (2016) highlighted the potential drawbacks of TGF-β inhibi-
tion. Loss of TGF-β signaling could lead to fatal inflammatory diseases in APC mice and
might accelerate carcinogenesis [129]. A clinical trial with LY3022859, an anti-TGF-βR2 mon-
oclonal antibody, was halted prematurely due to a high toxicity profile, including cytokine
release syndromes, despite prophylactic use of antihistamines and corticosteroids [130].
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Table 1. Trials with TGF-B inhibitors (AEs: adverse events; MSI-H, microsatellite instability-high;
EMT, epithelial-mesenchymal transition).

Drug Trial Setting Results

SAR4349459 NCT03192345 [112,113]
(±cemiplimab) Phase 1/1b Around 50% ≥ G3 AEs;

terminated due to low objective response

PF-03446962 REGAL-1 [114]
(+Regorafenib) Phase 1b No clinical activity, unacceptable toxicities

Bintrafusp alfa
NCT02517398 [115] Phase I Only 1 CMS4 patient presented long response,
NCT03436563 [116] Phase Ib/II Treatment determined increased progression
NCT03436563 [117] Phase Ib/II No significant activity in MSI-H mCRC

LY2109761 [120] Preclinical Reduced liver metastatization

Galunisertib
[121] Preclinical Eradication of liver metastasis
[122]

(+Bemcentinib) Preclinical Reduced colony formation and migration

Sitagliptin [128] Preclinical Limiting EMT and metastatization

Principe et al. demonstrated in mouse models that genetically blocking TGF-β sig-
naling led to increased tumor-associated inflammation, tumor burden, enhanced tumor
development, and increased mortality [129]. This dual role of TGF-β in carcinogenesis is
evident in many tumors, where there is a gradual shift from its growth-suppressive effects
(reduced proliferation, increased apoptosis) to its pro-migratory signaling, promoting in-
vasive and metastatic behavior. Loss of SMAD4 in CRC correlates with poorer survival,
yet in advanced cancer stages, TGF-β is often overexpressed and serves as a negative
prognostic factor [131–133].

8. TGF-β and Mechanism of Resistance to Chemotherapy and Biological Agents

An association between TGF-β expression and resistance to chemotherapy has also
been reported [134]. TGF-β expression has been linked to chemotherapy resistance in CRC.
High levels of HIF-1α/TGF-β2 correlate with tumor relapse post-chemotherapy, indicating
these factors as potential targets for overcoming chemo-resistance [135].

TGF-β contributes to oxaliplatin resistance in mCRC by suppressing macroautophagy
via the TGF-β/SMAD4 axis and by increasing EMT, which reduces DNA damage and
apoptosis induced by oxaliplatin [136]. Additionally, abnormal TGF-β receptor expres-
sion can protect CRC cells from 5-FU’s cytotoxic effects. SMAD4-mediated transcription
increases resistance to 5-FU, whereas inhibiting TGF-β signaling restores chemosensitivity.
Chemoresistant cells often lack functional TP53, affecting TGF-β’s role in cytostasis, ECM
functioning, and metastasis, thus influencing drug resistance [137,138].

In BRAF mutant cells, TGF-β signaling is often up-regulated after BRAF inhibitor
(BRAFi) treatment, leading to resistance [139,140]. Sun et al. found that suppressing SRY-
box transcription factor 10 (SOX10) in BRAFi-treated melanoma cells activates TGF-β sig-
naling, upregulating EGFR and PDGFRb, and confers resistance to MAPK inhibitors [141].
BRAFi-treated melanoma cells show increased EGFR, PDGFRB, and miR-125a expression
due to TGF-β signaling, reducing pro-apoptotic pathway activity and fostering BRAFi
resistance [141,142]. Conversely, BRAF mutant cells may depend on TGF-β signaling,
enhancing TGF-β inhibitors’ efficacy [143]. Additionally, TGF-β overexpression contributes
to cetuximab resistance in CRC cells by inducing the EGFR–MET interaction [144].

In conclusion, targeting TGF-β alone has limitations, but combining TGF-β inhibition
with other anti-cancer agents can reduce chemoresistance (Figure 6). In a phase 2 trial, Galu-
nisertib with neoadjuvant chemoradiotherapy in locally advanced rectal cancer showed
promising results. Out of 38 patients, 25 (71%) completed the treatment and underwent
surgery, with 5 (20%) achieving pathological complete responses (pCR). Ten patients (29%)
were initially ineligible for surgery, but 3 (30%) chose to undergo it later, with 2 (67%)
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achieving pCR. Of the 7 patients opting for non-operative management, 5 (71%) had clinical
complete responses (cCR) at 1 year after their last modified FOLFOX6 infusion. Overall,
12 (32% [one-sided 95% CI ≥ 19%]) patients had CR. Only 2 (5%) patients experienced
grade 4 adverse events. These results suggest that TGF-β inhibition with Galunisertib
enhances sensitivity to chemoradiation in patients with locally advanced rectal cancer,
improving the complete response rate to 32% [145].
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9. Conclusions

TGF-β pathway is a key element in mCRC, involved in promoting EMT, favoring
angiogenesis and interaction with the tumor microenvironment. Thus, it represents a po-
tential target of intervention on both CRC cells and their microenvironment. Unfortunately,
no TGF-β inhibitor is available, at least to our knowledge, in clinical practice. Clinical trials
in humans have often failed expectations, probably due to differences in timing and the
difficulty in switching from an animal to human models. Better patient selection, perhaps
through identification of biomarkers, and further understanding of TGF-β pathway and
regulation mechanisms may help in the development of effective strategies. In this view,
the patients enrolled in clinical trials rarely have been characterized for serum TGF-β levels
of for mutations in the TGF-β-signaling. Moreover, due to the low number of patients
enrolled in the study, with TGF-β inhibitors, no information about additional molecular
markers of response are available. Another consideration has to be about the possible use of
TGF-β inhibitors in combination with chemo- and/or radiotherapy that have been demon-
strated to be potent inducers of EMT remodeling through TGF-β signaling modulation, as
reported above. Therefore, the inhibition of the TGF-β pathway could be useful in order
to potentiate their efficacy. Future studies should be performed using TGF-β inhibitors in
combined strategies with chemo- and radiotherapy approaches.

Moreover, TGF-β dysregulation occurs much later in CRC, at locally advanced or
metastatic stages. A result of this dysregulation is increased TGF-β secretion from other
stromal cells rather than the tumor cells themselves. Because PD-L1 can be upregulated on
both tumor cells and infiltrating immune cells, this creates a target-rich environment for
TGF-β inhibitors and thus more opportunity to provide localized TGF-β inhibition in the
tumor. This encourages the combined use of TGF-β inhibitors with PD1/PDL1 inhibitors in
defined clinical settings after molecular characterization of the tumors [146]. The toxicity of
TGF-β must also be kept in mind when evaluating potential therapeutic benefits. Therefore,
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further research is definitely needed to finally target TGF-β in clinical practice in order to
identify better drug combinations and improve patient selection.
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