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Abstract: Objectives: This study, based on the concept of immuno-inflammatory–metabolic (IIM)
dysregulation, investigated and compared the prognostic impact of 27 indices at admission for pre-
diction of postoperative myocardial injury (PMI) and/or hospital death in hip fracture (HF) patients.
Methods: In consecutive HF patient (n = 1273, mean age 82.9 ± 8.7 years, 73.5% females) demograph-
ics, medical history, laboratory parameters, and outcomes were recorded prospectively. Multiple
logistic regression and receiver-operating characteristic analyses (the area under the curve, AUC)
were used to establish the predictive role for each biomarker. Results: Among 27 IIM biomarkers,
10 indices were significantly associated with development of PMI and 16 were indicative of a fatal
outcome; in the subset of patients aged >80 years with ischaemic heart disease (IHD, the highest
risk group: 90.2% of all deaths), the corresponding figures were 26 and 20. In the latter group, the
five strongest preoperative predictors for PMI were anaemia (AUC 0.7879), monocyte/eosinophil
ratio > 13.0 (AUC 0.7814), neutrophil/lymphocyte ratio > 7.5 (AUC 0.7784), eosinophil count <
1.1 × 109/L (AUC 0.7780), and neutrophil/albumin × 10 > 2.4 (AUC 0.7732); additionally, sensitivity
was 83.1–75.4% and specificity was 82.1–75.0%. The highest predictors of in-hospital death were
platelet/lymphocyte ratio > 280.0 (AUC 0.8390), lymphocyte/monocyte ratio < 1.1 (AUC 0.8375),
albumin < 33 g/L (AUC 0.7889), red cell distribution width > 14.5% (AUC 0.7739), and anaemia (AUC
0.7604), sensitivity 88.2% and above, and specificity 85.1–79.3%. Internal validation confirmed the
predictive value of the models. Conclusions: Comparison of 27 IIM indices in HF patients identified
several simple, widely available, and inexpensive parameters highly predictive for PMI and/or
in-hospital death. The applicability of IIM biomarkers to diagnose and predict risks for chronic
diseases, including OP/OF, in the preclinical stages is discussed.

Keywords: hip fracture; immuno-inflammatory–metabolic dysregulation; biomarkers; outcomes;
prediction; postoperative myocardial injury; mortality

1. Introduction

Predicting postoperative complications and mortality in hip fracture (HF) patients is
exceptionally complex. Most patients with HF are old, frail, have multiple comorbidities,
and, consequently, a low physiological reserve.

Although a wide variety of models has been proposed for predicting HF outcomes,
accurate prognosis remains among the most pressing challenges; a comprehensive review
and comparison of prognostic efficacy of these models is currently lacking. The complexity
and heterogeneity of HFs and the exact root causes driving adverse effects are not com-
pletely understood; a lack of a conceptional explanation of the mechanistic biological basis
that underpin adverse effects is among the main reasons for suboptimal HF management.
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The main factors responsible for an osteoporotic HF (as well as most chronic disorders)
and its outcome include genetic predisposition and environmental, lifestyle, socioeco-
nomic, age- and gender-related factors, all of which affect homeostasis (in this paper the
terms “homeostasis” (self-regulated ability to maintain the stability of physiological pro-
cesses) and “homeoresis” (constant dynamical adaptations necessary for survival) are
combined under the umbrella of homeostasis) through interconnected and tightly coordi-
nated dynamic biological mechanisms. Varying degrees of immune (innate and adaptive),
inflammatory, metabolic, and nutritional responses in different combinations contribute to
the predisposition to HFs and their outcomes. Physiological or pathological activation of
the immune–inflammatory–metabolic responses (IIMRs) have profound effects on function
and survival. Dysregulation in IIMRs is a hallmark of ageing and progressive muscu-
loskeletal deterioration, as well as diverse pathologies and life-threatening conditions in
most organ systems.

Imbalances between immune, inflammatory, and biochemical processes, particularly
in the ageing population (e.g., inflammageing), affect various homeostatic systems, create
vicious cycles, increase the risk of multiple chronic noncommunicable diseases (including
osteoporotic fracture (OF), sarcopenia, atherosclerosis, cardiovascular, neurodegenerative,
renal, lung, liver, autoimmune, metabolic diseases, T2DM, etc.), and contribute to frailty
and longevity. Dysregulations in metabolism are known as important determinants of
the immune and inflammatory responses and vice versa (pleiotropic immune-metabolic
interplay) [1–21]. Assuming that poor HF outcome is linked to and reflects the failure of
interconnected homeostatic mechanisms, an evolutionary highly conserved complex and
dynamic process, it appears logical to identify abnormal IIMRs as prognostic factors to
correct the reversable one.

Figure 1 depicts schematically the physiologically inseparable links between three
main pillars of homeostatic regulation which involve various pathways integrating diverse
metabolic, immune, and inflammatory functions. Immuno-inflammatory–metabolic (IIM)
imbalances caused by environmental stresses, poor lifestyle choices, and/or physiological
conditions lead to tissue damage and constitute the “common soil” [2] of most chronic
diseases, including osteoporosis (OP) and OF. From this perspective, a person’s IIM state
provides a close representation of an individual’s overall health status and reflects what
has been encoded by the genome and modified by environmental, lifestyle, and disease-
related factors.
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Figure 1. Schematic overview of main determinants of immune–inflammatory–metabolic (IIM) home-
ostasis in health and disease. The diagram illustrates complex dynamic and toughly interconnected
immune, inflammatory, and biochemical processes—the three main hallmarks of homeostasis. These
evolutionary integrated processes (feedback loops) are regulated and influenced by numerous genetic,
environmental, lifestyle, socioeconomic, age- and gender-related factors via myriads of signalling
pathways. Analysis of individual IIM status provides a unified understanding of ageing, pathol-
ogy, and progression of most chronic diseases and indicates the potential diagnostic, prognostic,
preventive, and therapeutic targets.
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Although in recent years numerous novel biochemical, immunological and inflam-
mation biomarkers have gained significant attention as predictors of clinical outcomes in
different settings, the most reliable candidates to prognosticate HF outcome at hospital
admission remain unknown.

To our knowledge, no study summarised the proposed outcome models in HF patients,
and there is no consensus on which one is the best for predicting the risk of a poor outcome.
Among numerous outcome predictors in the published literature, we have chosen 27 simple
blood indices with established regulatory functions, focussing on reversable/modifiable
parameters, and compared the prognostic value of each of these tests at admission in HF
patients. Driven by elementary logic, we attempted to find pragmatic, convenient, easy to
apply, and pathogenically important indices that can provide effective pre-surgery predic-
tive information and, hence, may constitute good targets for preventive and therapeutic
interventions. To characterise the IIMRs, we analysed a large group of peripheral blood cell
(red blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and platelets) counts,
red blood cell distribution widths (RDWs), haemoglobin, serum albumin, alanine amino-
transferase (ALT), and gamma-glutamyl transferase (GGT) levels, and we calculated 18 dif-
ferent ratios, including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte
ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic immune–inflammation in-
dex (SII), systemic inflammation response index (SIRI), etc. (Table 1). These simple and
affordable indicators of IIM imbalance(s) demonstrated prognostic significance in many
different diseases and are increasingly used as biomarkers of poor survival, particularly,
in malignancy. However, about one-third of these indices have never been applied to
predict HF outcomes. We used two distinct outcome variables corresponding with the
main research questions: occurrence of postoperative myocardial injury (PMI) and the
in-hospital mortality.

Table 1. Selected immuno-inflammatory–metabolic indices and used cut-offs.

Single Parameters (Absolute Values)

RBC <4.30 × 1012/L (lower limit of reference range)

Anaemia haemoglobin <130 g/L (men) and <120 g/L (women)

Neutrophils >7.5 × 109/L (upper limit of reference range)

Lymphocytes <1.1 × 109/L (lower limit of reference range)

Monocytes >1.0 × 109/L (upper limit of reference range)

Platelets >400 × 109/L (upper limit of reference range)

Eosinophils <0.5 × 109/L (median)

Red cell distribution width (RDW) >14.5% (upper limit of reference range)

Albumin <33 g/L (lower level of reference range)

Composite parameters (ratios or products)

NLR >7.5 (median)

PLR >280.0 (4th quartile),

LMR <1.1 (1st quartile)

SII 1620.0 (median)

SIRI >5.1 (median)

Mon/Eos ratio >13.0 (median)

Neutr/Eos ratio >156.3 (median)

Neutr/Mon ratio >12.1 (median)

Neutr/Alb × 10 >2.4 (median)

Alb/RDW ratio <2.6 (median),
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Table 1. Cont.

Composite parameters (ratios or products)

Hb/RDW ratio <8.8 (median)

RDW/Plt × 100 >6.6 (median)

Hb/Alb ratio >4.6 (median)

Alb × Lymph <25.4 (median)

ALT/Lymph ratio <14.6 (median)

GGT/Lymph ratio >25.4 (median)

Plt/Alb ratio >5.9 (median)

Plt/ALT ratio >13.8 (median)
Abbreviations: Eos, eosinophil; Lymph, lymphocyte; Mon, monocyte; Neutr, neutrophil; Plt, platelet; Hb,
haemoglobin, RDW, red cell distribution width; Alb, albumin; ALT, alanine aminotransferase; Alb/RDW,
albumin/red blood cell distribution width ratio; ALT/Lymph, alanine aminotransferase/lymphocyte ra-
tio; Alb × Lymph, albumin × lymphocyte multiplication; GGT, gamma-glutamyl transferase; GGT/Lymp,
gamma glutamyl transferase/lymphocyte ratio; Hb/RDW, haemoglobin/red blood cell distribution width ratio;
Hb/Alb, haemoglobin/albumin ratio; LMR, lymphocyte/monocyte ratio; Mon/Eos, monocyte/eosinophil ratio;
Neutr/Alb, neutrophil/albumin ratio; NLR, neutrophil/lymphocyte ratio; Neutr/Eos, neutrophil/eosinophil
ratio; Neutr/Mon, neutrophil/ monocyte ratio; PLR, platelet/lymphocyte ratio; PLT/ALT, platelet/alanine amino-
transferase ratio; Plt/Alb, platelet/albumin ratio; RDW/Plt × 100, red blood cell distribution width/platelet
ratio (multiplied by 100); SII, systemic immune–inflammation index; SIRI, system inflammation response index.
The units of neutrophils, lymphocytes, monocytes, eosinophils, and platelets were all 109/L; ALT and GGT are
expressed in IU. The ratios were calculated by dividing the numerator by the denominator (the values for each
were expressed in units as shown). Formulas used for calculating integrated indices: SII = platelet count ×
neutrophil count/lymphocyte count, SIRI = neutrophil count × monocyte count /lymphocyte count. To simplify,
all cut-offs were rounded to the nearest tenth.

The aim of this study was twofold. First, to evaluate and compare the predictive
performance, accuracy, and reliability of each of the 27 potential predictive biomarkers (in-
cluding those not covered by any previous study), considering the patient’s age and history
of ischaemic heart disease (IHD), and to provide recommendations for the best tests that
would indicate at admission a high risk of PMI and/or lethal outcome. Second, to present
an overview of the potential utility of the IIM biomarkers in early identifying patients at a
risk of OP/OF (and related disorders) and individualising preventive strategies.

2. Materials and Methods
2.1. Patients

In this observational single-centre study, we analysed prospectively collected data on
a cohort of 1273 consecutive patients (older than 60 years) admitted with a low-trauma
non-pathological HF (cervical or trochanteric) to the Department of Orthopaedic Surgery
of Canberra Hospital (a university-affiliated tertiary care centre) between 2010 and 2019
who underwent operative fracture treatment. The present study extends our previous
work; detailed descriptions of this cohort, inclusion, and exclusion criteria have been
published [22]. In brief, patients with high- or medium-energy fractures, multiple fractures,
polytrauma, pathological (malignant tumour) or subtrochanteric fractures were excluded;
a low-energy mechanism was defined as a fall from no greater than standing height. The
mean age of patients was 82.9 ± 8.7 [SD] years, 73.5% were women, and 50.5% had a
cervical fracture. All patients followed a similar postoperative protocol, with mobilisation
out of bed on day one and a urinary catheter being taken out on day two.

The validation cohort (n = 582, mean age 81.9 ± 9.13 years, 71.0% women, 52.9% with
a cervical fracture) had a similar to the main cohort profile of chronic comorbid diseases,
admission laboratory characteristics and outcomes.

2.2. Data Collection

Data on socio-demographic (including pre-fracture residential status, use of walking
aid) characteristics, lifestyle factors (smoking, alcohol use), clinical (14 chronic comor-
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bidities, medications used) and laboratory parameters at admission (within 12–24 h of
arrival), type of surgery, and postoperative hospital outcomes were prospectively recorded
and analysed.

Comorbidities included ischaemic heart disease (IHD), prior myocardial infarction
(MI), hypertension (HT), cerebrovascular accident (CVA), transient ischaemic attack (TIA),
type 2 diabetes mellitus (T2DM), atrial fibrillation (AF), chronic kidney disease (CKD),
anaemia, chronic obstructive airway disease (COPD), dementia, Parkinson’s disease (PD),
and rheumatic and malignant (without bone metastasis) diseases. The diagnoses of IHD,
hypertension, T2DM, and all other chronic diseases were based on current guidelines and
documentation in the previous hospital and general practitioners’ medical case records.

2.3. Laboratory Measurements

The routine laboratory tests included full blood count, serum electrolytes, creatinine,
urea nitrogen, C-reactive protein (CRP), albumin and liver function tests, cardiac troponin
I (cTnI), 25(OH) vitamin D [25(OH)D], intact PTH, thyroid stimulatory hormone (TSH),
free thyroxine (T4), vitamin B12, folic acid, iron, ferritin, and transferrin; analyses were
performed by standard laboratory methods using auto-analysers. Serum calcium concen-
trations were corrected for serum albumin, and the glomerular filtration rate was estimated
(eGFR). Serum cardiac troponin I (cTnI) levels were assessed pre- and within 24 h post-
operatively and then after if elevated and/or clinically indicated. All patients with an
elevated cTnI level of >20 ng/L or greater (“abnormal” laboratory threshold) were assessed
for ischaemic features (ischaemic symptoms and 12-lead electrocardiogram). Chronic
kidney disease (CKD) was defined as an estimated glomerular filtration rate (eGFR) <
60 mL/min/1.73 m2.

The studied IIM parameters and cut-offs used are listed in Table 1. The optimal
cut-off values for most IIM parameters have not yet been established; reported reference
data vary substantially across different studies reflecting patient variability, differences in
demographics, race/ethnicities, underlying disease, comorbidities, complications, etc.

In this study, the absolute cut-offs for single haematological indices have been defined
according the existing consensus definitions. The robustness of cut-offs for some ratios
was validated in our prior studies ([23–28]); for other cut-offs, median values have been
used. Our cut-offs for composite parameters are in accordance with a number of values
reported in the literature. For example, some studies found optimal cut-off values for NLR
of 6.14 [29,30] or 8.16 [31], for PLR > 204.4 [32], and a ratio of 4.41 [33]–5.87 [34] for Plt/Alb;
our Alb/RDW ratio is also close to that used by other researchers [35–38].

2.4. Outcome Measures

These included (1) PMI defined by cTnI rise (if, on days 1–5 post-surgery, at least one
cTnI measurement was >20 ng/L with or without associated ischemic symptoms); (2) a
high inflammatory response assessed by marked elevation of CRP (>100 mg/L after the
3rd postoperative day); (3) length of hospital stay (LOS); (4) all-cause in-hospital mortality.
Currently, there is no consensus on recommendations regarding the threshold levels of cTnI
elevations for the definition of perioperative myocardial infarction even in patients under-
going cardiac surgery (the proposed cutoffs range from >10 times to ≥70 times the upper
reference limit) [39]. Because most of our HF patients were asymptomatic and not candi-
dates for (and did not have) a coronary angiogram, in this study, postoperative AMI was
conditionally defined by cTnI ≥ 500 ng/L (25 times above the upper limit of reference lev-
els) accompanied by obvious ECG signs (Q-waves, ST-segment changes, T-wave inversion)
indicative of myocardial ischemia and supportive transthoracic echocardiographic signs
(i.e., regional wall motion abnormalities, exclusion of non-coronary artery disease causes of
ST-segment elevation). In accordance with current guidelines, all patients with PMI have
been treated with dual anti-platelets (usually aspirin and clopidogrel and balancing the
bleeding risk), b-blockers (routinely metoprolol and avoiding bradycardia /hypotension),
and lipid lowering drugs (mainly statins); other medications (diuretics, calcium channel
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blockers, renin–angiotensin–aldosterone system inhibitors, and angiotensin-receptor an-
tagonists have also been considered if clinically indicated) and special attention to fluid
balance was given.

2.5. Statistical Analyses

Data analyses were carried out using Stata software version 16 (Stata Corp., College
Station, TX, USA). Continuous variables (if normally distributed) were reported as numbers
(means ± SD) and categorical variables as percentages. Comparisons between groups were
performed using analysis of variance and a Student’s t-test for continuous variables and
an χ−2 test (Yates corrected) for categorical variables. Univariate and multivariate (both
linear and logistic) regression analyses were used to determine the odds ratio (OR) and
95% confidence intervals (CIs) for associations between an outcome (dependent variable)
and different clinical and laboratory variables; all potential confounding variables with
statistical significance ≤ 0.15 on univariate analyses were included in the final multivariate
analyses. We presented the results of unadjusted, minimally adjusted, and fully adjusted
analyses concurrently. Associations between IIM markers were assessed using a Pearson
correlation coefficient with a Bonferroni adjustment. A receiver operating characteristic
(ROC) curve analysis (the area under the ROC curve, AUC) was used to investigate the
discriminatory power of preoperative indices to predict postoperative events. An AUC
between 0.7 and 0.8 was considered acceptable, between 0.8 and 0.9 excellent, and higher
than 0.9 outstanding. Sensitivity, specificity, accuracy, positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio (LP+), negative likelihood ratio
(LP−), and number of patients needed to be examined for correct prediction (NNP) [40,41]
were calculated to assess the discriminatory performance of the tests. NNP (1/[PPV +
NPV − 1]) is considered a better descriptor of diagnostic/prognostic tests in populations
with different prevalences of the disease [40,41]; low NNP values are desirable. The
predictive performance of the models was further assessed using goodness-of-fit statistics
for calibration by a Hosmer–Lemeshow test. All tests were two-tailed; statistical significance
was set at p values < 0.05.

3. Results
3.1. Baseline Characteristics and Outcomes

The sociodemographic data, comorbidities, and outcomes in the analysed cohort of HF
patients were presented in detail in our previous paper [22]. Shortly, of 1273 consecutive
patients who underwent HF surgery, 361 (28.4%) had previously been diagnosed with
IHD and 99 subjects (7.8% of the total cohort, 27.4% among IHD patients) had a history
of acute myocardial infarction (AMI). Several differences were detected between IHD
and non-IHD groups. HF patients with IHD compared to the non-IHD were significantly
older (+2.7 years on average); had a higher prevalence of hypertension, CKD, chronic
obstructive pulmonary disease (COPD), cerebrovascular accident (CVA), type 2 diabetes
mellitus (T2DM), and Parkinson’s disease; more often used walking aids; and were less
likely to be female and alcohol over-users. The percentage of active and ex-smokers,
permanent residential care facilities (PRCF) residents, and patients with different fracture
types (cervical or trochanteric), dementia, anaemia, and TIA did not differ in these two
groups. Patients with IHD, compared to the non-IHD persons, as would be expected, more
often developed PMI (58.6% vs. 37.7%, p < 0.001), AMI (11.7% vs. 4.8%, p < 0.001) and
had a high inflammatory response (CRP > 100 mg/L in 84.2% vs. 79.7%, p = 0.037) and
prolonged hospital stay (LOS > 20 days in 25.8% vs. 20.4%, p = 0.024).

PMI occurred in 555 (43.6%) patients, including 58.6% in the IHD group and 62.1%
among patients with a history of AMI. Compared to the rest of the cohort, patients with
PMI, not surprisingly, more frequently had a history of IHD (37.7% vs. 20.6%, p < 0.001),
AMI (11.1% vs. 5.2%, p = 001), hypertension (60.2% vs. 51.4%, p = 0.001), TIA (12.6% vs. 8.3,
p = 0.009), anaemia (46.0% vs. 38.4%, p = 0.005), and dementia (38.5% vs. 26.2%, p < 0.001),
were older (+5.3 years), were more often >80 years of age (85.2% vs. 60.4%, p < 0.001),
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males (28.9% vs. 24.6%, p = 0.054), and PRCF residents (38.7% vs. 28.4%, p < 001), but
were less likely to be alcohol over-users (1.9% vs. 5.4%), current smokers (4.1% vs. 6.5%)
or suffering from Parkinson’s disease (3.8% vs. 5.9%). Additionally, history of stroke,
COPD, T2DM, smoking (ex) and use of walking aids were not associated with PMI. A
total of 6.7% patients experienced postoperative AMI, including 11.7% with previously
known IHD and 4.8% without IHD. PMI was observed most often in the first 1–3 days
after surgery (when patients were receiving analgesic medications that can mask ischaemic
symptoms) and was asymptomatic in 97.8% of these patients. PMI was symptomatic only
in 15 individuals, including 9 with postoperative AMI; in most patients, the myocardial
injury would probably have gone undetected without routine cTnI measurements. PMI
was associated with high inflammatory responses (CRP > 150 mg/L in 69.2% vs. 55.1%,
p < 0.001) and LOS > 10 days (61.4% vs. 54.9%, p = 0.013). The total all-cause in-hospital
mortality was 4.8%, in patients without IHD −7%, with IHD −7.5% (p = 0.005), and in those
with previous AMI −11.8%. PMI increased risk of a lethal outcome 5-fold (OR 5.0, 95% CI
2.70–9.41, p < 0.001). The mortality rate in patients who developed PMI was 8.8% (vs. 1.9%
in the non-PMI subjects, p < 0.001), in the group with known IHD −12.9%, and among
individuals with a history of AMI −15.8%. IHD patients with a fatal outcome compared to
survivors were older (88.6 ± 5.34 vs. 84.6 ± 7.23, p = 0.006), all but one > 80 years of age
(96.3% vs. 75.1%, p = 0.006) and more often had CKD (70.4% vs. 44.0%, p = 0.007), while all
other examined sociodemographic (including male sex prevalence: 9.1% vs. 6.8%, p = 0.285)
and comorbid characteristics did not show statistical differences between the groups.

To summarise, in HF patients, the presence of IHD (after controlling for age, gender,
HF type, preoperative residence, mobility status, comorbidities) increased the risk of a fatal
outcome by 2-fold (OR 2.1, 95% CI 1.24–3.51, p = 0.005), of developing PMI by 2.3-fold (OR
2.3, 95% CI 1.81–3.01, p < 0.001) and a postoperative AMI by 2.4-fold. Among all patients
who died, 56 (87.5%) were aged > 80 years, 48 (78.7%) experienced PMI, and 27 (42.3%)
had a history of IHD. Furthermore, in subjects aged > 80 years with a history of IHD, the
risk of PMI was 8.3 times higher (OR 8.3, 95% CI 5.58–12.36, p < 0.001) and risk of a lethal
outcome was 7.4 time higher (OR 7.4, 95% CI 2.55–21.51, p < 0.001) compared to HF patients
without such characteristics. Moreover, both IHD and PMI were also associated with high
postoperative inflammatory responses and prolonged hospital stays.

These findings are in line with previous studies and confirm the utility of advanced
age, history of IHD, and developing PMI for elucidating the prognosis and identifying
the highest risk groups. However, it should be recognised that most of aged HF patients,
even with known IHD and/or PMI (including new AMI), survive suggesting the need of
more precise prediction tools, especially for individuals with the above-mentioned char-
acteristics. In other words, these results indicate that history of IHD and advanced age
have a significant but limited value in predicting outcomes in older HF patients; these
clinical characteristics are not sufficiently reliable and valid, and tests with a higher accu-
racy/sensitivity are required. Therefore, we further evaluated the possible role of different
haematological indices of IIM disbalance at admission as risk factors and predictors of PMI
and/or in-hospital death, focusing on high-risk patients with poor prognosis.

3.2. Association between the IIM Indices at Admission and IHD

Table 2 summarises the baseline patient haematological indices, stratified by the
presence of IHD. Analysis showed that, in patients with IHD, compared to the non-IHD
group, 10 parameters differed significantly. Namely, among patients with IHD (who were
older and more likely males), there was a higher proportion of subjects with a lower number
of RBC and eosinophils, an elevated (above the normal range) number of monocytes, and
RDW, and, consequently, dysbalanced ratios—Neutr/Eos, Mon/Eos, Hb/RDW, RDW/
Plt × 100, Alb/RDW, and Plt/Alb.
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Table 2. Comparison of demographic and haematological characteristics at admission in hip fracture
patients with and without ischaemic heart disease (IHD).

Variable Total Cohort
(n = 1273)

With IHD
(n = 361, 28.4%)

Without IHD
(n = 912, 71.6%) p Value

Age, mean ± SD, years 82.9 ± 8.7 84.9 ± 7.2 82.2 ± 9.1 <0.001

Aged > 80 years, % 70.6 76.7 68.2 0.001

Female, % 73.5 69.5 75.0 0.028

RBC < 4.30 × 1012, % 69.3 72.9 67.9 0.047

Anaemia 41.8 44.3 40.8 0.138

Neutr > 7.5 × 109, % 60.1 57.6 61.1 0.142

Lymp < 1.2 × 109, % 58.4 58.5 58.5 0.525

Eos < 0.5 × 109, % 53.9 61.5 50.8 <0.001

Mon > 1.0 × 109, % 15.9 19.1 14.6 0.046

Plt > 400 × 109, % 3.2 2.3 3.6 0.156

RDW > 14.5%, % 37.5 49.6 32.7 <0.001

Albumin < 33 g/L, % 19.7 18.9 20.0 0.358

NLR > 7.5, % 50.1 49.9 50.2 0.479

PLR > 280, % 25.9 25.3 26.1 0.41

LMR < 1.1, % 25.2 28.3 24 0.068

SII > 1620, % 50.0 48.0 50.8 0.208

SIRI > 5.1, % 50.0 51.3 49.5 0.303

Hb/RDW < 8.8, % 50.0 57.3 47.2 0.001

RDW/Plt × 100 > 6.6, % 50.0 57.9 46.9 0.001

Alb/RDW < 2.6, % 50.0 55.8 47.7 0.005

Neutr/Eos > 156.3, % 50.0 57.1 47.2 0.001

Neutr/Mon > 12.4, % 50.0 47.4 51 0.135

Mon/Eos > 13.0, % 50.1 57.1 47.1 0.001

Neutr/Alb × 10 > 2.4, % 50.0 50.0 50.0 0.525

Hb/Alb > 4.6, % 49.8 47.8 50.6 0.204

Plt/Alb > 5.9, % 49.2 45.4 50.8 0.048

Plt/ALT > 13.8, % 50.0 48.5 50.6 0.271

Alb/Lymp < 25.4,% 50.0 49.7 50.1 0.475

ALT/Lymp < 14.6, % 50.0 52.5 49.0 0.475

GGT/Lymp > 25.4,% 49.9 52.8 48.8 0.112
Abbreviations: IHD, ischaemic heart disease; anaemia, Hb < 120 g/L in females, <130 g/L in males; all other
abbreviations as in Table 1. Significant p values are expressed in bold characters.

3.3. IIM Indices and Postoperative Outcomes (Univariate Analysis)

Baseline haematological characteristics in patients with regard to outcomes are listed
in Table 3. Univariate analysis showed that many haematological parameters at admission,
along with older age, were associated with poor outcomes—PMI and/or in-hospital death.
PMI was associated with 12 indices, a fatal outcome—with 17 laboratory characteristicsand
10 biomarkers were indicative for both outcomes. For PMI, the following indices showed
significant ORs (in 9 of them the OR was above 1.40): LMR < 1.1 (OR 1.78), RDW > 14.5%
(OR 1.57), SIRI > 5.1 (OR 1.52), PLR > 280 (OR 1.49), Hb/RDW < 8.9 (OR 1.48), monocyte
count > 1.0 × 109/L (OR 1.46), NLR > 7.5 (OR 1.46), SII > 1620 (OR 1.41), Alb/RDW > 2.6
(OR 1.40), anaemia (OR 1.36), lymphocyte count <1.2 × 109/L (OR 1.36), Neutr/Alb > 2.4
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(OR 1.30). For in-hospital death, statistically significant ORs demonstrated the following
admission biomarkers (nine of which had an OR between 2.7 and 2.0): Alb/RDW > 2.6
(OR 2.70), Neutr/Eos > 156.3 (OR 2.49), Hb/RDW < 8.9 (OR 2.49), SII > 1620.0 (OR 2.43),
RDW > 14.5% (OR 2.35), LMR < 1.1 (OR 2.31), PLR > 280 (OR 2.29), SIRI > 5.1 (OR 2.13),
eosinophil count < 0.5 × 109/L (OR 2.00), NLR > 7.5 (OR 1.81), Hb/Alb < 4.6 (OR 1.81),
Plt/Alb > 5.9 (OR 1.80), GGT/Lymp > 25.4 (OR 1.70), Neutr/Alb > 2.5 × 10 (OR 1.69),
Mon/Eos > 13.0 (OR 1.69), anaemia (OR 1.68). Notably, two biomarkers (lymphocyte count
< 1.2 × 109/L and monocyte count > 1.0 × 109/L) were suggestive only for developing
PMI, whereas seven other indices were indicative only for a fatal outcome, despite PMI
and hospital death being significantly interrelated. These observations, taken together,
suggest that simple haematological tests at admission reflect different pathophysiological
factors and mechanisms responsible for these outcomes and may be clinically valuable for
predicting PMI and/or hospital mortality.

Table 3. Haematological characteristics at admission and hospital outcomes (postoperative myocar-
dial injury or death) in hip fracture patients.

Variable
Total Cohort

(n = 1273)

Postoperative
Myocardial Injury

p Value
Survivors
(n = 1212,

95.2%)

Died
(n = 61,
4.8%)

p ValueYes
(n = 555,
43.6%)

No
(n = 912,
71.6%)

Age, mean ± SD, years 82.9 ± 8.7 86.1 ± 6.8 80.8 ± 8.9 <0.001 82.7 ± 8.7 88.1 ± 6.1 <0.001

Aged > 80 years, % 70.6 85.2 60.4 <0.001 69.6 91.8 <0.001

Female, % 73.5 42.1 57.8 0.054 73.7 68.9 0.243

RBC < 4.30 × 1012/L, % 69.3 70.3 68.8 0.306 69.4 67.2 0.408

Anaemia (Hb < 120/130 g/L), % 41.8 46.0 38.4 <0.001 41.2 54.1 0.032

Neutr > 7.5 × 109, % 60.1 62.5 58.8 0.109 59.7 67.2 0.151

Lymp < 1.2 × 109, % 58.4 62.9 55.5 0.006 58.2 63.9 0.225

Eos < 0.5 × 109, % 53.9 47.7 44.7 0.165 45.3 62.3 0.007

Mon > 1.0 × 109, % 15.9 18.7 13.6 0.009 15.9 14.8 0.489

Plt > 400 × 109, % 3.2 2.7 3.5 0.247 3.1 5.0 0.298

RDW > 14.5%, % 37.5 43.0 32.5 <0.001 36.5 57.4 0.001

Albumin < 33 g/L, % 19.7 18.1 20.1 0.198 19.5 23.0 0.303

NLR > 7.5, % 50.1 55.7 46.7 0.001 49.4 63.9 0.018

PLR > 280, % 25.9 30.2 22.5 0.002 25.0 43.3 0.002

LMR < 1.1, % 25.2 31.5 20.6 <0.001 24.3 42.6 0.002

SII > 1620.0, % 50 54.9 46.3 0.002 49 70.0 0.001

SIRI > 5.1, % 50 56.3 45.8 <0.001 49.1 67.2 0.004

Hb/RDW < 8.8, % 50 55.4 45.6 0.001 49 70.5 0.001

RDW/Plt × 100 > 6.6, % 50 53.0 48.4 0.061 49.8 53.3 0.346

Alb/RDW < 2.6, % 50 53.6 45.2 0.002 49.9 72.1 <0.001

Neutr/Eos > 156.3, % 50.1 51.4 48.4 0.302 49 70.5 0.001

Neutr/Mon > 12.4, % 50 50.8 50.6 0.486 49.4 60.7 0.057

Mon/Eos > 13.0, % 50.1 51.2 48.9 0.229 49.5 62.3 0.034

Neutr/Alb × 10 > 2.4, % 50 53.4 46.8 0.013 49.4 62.3 0.033

Hb/Alb > 4.6, % 49.8 47.9 52 0.087 50.5 36.1 0.019

Plt/Alb > 5.9, % 49.2 47.2 49.4 0.245 48.5 63.3 0.017
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Table 3. Cont.

Variable
Total Cohort

(n = 1273)

Postoperative
Myocardial Injury

p Value
Survivors
(n = 1212,

95.2%)

Died
(n = 61,
4.8%)

p ValueYes
(n = 555,
43.6%)

No
(n = 912,
71.6%)

Plt/ALT > 13.8, % 50 51.2 49 0.235 49.7 55.0 0.252

Alb/Lymp < 25.4,% 50 53.0 48.1 0.09 49.5 60.7 0.057

ALT/Lymp < 14.6, % 50 51.2 48.3 0.176 49.5 60.7 0.088

GGT/Lymp >25.4, % 49.9 49.3 50.3 0.381 49.3 62.3 0.032

Abbreviations: as in Table 1. Significant p values are expressed in bold characters.

3.4. Comparison of IIM Indices in Patients with Postoperative Myocardial Injury with and without
Pre-Fracture Diagnosed IHD

To further verify the predictive role of admission IIM characteristics and their rela-
tionship with IHD, we performed a subgroup analysis in patients who developed PMI,
comparing the clinical profile and the IIM biomarkers in subjects with and without known
IHD pre-fractures (Table 4). Patients with PMI and previously undiagnosed IHD, compared
to those with known IHD, more often were female (74.1% vs. 66.2%, p = 0.050) and more of-
ten had been diagnosed with dementia (41.6% vs. 33.3%, p = 0.056), but significantly fewer
had CKD (37.9% vs. 54.7%, p < 0.001) and COPD (13.9 vs. 20.9%, p < 0.034); among subjects
with IHD who developed PMI, 23.4% had had an AMI in the past. In the percentages of
patients with an abnormal eosinophil count, the RDW, RDW/Plt, Hb/RDW, Neutr/Eos
and Mon/Eos ratios were higher among the IHD group, whereas 21 other biomarkers
did not show significant differences between the groups; the non-IHD group exhibited
a tendency for higher incidence of Plt/Alb > 5.9 (50.5% vs. 41.9%, p < 0.057), and these
patients were more likely to progress to a lethal outcome (67.4% vs. 45.3%, p = 0.004).

In subjects with PMI, the incidence of high postoperative response (CRP > 100 mg/L
or >150 mg/L), prolonged LOS (>10 or >20 days), and mortality rate were not influenced
by a pre-fracture diagnosis of IHD. In other words, the main adverse hospital outcomes in
HF patients who developed PMI should be attributed to the underlying pathophysiological
factors, including IIM dysregulation (most components of which, as shown by the studied
biomarkers, are common for patients with and without IHD), but not to IHD per se.

Taken together, this analysis revealed that many haematological parameters at admis-
sion are potential indicators of developing PMI (regardless of IHD presence) and may be
particularly helpful in females and patients with dementia in the absence of an IHD history.

Table 4. Clinical profile and laboratory characteristics at admission in hip fracture patients who
developed PMI: comparison IHD and non-IHD groups.

Clinical Variables Total Cohort
(n = 533)

IHD p
Value Laboratory Variables

IHD p
ValueYes No Yes No

Age, mean ± SD, years 86.14 ± 6.8 86.7 ± 6.52 85.8 ± 6.99 0.157 RBC < 4.30 × 1012, % 75.1 67.5 0.061

Aged > 80 years, % 83.5 83.1 83.7 0.845 Anaemia, % 49.3 44.0 0.236

Female, % 71.1 66.2 74.1 0.050 Neutr > 7.5 × 109, % 59.7 64.2 0.303

PRCF resident, % 38.7 39.3 38.4 0.830 Lymp < 1.2 × 109, % 61.2 63.9 0.538

HF type [trochanteric], % 48.2 49.8 47.3 0.581 Eos < 0.5 × 109, % 61.7 46.7 0.001

History of AMI, % 9.3 23.4 NA NA Mon > 1.0 × 109, % 19.9 18.1 0.600

Hypertension, % 60.2 64.7 57.5 0.102 Plt > 400 × 109, % 1.5 3.4 0.204

CVA, % 11.8 12.9 11.4 0.535 RDW > 14.5%, % 49.8 38.9 0.014

TIA, % 12.6 11.9 13.0 0.733 Albumin < 33 g/L, % 16.4 19.0 0.447
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Table 4. Cont.

Clinical Variables Total Cohort
(n = 533)

IHD p
Value Laboratory Variables

IHD p
ValueYes No Yes No

CKD, % 44.3 54.7 37.9 <0.001 NLR > 7.5, % 54.2 56.6 0.589

COPD, % 16.5 20.9 13.9 0.034 PLR > 280, % 28.8 31.1 0.576

Anaemia, % 46.0 49.3 44.0 0.236 LMR < 1.1, % 31.8 31.3 0.901

T2DM, % 24.1 28.0 21.3 0.068 SII > 1620.0, % 51.5 57.0 0.220

Dementia, % 38.5 33.3 41.6 0.056 SIRI > 5.1, % 54.2 57.5 0.456

Parkinson’s disease, % 3.8 2.5 4.5 0.232 Hb/RDW < 8.8,% 60.7 52.1 0.053

Smoker, % 4.1 3.5 4.5 0.560 RDW/Plt × 100 > 6.6, % 59.1 49.4 0.031

Ex-smoker, % 13.0 10.5 14.5 0.177 Alb/RDW < 2.6, % 55.7 52.3 0.438

* Alcohol over-user, % 1.9 1.0 2.4 0.243 Neutr/Eos > 156.3, % 58.2 42.5 <0.001

Walking aids user, % 38.7 40.3 37.7 0.543 Neutr/Mon > 12.1, % 47.3 53.0 0.198

In-hospital mortality, % 8.8 11.0 7.5 0.178 Mon/Eos > 13.0, % 57.8 40.3 <0.001

Postoperative AMI, % 15.4 19.9 12.7 0.025 Neutr/Alb × 10 > 2.4, % 53.2 53.5 0.957

LOS > 10 days, % 61.4 59.2 62.7 0.428 Hb/Alb > 4.6, % 46.8 48.6 0.675

LOS > 20 days, % 22.1 24.9 20.5 0.236 Plt/Alb > 5.9, % 41.9 50.5 0.057

CRP > 100 mg/L, % 88 87.5 88.3 0.796 Plt/ALT > 13.8, % 49.5 52.3 0.534

CRP > 150 mg/L, % 69.2 67.0 70.5 0.400 Alb/Lymp < 25.4,% 49.7 45.3 0.32

ALT/Lymp < 14.6, % 50.3 47.1 0.485

GGT/Lymp > 25.4, % 54.2 46.2 0.073

Abbreviations: For clinical characteristics and outcomes: PRCF, permanent residential care facility; IHD, ischaemic
heart disease; AMI, acute myocardial infarction; CKD, chronic kidney disease (estimated glomerular filtration
rate < 60 mL/min/1.73 m2); CVA, cerebrovascular accident (stroke); TIA, transient ischaemic attack; COPD,
chronic obstructive airway disease; T2DM, type 2 diabetes mellitus; LOS, length of hospital stay; CRP, c-reactive
protein; *, alcohol consumption ≥ 3 times per week; for haematological characteristics, all abbreviations as in
Table 1. Significant p values are expressed in bold characters.

3.5. Relationships between IIM Indices (Pearson’s Correlation)

Although the studied peripheral blood IIM indices reflect different aspects of the
complex IIM system, many of them are significantly interrelated. Indeed, a matrix of
pairwise Pearson coefficients of correlation (with Bonferroni adjustment) produced for all
27 biomarkers confirmed numerous significant associations between the haematological
indices. For example, to name a few, LMR < 1.1 was positively correlated with neutrophil
count (r = 0.2331, p < 0.001), lymphocyte count < 1.1 (r = 0.4089, p < 0.001), eosinophil
count < 0.5 (r = 0.2487, p < 0.001), monocyte count > 1.0 (r = 0.2924, p < 0.001), Alb/Lymph
< 25.4 (p = 0.4584, p < 0.001), Mon/Eos > 13 (r = 0.3002, p < 0.001), SII >1620.0 (r = 0.3912,
p < 0.001), Neutr/Alb × 10 > 2.4 (r = 0.2627, p < 0.001), RDW >14.5% (r = 0.0737, p = 0.009),
Alb/RDW < 2.6 (r = 0.0996, p = 0.004), and albumin < 33 g/L (r = 0.0675, p < 0.016); the
LMR < 1.1 was significantly negatively correlated with GGT/Lymph >25.4 (p = −0.2600,
p < 0.001), Neutr/Eos > 156.3 (p = −0.2684, p < 0.001), ALT/Lymph < 25.4 (p = −0.2808,
p < 0.001), and Hb/Alb < 4.6 (p = −0.0860. p = 0.002), but LMR < 1.1 was not correlated
with high platelet count, Plt/ALT, Neutr/Mon, and Plt/Alb ratios. Similarly, Neutr/Eos
> 156.3 was correlated with eosinophil (r = 0.8529, p < 0.001), neutrophil (r = 0.3635,
p < 0.001), and lymphocyte (r = 0.2923, p < 0.001) counts, as well as NLR >7.5 (r = 0.4535,
p < 0.001), LMR < 1.1 (r = 0.2684, p < 0.001), SII >1620.0 (r = 0.3983, p < 0.001), GGT/Lymph
> 25.4 (r = 0.1113, p = 0.001), Alb × Lymph < 25.4 (r = 0.2549, p < 0.001), ALT/Lymph <
14.6 (r = 0.2818, p < 0.001), Mon/Eos >13.0 (r = 0.8567, p < 0.001), Neutr/Alb × 10 > 2.4
(r = 0.3181, p < 0.001), and Neutr/Mon > 12.1 (r = 0.3087, p < 0.001) ratios, but not with
high platelet count, low albumin, or abnormal Plt/Alb, Alb/ RDW, and Hb/Alb ratios.



J. Clin. Med. 2024, 13, 3969 12 of 50

Age > 80 years correlated with RBC < 4.30 × 1012/L (r = 0.0752, p = 0.007), anaemia
(r = 0.1059, p = 0.002), abnormal (according to abovementioned cut-offs) RDW (r = 0.1181,
p < 0.001), NLR (r = 0.0774, p = 0.006), PLR (r = 0.0600, p = 0.032), LMR (r = 0.0727, p = 0.009),
SII (r = 0.0716, p < 0.011), lymphocyte count (r = 0.1000, p = 0.001), Plt/ALT (r = 0.1098,
p = 0.001), RDW/Alb (r = 0.1315, p < 0.001), Alb × Lymph (r = −0.1280, p < 0.001), as
well as with eGFR (r = 0.1968, p < 0.001), PTH (r = 0.0924, p = 0.001) and vitamin D
< 50 nmol/L (r = −0.0825, p = 0.0035). Advanced age did not correlate with elevated
neutrophil, monocyte or platelet count, or with low eosinophil count, low albumin level,
Mon/Eos, Neutr/Alb, Plt/Alb, Hb/Alb, GGT/Lymph, Neutr/Eos, and ALT/Lymph ratios.

Theoretically and practically, the indices of dysregulated IIM homeostasis, although
interrelated, differ from each other, and each reflects specific disturbances; it is important
to acknowledge these relationships when interpreting clinical findings. The extent to which
different biomarkers are present in a patient reflects the complexity and severity of the IIM
dysregulation(s).

3.6. Independent Predictors of Poor Hospital Outcome

Multivariate regression, which included all laboratory variables significantly associ-
ated with PMI as well as all variables with p <0.150 on univariate analysis, age, and gender,
showed that, in the total HF cohort, independent predictors for PMI were as follows:
LMR < 1.1 (OR 1.39, 95% CI 1.01–1.92, p < 0.0.047), RDW > 14.5% (OR 1.34, 95% CI 1.05–1.72,
p < 0.019), age > 80 years (OR 3.80, 95% CI 2.83–5.09, p < 0.001) and male gender (OR 1.48,
95% CI 1.12–1.95, p < 0.006). When clinical characteristics/comorbidities were added to
the model, the significance of RDW > 14.5% diminished and became nonsignificant (OR
1.23, 95% CI 1.01–1.58, p < 0.108). The final model incorporated LMR < 1.1 (OR 1.58, 95% CI
1.20–2.09, p = 0.0.001), age > 80 years (OR 3.23, 95% CI 2.38–4.38, p < 0.001), IHD (OR 2.04,
95% CI 1.56–2.67, p < 0.001), CKD (OR 1.72, 95% CI 1.33–2.22, p < 0.001), dementia (OR 1.39,
95% CI 1.07–1.81, p = 0.013), and male gender (OR 1.42, 95% CI 1.06–1.88, p = 0.017). This
model, containing six characteristics, collectively explained 10.3% (R2) of the variance in
the PMI outcome and yielded an AUC of 0.7263 (95% CI 0.6629–0.7897); of note, low LMR
on admission independently increased the risk of developing PMI by 58%.

The same methodological approach as for the development of PMI was used in the
multivariate logistic regression for predicting hospital death. In the model which included
all laboratory characteristics, as well as IHD, age and sex, the independent predictors of a
fatal outcome were as follows: Neutr/Eos > 156.3 (OR 2.28, 95% CI 1.22–4.25, p < 0.008),
Alb/RDW < 2.6 (OR 1.92, 95% CI 10.96–3.65, p < 0.045), age > 80 years (OR 4.25, 95% CI
1.66–10.89, p = 0.003) and IHD (OR 1.86, 95% CI 1.08–3.21, p < 0.025). The final model after
adjustment for all clinical characteristics enclosed four admission variables as independent
predictors (Neutr/Eos > 156.3 (OR 2.91, 95% CI 1.64–5.15, p < 0.001), Alb/RDW < 2.6
(OR 2.50, 95% CI 1.39–4.49, p < 0.002), age > 80 years (OR 3.98, 95% CI 1.55–10.21, p = 0.004),
and CKD (OR 2.52, 95% CI 1.47–4.31, p = 0.001)), whereas IHD lost significance (OR 1.63,
95% CI 0.94–3.62, p = 0.082); this model explained 13.6% (R2) of the variance of the lethal
outcome and yielded an AUC of 0.7544 (95% CI 0.6952–0.8136); notably, an on-admission
high Neutr/Eos ratio and low Alb/RDW ratio independently indicated an increased risk
of hospital mortality by 191% and 150%, respectively.

To sum up, independent determinants of poor/fatal outcome in HF patients include
IIM dysregulation along with advanced age, IHD, CKD, and dementia; different compo-
nents of IIM dysregulation are integrated in and expressed by combined biomarkers such as
LMR < 1.1, Alb/RDW < 2.6, and Neutr/Eos > 156.3. The pathophysiological heterogeneity
of underlying mechanisms indicates the importance of subgroup analyses considering
clinical characteristics.

3.7. Prognostic Value of On-Admission IIM Characteristics

Different IIM indices showed clinical usefulness as prognosticators for poor hospital
outcome, especially when HF patients were stratified into groups representing IHD and
aged ≥ 80 years (Table 5). In the total HF cohort, age ≥ 80 years near quadrupled (OR 3.84)
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and history of IHD doubled (OR 2.09) the PMI risk; multivariate analyses showed that
7 of 27 studied parameters at admission indicated PMI, as follows: LMR < 1.1 (OR 1.56),
PLR > 280.0 (OR 1.44), SII > 1650.0 (OR 1.56), SIRI > 5.1 (OR 1.42), NLR > 7.5 (OR 1.40),
eosinophil count < 0.5 × 109/L (OR 1.38) and Mon/Eos > 13.0 (OR 1.38). In IHD patients,
the presence of any one of these seven biomarkers further significantly increased the risk
of developing PMI (the ORs ranged between 2.50 and 3.87 (being above 3.30 for five
indices)); moreover, in subjects with IHD, 10 other admission biomarkers also indicated a
PMI risk (OR ranged between 2.32 and 3.22, being 2.50 and above for eight biomarkers).
In the aged > 80 years IHD patients, PMI risk was 8.3-times higher than in the rest of
the cohort, and the presence of indices of IIM dysregulation further increased this risk by
1.5–2-fold; additionally, 17 biomarkers demonstrated an OR of 16.36–8.49 (13 indices had
an OR ≥ 11.10).

Table 5. Prognostic value of age, presence of IHD, and specific laboratory characteristics at admission
for predicting postoperative outcome in patients with hip fracture.

Postoperative Myocardial Injury

Variable
1 Total Cohort (n = 1273) 2 IHD (n = 361) 3 IHD > 80 Years of Age (n = 277)

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

Age > 80 years 3.84 (2.83–4.99) <0.001 3.95 (2.92–5.27) <0.001 NA NA

IHD 2.30 (1.81–3.01) <0.001 NA NA 8.3 (5.58–12.36) <0.001

LMR < 1.1 1.56 (1.18–2.06) 0.002 3.84 (2.44–6.05) <0.001 16.08 (8.54–30.29) <0.001

PLR > 280.0 1.44 (1.09–1.90) 0.01 3.87 (2.38–6.29) <0.001 16.36 (8.44–11.74) <0.001

Anaemia 1.08 (0.84–1.38) 0.568 3.37 (2.31–4.93) <0.001 14.13 (8.06–24.78) <0.001

Mon/Eos > 13.0 1.30 (1.01–1.66) 0.038 2.50 (1.70–3.68) <0.001 13.43 (6.81–26.49) <0.001

NLR > 7.5 1.40 (1.10–1.79) 0.006 3.47 (2.40–5.02) <0.001 12.42 (7.03–21.94) <0.001

Eos < 0.5 × 109/L 1.38 (1.08–1.77) 0.01 2.77 (1.85–4.14) <0.001 12.29 (6.44–23.47) <0.001

SIRI > 5.1 1.42 (1.11–1.81) 0.005 3.44 (2.40–5.00) <0.001 11.99 (6.81–21.09) <0.001

Neutr/Alb × 10 > 2.4 1.25 (0.98–1.60) 0.068 3.22 (2.22–4.65) <0.001 11.74 (6.60–20.88) <0.001

Lymp < 1.2 × 109/L 1.26 (0.99–1.62) 0.065 3.14 (2.20–4.48) <0.001 11.69 (6.57–20.79) <0.001

Monocytes > 1 × 109/L 1.33 (0.96–1.85) 0.089 2.93 (1.73–5.00) <0.001 11.61 (5.72–23.56) <0.001

GGT/Lymp > 25.4 0.95 (0.74–1.21) 0.658 2.32 (1.63–3.30) <0.001 11.17 (6.23–20.05) <0.001

SII > 1650 1.41 (1.10–1.801) 0.006 3.33 (2.41–5.16) <0.001 10.51 (5.96–18.53) <0.001

Alb/RDW < 2.6 1.09(0.85–1.39) 0.493 2.94 (2.07–4.17) <0.001 10.20 (6.01–17.33) <0.001

RDW/Plt × 100 > 6.6 1.06 (0.83–1.36) 0.642 2.50 (1.78–3.51 <0.001 9.93 (5.74–17.17) <0.001

Plt/ALT > 13.8 0.96 (0.75–1.23) 0.750 2.69 (1.85–3.91) <0.001 9.87 (5.65–12.27) <0.001

Neutr > 7.5 × 109/L 1.21 (0.94–1.55) 0.139 2.82 (1.97-4.05) <0.001 9.61 (5.26–17.58) <0.001

RDW > 14.5% 1.17 (0.91–1.50) 0.227 2.84 (2.00–4.04) <0.001 9.51 (5.73–15.79) <0.001

Neutr/Mon > 12.1 1.10 (0.86–1.41) 0.434 2.37 (1.64–3.42) <0.001 8.49 (4.74–15.21) <0.001

ALT/Lymph < 14.6 1.28 (1.01–1.64) 0.045 2.06 (1.45–2.93) <0.001 7.23 (4.21–12.40) <0.001

Alb < 33 g/L 0.80 (0.59–1.09) 0.162 1.80 (1.07–3.02) 0.026 6.64 (3.37–13.08) <0.001

Alb/Lymph/ < 25.4 0.96 (0.75–1.22) 0.728 2.10 (1.46–3.01) <0.001 6.56 (3.64–11.85) <0.001

Plt/Alb ratio > 5.9 0.89 (0.70–1.1) 0.351 2.12 (1.45–3.10) <0.001 6.07 (3.50–10.53) <0.001

Neutr/Eos > 156.3 1.38 (1.08–1.77) 0.01 2.05 (1.46–2.87) <0.001 5.34 (3.27–8.74) <0.001

Hb/Alb > 4.6 1.07 (0.84–1.37) 0.593 2.00 (1.39–2.88) <0.001 6.03(3.34–10.89) <0.001

Platelets > 400 × 109/L 0.92 (0.46–1.89) 0.835 0.99 (0.23–4.15) 0.985 3.38 (0.73–15.62) 0.099

Hb/RDW < 8.8 0.91 (0.71–1.17) 0.465 1.64 (1.12–2.39) 0.011 4.98 (2.60–9.51) <0.001
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Table 5. Cont.

In-Hospital Death

Variable
1 Total Cohort (n = 1273) 2 IHD (n = 361) 3 IHD > 80 Years of Age (n = 277)

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

Age > 80 years 4.90 (1.95–12.33) 0.001 5.04 (1.96–12.62) <0.001 NA NA

IHD 2.10 (1.24–3.51) 0.005 NA NA 7.4 (2.55–21.51) <0.001

LMR < 1.1 2.03 (1.18–3.49) 0.010 5.19 (2.65–10.15) <0.001 28.67 (6.39–128.70) <0.001

PLR > 280.0 2.16 (1.26–3.68) 0.005 5.58 (2.79–11.16) <0.001 29.21 (6.49–131.42) <0.001

Anaemia 1.35 (0.79–2.30) 0.270 3.39 (1.64–7.02) 0.001 13.24 (2.97–58.98) 0.001

Mon/Eos > 13.0 2.02 (1.17–3.48) 0.011 3.93 (1.86–8.30) <0.001 10.99 (2.48–48.69) <0.001

NLR > 7.5 1.72 (1.00–2.96) 0.051 3.62 (1.84–7.10) <0.001 5.50 (2.01–15.07) <0.001

Eos < 0.5 × 109/L 2.44 (1.42–4.21) 0.001 4.76 (2.30–9.84) <0.001 13.96 (3.16–61.61) 0.001

SIRI > 5.1 2.13 (1.23–3.67) 0.007 3.95 (2.03–7.66) <0.001 6.18 (2.27–16.77) <0.001

Neutr/Alb × 10 > 2.4 1.69 (1.00–2.88) 0.051 3.46 (1.72–6.98) 0.001 23.06(3.04–175.15) 0.002

Lymp < 1.2 × 109/L 1.18 (0.68–2.03) 0.561 2.54 (1.27–5.08) 0.008 18.6 (2.46–140.86) 0.005

Monocytes > 1.0 × 109/L 0.91 (0.44–1.89) 0.807 1.22 (0.36–4.12) 0.75 3.35 (0.54–20.56) 0.192

GGT/Lymp > 25.4 1.70 (1.00–2.89) 0.050 3.34 (1.66–6.72) 0.001 20.53 (2.70–156.06) 0.004

SII > 1650.0 2.33 (1.32–4.13) 0.004 4.63 (2.26–9.48) <0.001 5.33 (1.95–14.63) <0.001

Alb/RDW < 2.6 2.71 (1.53–4.79) 0.001 2.23 (1.25–3.98) 0.007 5.42 (2.41–12.19) <0.001

RDW/Plt × 100 > 6.6 1.04 (0.61–1.78) 0.882 2.13 (1.04–4.35) 0.038 5.23 (1.47–18.57) 0.005

Plt/ALT > 13.8 1.24 (0.73–2.08) 0.424 2.61 (1.34–5.11) 0.005 4.87 (1.75–13.57) 0.001

Neutrophils > 7.5 × 109/L 1.39 (0.80–2.43) 0.240 2.80 (1.36–5.75) 0.005 14.83 (1.96–112.48) 0.009

RDW > 14.5% 1.86 (1.09–3.16) 0.022 3.93 (1.98–7.79) <0.001 12.10 (3.64–70.42) <0.001

Neut/Mon > 12.1 1.68 (0.98–2.87) 0.057 3.39 (1.67–6.89) 0.001 9.94 (2.26–43.72) 0.002

ALT/Lymph < 14.6 0.57 (0.33–0.97) 0.037 1.30 (0.61–2.76) 0.488 5.75 (1.24–26.69) 0.026

Alb < 33 g/L 1.23 (0.66–2.27) 0.512 3.33 (1.45–7.64) 0.004 15.17 (3.87–59.53) <0.001

Alb × Lymph/ < 25.4 1.38 (0.81–2.38) 0.233 1.05 (0.43–2.35) 0.921 3.03 (0.62–14.88) 0.173

Plt/Alb ratio > 5.9 1.82 (1.05–3.16) 0.032 3.95 (1.83–8.55) <0.001 4.36 (1.55–12.27) 0.003

Neutr/Eos > 156.3 2.49 (2.42–4.37) 0.001 3.13 (1.75–5.57) <0.001 2.39 (0.61–9.43) 0.199

Hb/Alb > 4.6 1.81 (1.06–3.09) 0.030 1.13 (0.40–2.56) 0.768 3.63 (0.75–17.47) 0.108

Platelets > 400 × 109/L 1.65 (0.49–3.51) 0.417 8.43 (1.64–43.38) 0.011 35.87 (4.87–263.95) <0.001

Hb/RDW < 8.8 1.92 (1.08–3.40) 0.025 1.33 (0.53–3.34) 0.544 2.34 (0.46–11.88) 0.292

Abbreviations: As in Table 1, OR, odds ratio; CI, confidence interval; 1 adjusted for age, gender and all clinical
variables which were significantly associated with postoperative myocardial injury and/or hospital mortality on
univariate analyses; 2 comparison IHD patients with the rest of the cohort, adjusted for age (as a continues variable)
and all clinical variables which were significantly associated with postoperative myocardial injury and/or hospital
mortality on univariate analyses; 3 comparison IHD patients aged > 80 years and younger than 80 years with and
without the analysed haematological characteristic. Significant p values are expressed in bold characters.

Compared to the rest of the cohort, risk of in-hospital death was 2.1 times higher
in subjects with IHD, 4.9 times higher in aged patients, and 7.4 times higher in patients
>80 years of age with a history of IHD (Table 5). More than half (15 of 27) of on-admission IIM
parameters were significantly associated with a lethal outcome; the highest OR demonstrated
the following 13 indices: Alb/RDW < 2.6 (OR 2.71), Neutr/Eos > 156.3 (OR 2.49), eosinophil
count < 0.5 × 109/L (OR 2.44), SII > 1620.0 (OR 2.33), PLR > 280.0 (OR 2.16), SIRI > 5.1 (OR
2.13), LMR < 1.1 (OR 2.03), Mon/Eos > 13.0 (OR 2.02), Hb/RDW < 8.8 (OR 1.92), RDW
> 14.5% (OR 1.86), ALT/Lymph < 14.6 (OR 1.75), NLR > 7.5 (OR 1.72), and Neutr/Alb ×
10 > 2.4 (OR 1.69). In the IHD group, the presence of specific haematological biomarkers
further increased risk of mortality up to 2.5-fold: PLR > 280.0 (OR 5.58), LMR < 1.1 (OR 5.19),
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eosinophil count < 0.5 × 109/L (OR 4.76), SIRI > 5.1 (OR 3.95), Plt/Alb ratio > 5.9 (OR 3.95),
Mon/Eos > 13.0 (OR 3.93). The risk of in-hospital death in IHD patients aged >80 years
(compared to total IHD group) was 2–6 times higher if they had PLR > 280.0 (OR 29.21),
LMR < 1.1 (OR 28.67), Neutr/Alb × 10 >2.4 (OR 23.06), GGT/Lymph > 25.4 (OR 20.53),
lymphocyte count < 1.1 × 109/L (OR 18.6), or eosinophil count < 0.5 × 109/L (OR 13.96).

It is worth noting that most preoperative haematological variables and their ratios
were in the “normal range” (median values as cut-offs), or only mildly differed from them,
and are commonly considered as non-diagnostic and non-prognostic. Moreover, a number
of haematological parameters prognostically not significant when the total HF cohort was
analysed (e.g., anaemia, low lymphocyte count, elevated neutrophil, monocyte, or platelet
counts, hypoalbuminaemia, as well as particular ratios—RDW/Plt, Plt/ALT, Neutr/Mon,
and Alb/Lymph) demonstrated usefulness when clinical characteristics (history of IHD,
advanced age) were considered.

Our data suggest that, in the total HF cohort, the presence of at least one of one
biomarkers on arrival increased the risk of PMI by 33–56%, whereas 11 indices increased
the risk of a fatal outcome by 70–149%; among subjects with IHD, 26 biomarkers (except
elevated platelet count) increased PMI risk by 105–287% and 23 biomarkers indicated
a 123–458% higher risk of a fatal outcome, while in IHD patients aged >80 years, the
corresponding numbers were approximately 2–6 times higher. These findings emphasise
again that, to identify HF patients on admission with the highest risk of a poor outcome,
each laboratory prognostic index should be interpreted in conjunction with patient’s clinical
characteristics, in particular age and history of IHD.

3.8. Predicting Performance of On-Admission IIM Characteristics for Hospital Outcome

Next, we assessed the ability and accuracy of different models to predict poor out-
comes in HF patients focusing on the highest risk groups (Table 6). Each model included
one haematological parameter (single or composite) at admission and two clinical charac-
teristics (history of IHD and advanced age). A receiver operating characteristic analysis
was performed to evaluate the predictive power of each model. Of note, although most
evaluated biomarkers in the aged (>80 years) or/and IHD groups demonstrated a signifi-
cant prognostic value for developing PMI and/or hospital mortality (high ORs), not all of
them had a reasonable predictive performance (Tables 5 and 6).

Table 6. Summary of performance parameters of haematological biomarkers at admission to predict
postoperative myocardial injury and/or in-hospital mortality in aged (>80 years) hip fracture patients
with IHD.

Postoperative Myocardial Injury

Biomarker AUC (95% CI) Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

NPV
(%) LR+ LR− NNP

LMR < 1.1 0.7625
(0.7086–0.8163) 61.5 91.0 82.1 74.7 84.5 6.802 0.423 1.69

PLR > 280.0 0.7604
(0.7043–0.8165) 60.7 91.4 82.2 75.0 84.5 7.036 0.430 1.68

Anaemia 0.7879
(0.7400–0.8358) 75.4 82.1 79.7 71.1 85.2 4.225 0.299 1.78

Mon/Eos > 13.0 0.7814
(0.7274–0.8354) 83.1 73.2 76.7 63.3 88.6 3.097 0.231 1.93

NLR > 7.5 0.7784
(0.7299–0.8270) 79.7 76.0 77.5 69.6 84.4 3.220 0.268 1.85

Eos < 0.5 × 109/L
0.7780

(0.7223–0.8337) 78.6 77.0 77.6 66.0 86.4 3.420 0.278 1.91

SIRI > 5.1 0.7753
(0.7667–0.8239) 79.5 75.6 77.1 68.4 84.7 3.253 0.271 1.88
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Table 6. Cont.

Postoperative Myocardial Injury

Biomarker AUC (95% CI) Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

NPV
(%) LR+ LR− NNP

Neutr/Alb × 10 > 2.4 0.7732
(0.7236–0.8229) 79.6 75.0 76.9 68.2 84.6 3.286 0.271 1.89

Lymp < 1.2 × 109/L
0.7643

(0.7172–0.8114) 84.3 68.6 75.3 66.5 85.5 2.684 0.230 1.92

Monocytes > 1.0 × 109/L
0.6933

(0.6342–0.7525) 45.3 93.3 80.7 70.8 82.7 6.800 0.586 1.90

GGT/Lymp > 25.4 0.7671
(0.7165–0.8177) 80.9 72.5 76.1 68.9 83.5 2.946 0.264 1.91

SII > 1620.0 0.7638
(0.7130–0.8146) 78.1 74.7 76.1 68.5 82.9 3.085 0.294 1.95

Alb/RDW < 2.6 0.7613
(0.7136–0.8090) 77.5 74.8 75.8 63.7 85.3 3.071 0.301 2.04

RDW/Plt × 100 > 6.6 0.7557
(0.7075–0.8039) 80.5 70.7 74.6 64.7 84.4 2.743 0.276 2.04

Plt/ALT > 13.8 0.7586
(0.7031–0.8098) 76.1 75.6 75.8 65.9 83.6 3.117 0.316 2.02

Neutr > 7.5 × 109/L
0.7380

(0.6873–0.7887) 85.4 62.2 72.9 66.0 83.2 2.261 0.235 2.03

RDW > 14.5% 0.7514
(0.7030–0.79970 69.9 80.4 76.7 66.2 82.9 3.559 0.374 2.04

Neutr/Mon > 12.1 0.7396
(0.6867–0.7924) 80.2 67.7 72.7 62.5 83.6 2.484 0.293 2.17

ALT/Lymph > 14.6 0.7282
(0.6754–0.7810) 75.2 70.4 72.3 63.0 81.0 2.542 0.352 2.27

Alb < 33 g/L 0.6564
(0.5927–0.7201) 40.6 90.7 79.1 56.5 83.6 4.347 0.655 2.50

Alb/Lymph/ < 25.4 0.7145
(0.6566–0.7723) 78.1 64.8 70.9 65.1 77.9 2.219 0.338 2.33

Plt/Alb ratio > 5.9 0.7112
(0.6544–0.7681) 71.0 71.3 71.2 60.7 79.7 2.479 0.407 2.48

Hb/RDW < 8.8 0.6813
(0.6165–0.7461) 78.3 57.9 66.8 59.1 77.5 1.862 0.374 2.73

Hb/Alb < 4.6 0.7058
(0.6469–0.7647) 77.5 63.7 69.9 63.7 77.5 2.134 0.354 2.43

Plt > 400 × 109/L
0.5207

(0.4863–0.5552) 6.0 98.1 80.8 42.9 81.9 3.249 0.959 4.03

Neutr/Eos > 156.3 0.6972
(0.6458–0.7487) 72.6 66.9 69.4 62.8 76.0 2.190 0.410 2.58

In-Hospital Death

LMR < 1.1 0.8375
(0.7553–0.9197) 88.2 79.3 79.7 19.5 99.2 4.255 0.148 5.35

PLR > 280.0 0.8390
(0.7566–0.9214) 88.2 79.6 80.1 20.8 99.1 4.319 0.148 5.03

Anaemia 0.7604
(0.6770–0.8438) 88.2 63.8 65.1 11.9 99.0 2.440 0.184 9.17
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Table 6. Cont.

In-Hospital Death

Mon/Eos > 13.0 0.7293
(0.6514–0.8072) 89.5 56.4 58.9 14.7 98.5 2.055 0.187 7.58

NLR > 7.5 0.6506
(0.5678–0.7335) 80.0 57.9 59.7 14.3 97.1 1.900 0.345 8.77

Eos < 0.5 × 109/L
0.7540

(0.6794–0.8285) 90.0 60.8 63.2 16.8 98.6 2.296 0.164 6.49

SIRI > 5.1 0.6614
(0.5813–0.7416) 81.5 58.4 60.4 15.9 97.1 1.958 0.317 7.69

Neutr/Alb × 10 > 2.4 0.7545
(0.6952–0.8138) 94.7 56.2 58.6 12.9 99.4 2.161 0.094 8.13

Lymp < 1.2 × 109/L
0.7224

(0.6656–0.7792) 95.0 49.1 52.1 11.4 99.3 1.868 0.102 9.34

Monocytes > 1.0 × 109/L
0.6169

(0.3760–0.8579) 40.0 83.4 82.7 3.9 98.8 2.408 0.720 37.03

GGT/Lymp > 25.4 0.7401
(0.6802–0.8000) 94.7 53.3 56.1 12.9 99.3 2.028 0.099 8.20

SII > 1620.0 0.6795
(0.5947–0.7643) 80.0 57.1 59.1 14.6 96.9 1.867 0.350 8.70

Alb/RDW < 2.6 0.6991
(0.6093–0.7888) 78.3 57.6 59.0 11.6 97.4 1.845 0.378 11.11

RDW/Plt × 100 > 6.6 0.6760
(0.5784–07736) 82.4 52.8 54.4 9.0 98.1 1.746 0.334 14.08

Plt/ALT > 13.8 0.6103
(0.527–0.6939) 77.3 58.9 60.2 12.6 97.1 1.879 0.386 11.49

Neutr > 7.5 × 109 0.6942
(0.6367–0.7518) 95.0 43.8 47.5 11.5 99.1 1.692 0.114 9.26

RDW > 14.5% 0.7739
(0.6987–0.8491) 89.5 65.3 66.6 12.5 99.1 2.579 0.161 8.62

Neutr/Mon > 12.1 0.7125
(0.6385–0.7864) 90.0 52.5 55.2 12.7 98.6 1.894 0.191 8.85

ALT/Lymph > 14.6 0.6840
(0.5702–0.7979) 83.3 53.5 54.7 6.9 98.7 1.791 0.312 17.86

Alb < 33 g/L 0.7889
(0.6493–0.9285) 72.7 85.1 84.6 16.0 98.8 4.866 0.321 6.76

Alb/Lymph/ < 25.4 0.6208
(0.4733–0.7684) 77.8 46.4 47.5 5.3 98.2 1.451 0.479 25.00

Plt/Alb > 5.9 0.6596
(0.5646–0.7546) 76.2 57.7 59.1 12.7 96.8 1.801 0.413 10.53

Hb/RDW < 8.8 0.5941
(0.4299–0.7582) 75.0 43.8 45.0 5.2 97.7 1.335 0.571 34.48

Hb/Alb < 4.6 0.6379
(0.5032–0.7726) 80.0 47.6 48.9 6.3 98.2 1.526 0.420 22.20

Plt > 400 × 109 0.6909
(0.4507–0.9311) 40.0 98.2 97.1 2.9 98.9 21.920 0.611 21.28

Neutr/Eos > 156.3 0.6032
(0.4510–0.7555) 70.0 50.6 51.2 4.4 98.1 1.418 0.592 40.00

Abbreviations: AUC, area under the curve (receiver operating characteristic); PPV, positive predictive value; NPV,
negative predictive value; LR+, positive likelihood ratio; LR−, negative likelihood ratio; all other abbreviations as in
Table 1. Calibration of the models (Hosmer–Lemeshow goodness-of-fit test) was good (0.1900 and above, p > 0.100).
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The highest AUC for predicting a lethal outcome showed models with the following
on-admission haematological indices: PLR >280.0 (AUC 0.8390), LMR < 1.1 (AUC 0.8375),
or albumin < 33 g/L (AUC 0.7889), RDW > 14.5% (AUC 0.7739), anaemia (AUC 0.7604),
eosinophil count < 0.5 × 109/L (AUC 0.7540), or Neutr/Alb > 2.4 (AUC 0.7545); five more
models also had considerable incremental value in predicting patients at risk of hospital
death with an AUC above 0.7120. The performance parameters (sensitivity, specificity,
accuracy, as well as PPV, NPV, LR+, LR−) of different biomarkers, as would be expected,
varied broadly. Six tests had a good sensitivity of 90% and above (90.9% to 94.1%), and
nine other tests had a sensitivity of 80–89.5%. However, only five tests demonstrated a
predictive specificity of 79.3–84.6% (monocytes > 1.0 × 109/L, platelets > 400 × 109/L,
albumin < 33 g/L, LMR < 1.1, and PLR > 280.0), whereas the majority of biomarkers had a
specificity only slightly above 50% (52.1–66.6%). Accordingly, the positive predictive values
(PPV) of the tests were quite low (ranging from 2.9% to 20.8%) but the negative predictive
values (NPV) were very good (96.9–99.3%), meaning that survivors had been identified
correctly. The prediction validity of the studied models was also assessed by the number
of patients with a given condition(s) who needed to be examined in order to correctly
detect/predict one person with a certain outcome (number needed to predict, NNP). The
NNP, a fatal outcome in HF patients, based only on the presence of IHD was 26.3, the
NNP based only on age >80 years was 20.4, and a combination of both characteristics was
12.5. The NNP decreased dramatically when the following IIM parameters at admission
were considered: PLR > 280.0 (NNP = 5.03), LMR < 1.1 (NNP = 5.35), eosinophil count <
0.5 × 109/L (NNP = 6.49), or albumin < 33 g/L (NNP = 6.76); for 10 other indices, the NNP
ranged between 7.58 and 10.53.

With respect to PMI, a good discriminative performance with values for an AUC
above 0.7600 displayed models with anaemia (AUC 0.7879), Mon/Eos > 13.0 (AUC 0.7814),
NLR > 7.5 (AUC 0.7784), eosinophil count < 0.5 × 109/L (AUC 0.7780), Neutr/Alb × 10
> 2.4 (AUC 0.7732), GGT/Lymph > 25.4 (AUC 0.7671), lymphocyte count < 1.2 × 109/L
(AUC 0.7643), LMR < 1.1 (AUC 0.7625), and PLR > 280.0 (AUC 0.7604); three more tests
had an AUC above 0.7380. Six indices demonstrated sensitivity above 80% (neutrophil
count < 7.5 × 109/L, lymphocyte count < 1.2 × 109/L, Mon/Eos > 13.0, GGT/Lymp >
25.4, RDW/Plt × 100 > 6.6 and Neutr/Mon > 12.1), and eight other tests demonstrated
a sensitivity between 75% and 80%. Three tests (PLR > 280.0, LMR < 1.1 and anaemia)
exhibited the highest specificity (82.1–91.4%), accuracy (79.7–82.1%), and PPV (71.1–75.0);
models with 21 other biomarkers showed an NPV of 83% and above. Notably, values
for the likelihood (LR+) of PMI to be predicted by these biomarkers were high (range
7.036–1.862), suggesting balance in favour of the right conclusion over misdiagnosis. The
NNP of PMI based only on IHD history was 4.8, only on advanced age was 3.4, and on both
characteristics it was 2.2. In combined models, with one of 10 haematological parameters
added, the NNP decreased below 2.0, and the lowest NNPs (1.7–1.8) were achieved with
PLR > 280.0, LMR < 1.1 and anaemia (Table 6, Figure 2).

The top 14 models for prediction PMI and/or hospital death in aged IHD patients
are shown in Figure 2. The strongest predictors for development of PMI among the
single haematological variables were anaemia (AUC 0.7879), low eosinophil count (AUC
0.7780), and low lymphocyte count (AUC 0.7643), and among the composite indices it
was elevated Mon/Eos ratio (AUC 0.7814), the NLR (AUC 0.7784), and the Neutr/Alb
ratio (AUC 0.7732). The dominant features for predicting a lethal outcome on admission
were hypoalbuminaemia (AUC 0.7889), high RDW (AUC 0.7739), and anaemia (AUC
0.7604) among single indices, and high PLR (AUC 0.8390), low LMR (AUC 0.8375), and
elevated Neutr/Alb ratio (AUC 0.7545) among the composite indices. In AUC analyses
for the prediction of both PMI or in-hospital death, the composite indices showed, in
general, a better performance than the single ones; the exceptions to this were anaemia and
low eosinophil count, which obtained the highest AUCs for predicting PMI. There was,
however, a substantial heterogeneity in the baseline predictive features between models
reflecting the differences (despite the shared pathogenic pathways) in the dysregulated
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IIM homeostasis underlying perioperative (patho-) physiological changes responsible for
adverse outcomes.
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The tests which occupy the first 14 places in terms of the weight (the greatest AUCs)
of the preoperative prediction for PMI and/or fatal outcome in the aged IHD patients
(Figure 2) demonstrate similarities, confirming commonalities as well as differences in the
risk factors and pathophysiological mechanisms. A number of indices have comparable
overall accuracy for predicting both outcomes, whereas some tests demonstrate superior
performance for predicting in-hospital death and others have superior performance for
predicting PMI. As an example, NLR > 7.5 was the second strongest predictor for PMI
(AUC 0.7784), but only a weak indicator of a fatal outcome (AUC 0.6506); inappropriate
PLR and LMR were the strongest predictors for hospital death but were not among the best
indicators for PMI. A few more examples are as follows: among the single indices, anaemia
and low eosinophil count showed higher AUCs for predicting PMI than mortality, while
elevated RDW demonstrated the opposite; among the composite indices, altered Mon/Eos
and Neutr/Alb ratios had higher AUCs for predicting PMI than hospital death. However,
two parameters—PLR > 280 and LMR < 1.1—were able to differentiate between patients
with and without poor outcomes (both developing PMI and hospital death) with equal
79.7–82.2% accuracy (Table 6).

In all, in aged patients with IHD, the following models demonstrated a reasonable
predictive accuracy (AUC exceeding 0.7700): five characteristics showed the highest AUC
(ranged between 0.7879 and 0.7732) for predicting PMI—anaemia, Mon/Eos > 13.0, NLR,
Eos < 0.5 × 109/L and Neutr/Alb × 10 > 2.4, whereas the four best predictors of a fatal
outcome were PLR > 280.0, LMR < 1.1, albumin < 33 g/L, and RDW > 14.5 (AUC range
0.8390–0.7739). These observations put the indices reflecting dysregulated IIM homeostasis
at the centre as predictors of poor outcomes, challenging the notion that IHD and/or
advanced age are enough to trigger PMI and/or cause death.
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Notably, in the total cohort of HF patients, the incidence of the above-mentioned IIM
biomarkers for predicting poor outcomes was also high. Namely, among 555 patients who
developed PMI, only 23 (4.1%) did not have any of the five most informative haematological
indices, whereas 443 (79.8%) subjects had two or more, 378 (68.1%) had ≥3, and 205 (36.9%)
had >5 of the predictive characteristics. On the other hand, among 718 patients without PMI,
80 (11.1%) patients had at least one of five biomarkers. In other words, five IIM parameters
on-admission identified PMI risk in most cases (532 among 555 actually observed, 95.8%),
but false predictions may occur in 11.1% of patients when the indices are applied to the
total cohort without considering IHD and age.

Of 61 HF patents who died in the hospital, 60 (98.4%) subjects had at least one of
the five above-mentioned IIM indices at admission. Considering these five predictors,
55 (90.2%) of 61 deceased subjects exhibited two or more indices, 48 (78.7%) had ≥3,
and 32 (52.5%) had ≥5 of the predictive biomarkers. Obviously, the chosen IIM tests
on-admission may help to identify subjects at risk of a fatal outcome in the total cohort of
HF patients: 60 fatalities could be expected, which is consistent with the actual observation
(n = 61). Among 1212 survivors, at least one of five IIM biomarkers were found in 152
(12.2%) patients.

To conclude, the presented data clearly indicate that, in patients with HF, preoperative
dysregulations of IIM homeostasis are common and appear as persistent processes causing
adverse events. Selected IIM parameters are useful for predicting poor outcomes, and the
accuracy of described models improves significantly when on-admission haematological
indices are integrated with clinical characteristics.

3.9. Internal Validation

In the validation cohort, sociodemographic and clinical parameters, including the
proportion of elderly patients (>80 years, 72.1%) and subjects with IHD (28.3%), were not
significantly different from that in the derivation group; additionally, PMI was observed
in 44.1%, and the all-cause mortality rate was 4.1%, indicating that the cohorts were
well balanced in terms of their baseline characteristics. The fourteen best-performing
indices/models in the derivation cohort (listed in Figure 2) were evaluated. The on-
admission IIM indices in both cohorts produced, in general, similar (almost identical for
some models) prognostic and predictive values. For example, in the validation cohort, risk
for developing PMI in IHD patients aged >80 years with PLR > 280.0 was 14.4 times higher
than in patients without such signs, the AUC was 0.7618, sensitivity 77.1%, specificity
81.0%, and the NNP was 1.8. In subjects with LMR < 1.1, the corresponding figures were
OR 15.9, AUC 0.7611, 54.8%, 93.1%, and 1.9; in subjects with a low eosinophil count, the
corresponding figures were OR 11.8, AUC 0.7560, 90.2%, 54.6%, 2.1. Additionally, in cases
of Mon/Eos > 13.0, the corresponding figures were OR 9.9, AUC 0.8667, 65.1%, 84.1%, NNP
2.1. Similarly, the IIM characteristics demonstrated a reasonable high predictive value and
acceptable calibration (Hosmer–Lemeshow statistic, all p > 0.010) for a fatal outcome. As
an example, the ORs for the four abovementioned indicators ranged between 29.1 and 14.0
in the main cohort and between 31.1 and 11.0 in the validation cohort, whereas the AUC
ranged between 0.8390 and 0.7293 in the main cohort and between 0.8477 and 0.7043 in the
validation cohort.

Altogether, internal validation confirmed the prognostic usefulness and good discrim-
inative performance of models based on haematological indices (on hospital arrival) to
predict PMI and/or in-hospital death HF patients.

3.10. Practical Considerations/Application

Here we address practical issues relevant in prediction, prevention and treatment of
adverse clinical outcomes in HF patients (1) and discuss the potential role of IIM biomarkers
for identifying patients at risk before any visible clinical symptoms and signs of OP/OF,
falls and/or related chronic disorder(s) occur (2).
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3.10.1. IIM Biomarkers in Assessing and Managing Short-Term Outcomes

Currently early identification of HF patients who are at high risk of PMI and/or
mortality remains an unmet clinical need. Our study shows evidence that presence of
an abnormal IIM characteristic at arrival should raise an alertness and suspicion of a
potentially poor outcome.

Deregulation(s) in IIM homeostasis drives adverse outcomes, and this complex as-
sociation is reflected by multiple biomarkers. The presented findings demonstrate that a
relatively small number of simple indices on admission (chosen from the long and growing
list of tests based on their predictive value) are informative for prognosis, patient stratifica-
tion, and prioritising treatment intervention; there is no need to measure all overlapping
modalities reflecting the myriad pathways that regulate IIM. As mentioned, at least one of
five most informative/predictive haematological indices was found in 95.8% of all patients
who developed PMI and in 98.4% of all subjects with a fatal outcome compared to 11.1%
and 12.2% among patients without PMI and survivors, respectively. However, because of
the heterogenicity of HFs’ underlying aetiology and pathophysiology, a single biomarker
may not capture the breadth of the complex network involved in and responsible for
adverse outcomes in different HF patients. The IIM characteristics contributing to adverse
outcomes reflect different (albeit interlinked) pathophysiological mechanisms and, there-
fore, may be complementary for prediction decisions in HFs. Each laboratory parameter
should be interpreted cautiously in conjunction with clinical data, considering its sensitivity
and accuracy to avoid misclassification (both over- and underdiagnosis).

Tests with high negative predictive value (NPV), especially when the prevalence of an
adverse event is low, should be applied for the exclusion of poor outcomes; conversely, tests
with a modest positive predictive value (PPV) may result in overdiagnosis. Understandable
indices with high sensitivity help to identify patients with a high probability of poor
outcomes, while tests with high specificity may indicate that a poor outcome is unlikely.
The discriminative capability of the preoperative IIM characteristics improves significantly
when they are analysed in combination with known clinical factors (e.g., advanced age,
history of IHD or both). For example, in HF patients aged >80 years, compared to younger
individuals, the risk of developing PMI or hospital death was 3.8 and 4.9 times higher,
respectively; in aged subjects with a history of IHD, the corresponding figures were 8.3
and 7.4 (compared to patients without these characteristics), and if these two clinical
features were accompanied with on-admission low lymphocyte count (<1.2 × 109/L),
the corresponding figures were 11.7 and 18.6, while, in cases of anaemia, the risks were
14.1 and 13.2 times higher, respectively. Similarly, the risks of PMI or/and death were
times higher in the aged IHD patients with eosinophil count < 0.5 × 109/L (ORs 12.3
and 14.0, respectively), RDW > 14% (ORs 9.5 and 12.1, respectively), PLR > 280.0 (ORs
16.4 and 29.1, respectively), or LMR < 1.1 (ORs 16.1 and 28.7, respectively)—to mention a
few predictive parameters at admission (Figure 2). Clearly, IIM characteristics interpreted
in combination with clinical criteria better determine an individual’s prognosis as well
as the need and eligibility for specific therapy. On a practical level, for predicting HF
outcome at admission, IIM indices should be added to the standard clinical evaluation
starting with analysis of routine single blood biomarkers, and if the prognosis remains
unclear/doubtful, consideration of the patient’s age and comorbidities should be used to
assess the composite biomarkers (Figure 2). Clinicians can expect that, out of every 100 HF
patients aged >80 years with IHD, a high risk (>83%) of developing PMI will demonstrate
individuals with an on-admission high neutrophil count (85.4%), low lymphocyte count
(84.3%), or high Mon/Eos ratio > 13.0 (83.1%); a high incidence (≥90.0%) of a lethal outcome
should be expected among patients with a high neutrophil count (95.0%), low lymphocyte
count (95.0%), high Neutr/Alb ratio (94.7%), or low eosinophil count (90.0%).

As an illustration, in aged IHD patients with HF, a quick and valid predictive result
at admission regarding a possible fatal outcome relies on the following three simple vari-
ables: age, history of IHD, and anaemia, as well as low absolute count of eosinophils or
lymphocytes, elevated RDW percentage, and (if still in doubt) abnormal ratios of PLR or
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LMR. The predictive values of high PLR and low LMR far exceeded that of altered platelet,
lymphocyte, or monocyte counts. Data on a comprehensive family of indices to be used
for risk adjustment purposes and accurate prediction of specific outcomes in HF patients,
summarised in Figure 2, may help clinicians to choose the optimal prognostic test in the
highest risk group. Analysis based on 2–3 biomarkers (and viewed in the context of clinical
findings) is preferable to avoid both an unrecognised poor outcome and false alarms.

Remarkably, PMI occurred in 211 (58.4%) of 361 patients with known IHD, whereas in
344 (62.0%) of 555 patients who developed PMI, pre-fracture IHD had not been diagnosed.
The all-cause in-hospital mortality rate among IHD patients was 7.5%, and it was 8.3% in
the PMI group, indicating the limited prognostic value of pure clinical factors. In contrast
to the accepted dogma, the incidence of most altered IIM biomarkers among patients with
and without IHD did not differ significantly, suggesting the importance of IIM imbalance
for predicting, preventing and managing both PMI and lethal outcome, events which are
strongly associated but not inseparable.

Although most risk factors for poorer outcomes are not preventable (advanced age,
multi-comorbidity, frailty, etc.), higher risk patients are more likely to benefit from specific
therapeutic interventions. Evaluation of the IIM status represents a substantial opportunity
to stratify risks and apply personalised, tailored patient-specific therapies. The potentially
preventable and/or reversable factors include correction of anaemia, hypoalbuminaemia,
malnutrition, low grade inflammation, disturbances in vitamin D, K, and mineral status,
etc.; appropriate pharmacotherapies can be employed perioperatively.

3.10.2. Role of IIM Biomarkers for Evaluation and Management of Health Status

Systemic IIM dysregulations are not only independent prognostic factors of poor
outcomes but have a significant role in the development and progression of numerous
diseases, particularly ones which are age-related and associated with OP/OFs.

In the context of rapid population ageing, the increasing burden of chronic health
disorders (including OP/OFs), difficulties in risk assessment, predicting and preventing
bone loss and falls, and the limited success of modern preventive therapies, there is a
critical need to identify people at risk early to tailor individualised treatments.

Chronic conditions are, however, continuingly first diagnosed at advanced/irreversible
stages when targeted therapy is less (or not) effective.

Given that OP is a disease continuum, altered IIM status should be considered a risk
factor/biological predictor for developing chronic disorders over a lifetime, including
OP/OF. Early identification of individuals with IIM dysregulation(s) may be particularly
useful in patients stratified as a low-risk group (no previous fragility fractures, BMD T-
score ≥ −1.0, FRAX-calculated 10-yaer HF risk < 3% and 10-year risk of major osteoporotic
fractures < 20%). IIM parameters and their combinations might shed light on the processes
that contribute to and drive disease progression, providing a further understanding of
what particular characteristics need to be primarily focused on in each individual patient.
The treatments may include lifestyle modification (physical activity, smoking cessation,
alcohol moderation) and appropriate pharmacotherapies for specific IIM disturbances and
comorbidities (CVD, CKD, T2DM, COPD, etc.). However, in the realm of public health and
clinical practice, the IIM status, in comparison to traditional clinical risk factors, is not given
adequate attention and rarely addressed. The approach proposed here is focused on tar-
geting the root causes of chronic diseases (prior symptoms/signs of tissue/organ damage
occur), which may substantially prevent OP/OF, as well as related chronic disorders, and
extend disease-free health spans. We suggest that emerging data on the essential role of IIM
dysregulations have yet to be translated in practical diagnostic, preventive and treatment
strategies. Even a modest abnormality in IIM markers should facilitate discussion and
review patient’s lifestyle and diet, correction of metabolic and mineral disorders, malnutri-
tion, low-grade inflammation, etc.; musculoskeletal health (OP/OF risk) assessment and
further investigation(s), if not previously done, need to be considered. Routine evaluation
by primary care providers and all medical specialists of IIM parameters, particularly in
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middle aged and elderly persons with high risks of chronic noncommunicable diseases,
may be an attractive and valuable strategy (in spite of low specificity of these indices).

Currently there is no “silver bullet” for preventing and treating OP/OFs, a heteroge-
nous condition with complex involvement in IIM dysregulations and multiple organ
systems. To target and reduce dysregulations in IIM, homeostasis appears to be a logical
and effective step forward in breaking feedback loops between IIM dysregulation and
multiorgan extra-skeletal pathologies linked with OP/OF, especially in earlier stages (be-
fore most risk factors have accumulated). As almost all patients with OP/OF demonstrate
signs of low-grade inflammation, a condition associated with poorer short- and long-term
prognosis, it appears that anti-inflammatory interventions could be beneficial in the fight
against OP/OFs and related extra-skeletal disorders. Anti-inflammatory and immune-
modulating mechanisms and normalisation of metabolic disturbances underlie, at least
partially, the well-recognised positive effects of lifestyle modifications (physical exercise,
healthy diet, smoking cessation, etc.) [42–44], as well as the use of traditional bone-related
nutrients, including vitamins D, C, K, and E, calcium, magnesium, micronutrients (iron,
zinc and selenium), probiotics, and prebiotics [9,45–52].

Moreover, recent studies have demonstrated the effectiveness of anti-inflammatory/
disease-modifying drugs, in particular colchicine, canakinumab, via-2291, anakinra, hy-
droxychloroquine, and methotrexate in treatment of low-grade inflammation in cardio-
vascular disease, T2DM and other OP-related disorders, by reducing the plasma levels of
pro-inflammatory cytokines (e.g., IL-6 and CRP) and improving lymphocyte, platelet and
endothelial cells functions [4,43,53–62]. Among recommended drugs with the potential
ability to counteract inflammatory cytokines are also metformin, aspirin, ibuprofen, ra-
pamycin, sartuins, and statins [19]. Anti-inflammatory drugs, however, should be used
with caution, and their limitations and unwanted side effects (e.g., increased infections due
to depressed host defence mechanisms, or gastrointestinal upset/bleeding) should be con-
sidered. Colchicine, in tissue culture at low concentrations, inhibited selectively bone-like
cell mineralisation (without affecting cell proliferation) [63]; in rats prolonged treatment
with colchicine reduced bone strength and influenced fracture healing negatively [64].
Additionally, concomitant use of colchicine and drugs inhibiting cytochrome P450 3A4
and P-glycoprotein may cause potentially life-threatening drug–drug interactions (rhab-
domyolysis/myopathy, myelosuppression/agranulocytosis, cardiac arrhythmias) [65–68].
Traditional non-steroidal anti-inflammatory drugs (NSAID) and selective cyclooxygenase-2
(COX-2) enzyme inhibitors, medications widely used postoperatively in orthopaedic pa-
tients for the treatment of pain and inflammation, may also cause adverse gastrointestinal,
renal, and cardiovascular effects. The possible inhibitory effects of NSAID (especially the
COX-2 inhibitors) on the bone healing process have been reported [69–76]; but most recent
studies found that the nonunion risk was small [77,78] or negligible [79], site-, sex-, dose-
and duration-dependent, and significant only in patients who received NSAIDs for >3–4
weeks [80,81]. According to available data, anti-inflammatory drugs could be beneficial in
preventing cardiovascular events (known to be associated with OP/OF), but the potential
risks, although rare, have to be put into perspective.

Other therapies with immunomodulatory and anti-inflammatory effects and protective
roles in musculoskeletal and related disorders, such as vitamin D [14,82–94] and vitamin
K [95–100], also deserve special attention.

A shift in the existing management paradigm focused mainly/solely on anti-resorptive
treatment to a model which addresses specific IIM deregulations may be fruitful in both
analysing the risks and improving the outcomes. An approach which implies biomarkers
of IIM status (in contrast to the current routine strategy where treatment decisions are
based mainly on BMD, resulting in delayed diagnosis and “one-size-fits-all” therapy), may
help to individualise and optimise prognosis, introduce treatment early, and decrease the
OP/OF burden.

Clearly, not every patient who exhibits markers of IIM dysregulation may develop
OP/OF and/or any other chronic disease, but existing data suggest that a substantial
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proportion of subjects in whom IIM changes are detected will progress to chronic illnesses.
It is quite understandable that the dilemma between overdiagnosis and overtreatment
IIM dysregulations, on the one hand, and the risk of delayed intervention(s) contributing
to the occurrence of chronic diseases and/or adverse events, on the other, should be
considered with every individual patient. Identifying individuals in need of attention
and finding the “right” IIM target(s) in each patient may be difficult. Single indices may
not adequately capture varying pathways (due to heterogeneous underlying aetiologies)
and predict outcomes in all patients; therefore, a multimodal approach (evaluating at
least 2–3 biomarkers of IIM homeostasis) is preferable to minimise risks. Whether such
a strategy would provide an advantage and reduce OP and fracture rates needs to be
further investigated.

To conclude, immunometabolic dysregulation and low-grade inflammation determine
the complex processes that underlie ageing, most age-related chronic diseases, and long-
and short-term outcomes. Haematologic biomarkers of IIM status, aside from clinical
features, provide significant diagnostic and prognostic information for early identification
and disease severity stratification, reflecting specific (and interconnected) risks in different
patients. Although the causes and mechanisms of IIM deregulation and tissue/organ
dysfunction are still elusive, emerging evidence suggests that addressing IIM homeostasis
may provide novel preventive and therapeutic strategies to improve management for many
non-infectious chronic disorders associated with OP/OFs.

4. Discussion

Although IIM deregulation is nearly universally associated with most human diseases,
it has not been fully translated into clinical prediction models or applied to preventive
strategies in the field of OP/OF. The term dysregulated IIM status is used here as an
umbrella term for a host of conditions that could be caused by different mechanisms but are
integrated with each other and create vicious cycles. Each of the IIM components should
be considered as a factor affecting various systems in the body, and, when dysregulated,
they may trigger and amplify numerous pathophysiological processes and increase the risk
of multiple chronic diseases, including OP/OFs.

In this paper, we assessed and compared the prognostic information and predictive
performance of 27 blood-based IIM biomarkers in HF patients at admission and illuminated
the potential clinical utility of IIM parameters for identification of individuals at risk of
chronic disorders, including OP/OF, in the preclinical stage.

4.1. IIM Parameters at Admission as Predictors for Outcomes in HF Patients

Objective stratification of HF patients, prediction of postoperative complications and
mortality and optimisation of management is a complex and challenging topic of crucial
importance. Multiple models proposed for predicting HF outcomes (partially reviewed
previously [22]) varied hugely in methodology (some require calculations, scoring systems
and computer use, differ in statistical assessments of the performance, etc.), source of
data, and number and availability of analysed variables, and they are largely focused
on sociodemographic and clinical variables in different combinations but rarely involve
haematological characteristics; due to these limitations, the predictive value of existing
models is still debatable. Only a few studies have been conducted on the development
and prognosis of PMI. Currently, preoperative cardiovascular risk assessment is based on
clinical factors (demographics, presence of cardiac disease, and non-cardiovascular comor-
bidities) [101], and the pivotal involvement of IIM dysregulation(s) in this complication
has not been evaluated systematically.

Our analysis revealed that, among 27 studied blood-based IIM biomarkers (only half
of which had previously been applied to the prognostication of HF outcomes), in the total
HF cohort, 10 indices were significantly associated with the development of PMI and 16
parameters were indicative of a fatal outcome; in the subset of patients diagnosed with IHD,
the corresponding figures were 26 and 21, and, among the IHD patients aged >80 years, the
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corresponding figures were 26 and 20. Ten out of 27 haematological parameters at admis-
sion predicted both PMI and hospital death, but with some differences (Tables 5 and 6). In
the aged patients with a history of IHD (the highest risk group), the five strongest predictors
of PMI were preoperative anaemia (AUC 0.7879), Mon/Eos ratio > 13.0 (AUC 0.7814), NLR
> 7.5 (AUC 0.7784), low eosinophil count (AUC 0.7780), and Neutr/Alb × 10 > 2.4 (AUC
0.7732); the sensitivity of these models ranged between 83.1% and 75.4% and the specificity
ranged between 82.1% and 75.0%. The highest risk for in-hospital death exhibited subjects
with the following five on-admission indices: PLR > 280.0 (AUC 0.8390), LMR < 1.1 (AUC
0.8375), albumin < 33 g/L (AUC 0.7889), and RDW > 14.5% (AUC 0.7739), and anaemia
(AUC 0.7604). Four of these models (except low albumin) had a sensitivity of 88.2% and
above, and the specificity of the three first models was 85.1–79.3% (Table 6; Figure 2); all
abovementioned models showed adequate discrimination and good fit in calibration.

In the total HF cohort, independent predictors (after adjusting for clinical covariates
and relevant risk factors) for developing PMI were LMR < 1.1, age > 80 years, IHD, CKD,
dementia, and male gender, while independent predictors of all-cause mortality were
Neutr/Eos ratio > 156.3, Alb/RDW ratio < 2.6, age > 80 years, and CKD. These data indi-
cate that, in HF patients, most of the IIM biomarkers on admission are not independent risk
factors for PMI or lethal outcome but reflect the co-participating pathways, the overlapping
and interrelated fundamental immune, inflammatory, endocrine, and metabolic mecha-
nisms of IIM dysregulation(s) across most organ systems contributing to development and
progression of many different diseases (including OP/OF), and, consequently, adverse
HF outcome.

The overlap of prognostic value of different biomarkers indicates their common routes;
on the other hand, the heterogeneity and complexity of OP/OFs means that use of prog-
nostic biomarkers in combination (e.g., ratios of promising indices) and, specifically, with
identification of clinical characteristics is necessary to optimise sensitivity and specificity.
There is no single characteristic that can capture the complexity of factors responsible
for poor outcome in all HF patients. Our findings suggest that a combination of three
on-admission parameters—one IIM biomarker, advanced age, and history of IHD—can
predict PMI and/or hospital death sufficiently. These models compare favourably with
previously published research.

The prediction models for HF outcomes or developing OP/OFs reported in the lit-
erature were based on multiple variables (between five and 29), often included intra-
and postoperative characteristics, and showed inconsistencies. A recent systematic re-
view of prediction models for OF (68 studies describing 70 models) found that AUC
ranged from 0.60 to 0.91. In most models (84.3%), the AUC was under 0.80, and only
two models achieved AUC > 0.90 [102]; models for prediction OP in older adults had
an AUC of 0.849 (seven variables examined) [103] and 0.850 (15 variables) [104]. The
AUC for in-hospital death (five variables) was 0.731 [105], for 30-day mortality (40 stud-
ies included)—0.621–0.860 [106–109], for 90-day mortality (12 variables)—0.67 [110], for
6-month mortality (14 metabolites)—0.68 [111], and for 1-year mortality, following HF, the
AUC ranged between 0.79 (10 variables, accuracy of 81%, sensitivity of 34% and speci-
ficity of 98%) [112]—0.797 (seven variables) [113]—0.758 (10 variables) [114] and 0.717
(seven variables) [115]. The prediction performance of newest machine learning-based
models was similar: the AUC for mortality prediction (39 studies) was 0.84 [116], for HF
prediction (10 factors)—0.78 (sensitivity 75% and specificity 78%) [117]; the highest AUC
value for the risk of in-hospital mortality among critically ill patients with HF was 0.797
(6 parameters) [118].

Today’s dominance of multivariable architectures of most predictive models is ques-
tionable; such approaches underestimate essential physiological principles and the biologi-
cal evidence that all immunological, inflammatory, and metabolic responses are integrated.

Our approach (which combined one haematological biomarker and two clinical char-
acteristics) demonstrates the following significant advantages in predicting HF outcome: it
is rapid, simple, easy-to-use, accessible to any physician, and outperforms most previously
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published models. Numerous clinical and laboratory factors are associated with poor
outcomes, but they, as shown in our and other studies, are not independent of each other
and, when combined, may add only a relatively small proportion to the predictive infor-
mation on HF outcomes. This can be explained by the fact that each component of IIMR
is correlated to many others and, therefore, not surprisingly, a plethora of different IIM
parameters demonstrate significant prediction power. This assumption resembles George
Cuvier’s principle of correlation of parts (the basic concept to comparative anatomy and
palaeontology), which states that all organs in an animal’s body are deeply interdependent
and, thus, the function and structure of each organ allow for us to reconstruct fossils and
make predictions.

In the total Australian population in 2020, only 2.47% were aged >80 years; however,
this age group made up 70.6% of the HF cohort and accounted for 85.2% among subjects
who developed PMI and 91.8% among the fatalities. The risk of HF in subjects aged
>80 years, compared to those younger than 80 years, was 28.2 times higher; HF patients
of this age were nearly six times more likely to experience PMI and about 11 times more
likely to die. These observations are in line with many recent reports [119–125].

Our data on the prognostic value of most (but not all) individual IIM biomarkers
for predicting PMI and/or hospital death in HF patients agree with previously reported
research (Table 7). The association of abnormal preoperative single blood indices with weak-
ened immune systems, poor overall health, postoperative morbidity, and mortality has been
demonstrated in countless studies in different settings. In general, the adverse postopera-
tive outcomes clearly reflect the effects of baseline and comorbid diseases, while individual
indices per se may show only a weak predictive value [126,127]. It is worth noting the
complexity of IIM responses, particularly the interactions between neutrophilia, platelet
and monocyte activation, suppression of lymphocytes and eosinophils, over-production of
inflammatory cytokines, etc. [128,129].

Table 7. The literature data on the prognostic value of selected blood parameters to predict postopera-
tive mortality in patients with hip fracture (1) and adverse outcomes in patients with IHD/CVDs (2).

Parameter/Index Hip Fracture (1) IHD/CVDs (2)

Anaemia [127,130–137]
No: [122]

[138,139]
No: [140]

Neutrophils elevated [141,142] [143–149]

Lymphocytes low [130,131,150–154] [147,155–157] *

Monocytes elevated [138,147,148,157–163]

Platelets low [164]
No: [165]

[164,166–168]
No: [169–172] *

Eosinophils low [173] [155,161,174–184]
No: [146,156,157,185–189]

Red cell distribution
width (RDW) elevated [134,190–198] [148,170,197,199–205]

Albumin low [131,137,151,153,154,198,206–218]
No: [219]

[220–225]
No: [226]

NLR elevated [29,30,227–238]
No: [137,239,240]

[31,32,149,161,227,238,241–265]
No: [266,267]

PLR elevated [218,236,268,269]
No: [237]

[32,256,260,265,270–272]
No: [266]

LMR low [230,234,236,238] [160,238,258,259,265,273–276]

SII elevated [215,238,277,278] [226,238,260,277,279–284]

SIRI elevated [282,285–287]
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Table 7. Cont.

Parameter/Index Hip Fracture (1) IHD/CVDs (2)

Mon/Eos ratio elevated [288,289]

Neutr/Eos ratio elevated [290,291]

Neut/Alb ratio elevated [292] [293–300]

Alb/RDW ratio low [37,38,301–305]

Hb/RDW ratio low [306,307]

Alb × Lymph low [131]

ALT/Lymph ratio low [308]

Plt/Alb ratio elevated [309–311]
Abbreviations: No, opposite effect reported (e.g., low lymphocyte, or eosinophil counts); *, U-shaped relationship;
all other abbreviations as in Table 1.

In recent years, measurement of eosinophils, cells with a variety of complex im-
munomodulatory functions [312–314], has attracted substantial attention in chronic dis-
eases (other than atopic conditions) but has not been assessed in HF patients. These studies
provided contradictory results; for instance, conflicting evidence on the correlation be-
tween eosinophil count and CVD/IHD risk and outcomes have been reported, as follows:
Eosinopenia was linked to acute myocardial infarction (AMI), heart failure and death in
clinical studies [175,177] and preclinical models [176], and a high eosinophil count was
shown to be a protective factor against coronary artery stenosis [178] and 6-month to
1-year mortality, but it was associated with long-term mortality [183,315]; other researchers,
however, reported positive associations between eosinophil counts and functions with
IHD risk [316] and poor CVD outcomes [146,317–319]. Differences in studied populations
(sociodemographic and lifestyle factors, prevalence of comorbid conditions, medication
used) and methodology may explain these differing publications [188].

Comparable human studies on prognostic performance of blood IIM biomarkers are
scarce and the variable selection, cut-offs, and covariate-adjustment vary widely; this
hampers an objective comparison between the different IIM indices and the conclusions
regarding their prediction values, even in the same disease range, significantly. For example,
in HF patients, all-cause in-hospital mortality was reported to be best predicted by increased
RDW levels [194] as well as by an increased Neutr/Alb ratio or NLR, but not by PLR [300];
SII was found to be a stronger predictor of poor outcomes than that of PLR and NLR in
patients with acute coronary syndromes [277], whereas other researchers showed that NLR,
PLR, and SII have similar predictive values in NSTEMI patients [226]. A consensus on
which biomarker performs better in specific diseases is still lacking.

The natural, and often irreversible, age-related changes in IIM status play, undoubtedly,
a significant role in functional and morphological decline and contribute to serious compli-
cations and death [1,3,11,17,320,321]. Abnormal IIM indices in HF patients can not only
aid to guide prognostic decision-making but should lead to peri-operative optimisation of
modifiable risk factors (as discussed above).

4.2. Usefulness of Parameters of IIM Homeostasis for Early Screening, Risk Stratification,
Prevention and Optimal Management of Osteoporosis and Fractures

To optimise the strategy of OP/OF management, it is of seminal importance to identify
and early (at the preclinical stage) recognise the risks for alterations in musculoskeletal
and related systems. Because IIM dysregulation(s) are causal and central to most human
diseases, comprehensive analyses of its components hold value for understanding and
predicting (with precision) the potential risks in each individual. The tripartite complex
multilevel dynamic network involving the immune, inflammatory, and metabolic functions
determines key mechanisms of homeostasis in health and disease. The development of
OP/OFs are complex, multifactorial processes in which IIM dysfunctions have pathophysi-
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ological, therapeutic, and prognostic roles. Abnormal IIM components through numerous
interconnected mechanisms trigger directly and indirectly loss of bone and muscle mass
and functions (as well as affect the whole spectrum of chronic disorders associated with
OP/OF); the premorbid alterations precede and underlie overt OP/OF. However, the
biomarkers of IIM homeostasis have not been systematically evaluated and have not yet
been used to generate evidence-based concepts of co-occurrence and the interdependence
of pathological disorders in preclinical stages. Prognostication of the potential risks due
to IIM dysregulations, especially among middle aged and older adults (in whom most
age-related changes are often irreversible and the chronic conditions are incurable), and
early implementation of specific interventions and preventive treatments to counteract
changes which may contribute to functional and morphological decline, complications,
and death is still an unmet goal. It is important to emphasise the utility of IIM status when
screening patients for OP/OF risk and vice versa; individuals with IIM dysregulation(s)
have an increased risk of different chronic disorders associated with OP/OF. Elucidating
IIM status in asymptomatic persons and, in case of deviations from normal parameters,
addressing appropriately and timely the modifiable factors can potentially reduce the risk
of chronic diseases and slow age-related decline.

Incorporating in clinical practice the easily accessible IIM biomarkers that have a
significant ability to predict the occurrence and progression of different classes of disorders
before they present clinically could provide clinicians with auxiliary data for the early
prognosis/diagnosis of musculoskeletal and related diseases, the risks of falls and fractures,
and allow for the timely consideration/introduction of preventive measures, particularly
in older adults prone to multimorbidity. Therefore, we recommend adding these simple
and useful tests to the routine arsenal of diagnostic modalities when evaluating patients
for OP/OF risk, identifying which particular IIM component(s) is abnormal and may be
predisposed to chronic diseases, including OP/OF; this appears especially important in
individuals with suspected musculoskeletal fragility risk.

The advantage of such an approach, which is quite different from the traditional
screening for OP/OF risk, is supported by the following lines of scientific clinical evidence.

(1) Data on mechanistic link between deregulated IIM homeostasis and OP/OF in the
general population and individuals with various chronic diseases: lower BMD/OP
is associated with lower haemoglobin levels [322,323], high neutrophils [322,324],
low lymphocytes [322,325,326], low platelets [327], macrophage/monocyte dysfunc-
tion [18,328–330], elevated RDW levels [331–341], NLR and PLR [234,342–346],
LMR [234], SII and SIRI [103,347], serum cytokines [348–351], metabolomic changes,
including elevated GGT [22,27,352–354], hypoalbuminaemia [355], disbalanced
adipokines, vitamin and mineral deficiencies, oxidative stress, and other indices
of IIM dysregulation [26,356–363]. In other words, indices of IIM deregulation are
associated with increased likelihood of developing OP/OF and, importantly, many
of these factors are potentially reversible or modifiable (potential therapeutic targets)
and should be routinely assessed and managed; initiating appropriate preventive
measures may simultaneously reduce the risks of OP/OF and numerous related
chronic diseases.

(2) Many chronic diseases are bi/multi-directionally linked to the development and pro-
gression of musculoskeletal loss, falls, and fractures, and they also contribute to out-
comes, displaying a vicious cycle between musculoskeletal status and chronic disorders.
Indeed, CVD [364–372], CKD [373–377], T2DM [378], CLD [379–384], neurodegenera-
tive diseases [385–390], COPD [391–394], gut dysbiosis [395–400], and cancer [401–403],
(to name a few) are associated with decreased physical functioning, frailty, OP, injuri-
ous falls, and OFs, whereas impaired osteogenesis (i.e., decline of osteoblasts), altered
production of osteokynes (i.e.,osteocalcin, osteoprotegerin, osteopontin) and myokines
affect all vital functions of the organism, including haemopoiesis in the bone mar-
row (reduction in both lymphoid and myeloid cells) [322,345], endocrine, liver, renal,
muscles, other functions [404–416], and OP/OFs; alterations in metabolism affect the
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immune system and vice versa [10,15,20,417–424]. OP/OFs in turn increase the risk
of and affect the progression of chronic disease, decrease quality of life and lifespan,
accelerate mortality risk, and increase health care costs.

(3) Impaired IIM homeostasis is a common but often overlooked determinant of nu-
merous chronic disorders (commonly asymptomatic in the early stages) which are
linked to musculoskeletal deterioration, falls and fractures, accelerated biological
ageing (“inflammageing”), declined resilience, and frailty. The risk of the onset
and progression of the above-mentioned disorders can be predicted using IIM in-
dices. From a clinical and pathophysiological point of view, particularly useful
elements might include haemoglobin (Hb), complete blood cell count [148,157,166,
167,170,177–179,181,183,188,274,425–427], RDW [331,332,334–336,338,428–430], and
indexes of systemic inflammation, such as NLR [330,430,431], PLR [268], LMR [330],
SII [282,297,432,433], SIRI [330] (alone or integrated in an inflammatory prognostic
scoring system [434]), and hypoalbuminaemia [208,223,435–437]; moreover, most
abnormal single and combined IIM markers are associated with low vitamin D lev-
els [438], a pluripotent hormone involved in the pathophysiology of OP/OF and
multiple chronic diseases [439–441].

The importance and potential benefits of clinical investigation of IIM status and
treating changes (e.g., low-grade inflammation) as a preventive strategy should be em-
phasised [4,442–444]. In the US population, for instance, the proportion of adults with
systemic inflammation is 34.63%; the proportion of individuals aged ≥20 years with no
disease is 15.1%, with undiagnosed disease—29.1%, and with diagnosed disease and in-
flammation —41.8% [444]. The pro-inflammatory response, known as an evolutionary
advantage (eradication of infections, promotion wound healing, etc.), especially in times of
nutritional deficiency, in the current human society often contributes to metabolic disorders
(osteoporosis, obesity, insulin resistance, atherosclerosis, etc.) and their complications.
Subtle/small but notable changes in IIM status appear as valuable markers in assessing the
likelihood of the onset of chronic disorders but are undervalued and/or under-reported.

Despite ongoing efforts to reduce the OP/OF burden, currently, early identification
of conditions that can predispose to OP/OF and accurate estimation of fracture risk,
particularly in older adults, remain challenging, and population screening is still a matter
of debate [445–454].

In the general population (including patients with pathologies associated secondarily
with OP), more than half of fractures occur in patients without OP as defined by the BMD
T score criteria, currently the “gold standard” for diagnosing OP and assessing fracture
risk [376,455–463]. Screening for OP, even among aged women, remains low [464,465]; prior
to fracture, approximately 70–85% of patients with HF and 98% with vertebral fracture had
not been diagnosed with OP, and only 16.4% [466] and 21% [467] had been on OP treatment,
respectively. Untreated OP leads to a vicious cycle of recurrent fracture(s) [468].

Over six decades of age, risk of HF rises 100- to 1000-fold, but only a minor part
of this increase is explained by declining BMD [469]. A recent systematic review on
current risk prediction tools for primary prevention of fragility fractures among adults aged
≥40 years concluded that BMD measurement and FRAX risk assessment are of limited
benefit; even screenings of postmenopausal females resulted in only a small reduction in
OFs [451]. Treatment based only on osteoporotic BMD could not reduce the large number
of fractures in the general population [470]. Moreover, how and when to initiate treatment
is still a controversial issue, and the effects of current preventive strategies/therapies are
suboptimal [470–472].

Heightened IIM dysregulation(s) may affect directly and indirectly multiple organ sys-
tems and play a critical role in the musculoskeletal remodelling by starting and maintaining
the pathological cascade, which may result in osteosarcopenia [473–479] and correlate with
adverse outcomes/mortality risk. Individuals with abnormal/aberrant (albeit silent) IIM
parameters should be aware of the potential risks of chronic disorders, including OP/OF
(even in the absence of standard diagnostic criteria for OP). The IIM status should be
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regularly monitored to identify those at risk of disease in a timely manner, and therapeutic
attempts should be made to target abnormalities. The IIM biomarkers may contribute to
the progress in precision medicine in complex and heterogeneous diseases.

IIM dysregulation(s), which can be detected before and without BMD evidence of OP
and/or FRAX assessment, exhibit desirable curative prospects. In a substantial portion of
patients, IIM biomarkers could provide more detailed information on altered pathways and
suggest more holistic and personalised targeted management, simultaneously influencing
the modifiable risk factors for multiple disorders, including OP/OFs.

The practicality and informativeness of IIM haematological indices and a number
of directions along which this line of work can be extended have been briefly discussed
above. The presence of IIM dysregulation may require multidisciplinary care due to suscep-
tibility to various health issues (various comorbidities). Initiating appropriate preventive
measures by addressing specific modifiable causes of these abnormalities (e.g., vitamin
D and/or K deficiency, malnutrition, hypoalbuminaemia, anaemia, unhealthy lifestyle
factors, decreased mobility, low-grade inflammation (i.e., caused by periodontitis), treating
chronic extra-skeletal disorders, etc.) may have a fundamental (direct and indirect) effect
on preventing OP/OFs.

Identification and correction of IIM dysregulation(s) may reduce the onset and pro-
gression of multiple disorders, including those which are directly and indirectly asso-
ciated with OP/OFs. However, it remains unclear whether this approach will cause
overestimation/over-prediction(s) or underestimation, will result in a positive effect on
morbidity and mortality, and will be cost-effective. To prevent unnecessary or incorrect
treatments, the decision-making should be evidence-based (avoid inaccurate interpretation
of the tests) and individualised. While IIM deregulation can be used as an umbrella term for
the spectrum of OP/OF associated disorders, each patient is immunologically and metabol-
ically different; although the components of IIMR are interconnected, their relative impacts
on outcome in individual patients vary; correct characterisation and quantifying/grading
selected IIM indices in combination with clinical characteristics is therefore important to
personalising risk and treatment.

The IIM biomarkers presented can be easily integrated in design and construction
of future digital predicting models, which may provide interventions that will further
improve multidisciplinary individualised patient management [480–483].

Further research is needed to deepen, clarify, and validate the conceptual framework
of IIM dysregulations as key factors underlying different aspects of the occurrence and
development of OP/OF and other orthopaedic and associated diseases.

4.3. Strengths and Limitations

The main strengths of this study are as follows: being the first to evaluate and compare
(head-to-head) the preoperative prognostic value of 27 blood parameters of IIM homeostasis
in a relatively large number of patients with osteoporotic HF; the detailed clinical and
laboratory information; and the adjustment for potential/relevant confounders affecting
outcomes (including numerous sociodemographic, clinical, and laboratory parameters) in
the multivariate models.

The study has also several important limitations. First, the study was conducted in a
single tertiary hospital; therefore, it was observational and cannot infer causality. Second,
we focused on the prognostic value of on-admission parameters mainly for prediction
of postoperative myocardial injury and all-cause in-hospital mortality, and the analysis
did not cover other adverse effects; in our cohort there was only 4.8% fatal outcomes,
which limited the power of our analyses. Using dynamic (postoperative) IIM changes may
further improve the global clinical judgement of patients’ outcomes. Third, the reported
cut-offs in the literature range widely, and some cut-offs used in this study were arbitrary;
therefore, more research is required to investigate their clinical relevance. Furthermore,
the presented predictive models were found to be broadly applicable and need external



J. Clin. Med. 2024, 13, 3969 31 of 50

validation. Finally, the study population was mainly represented by patients of European
ancestry, so results may not be generalizable to other racial and ethnic groups.

5. Conclusions

The study evaluated and compared the prognostic value of 27 indices of IIM derange-
ment in patients with HF at the time of admission and identified several simple, widely
available, and inexpensive parameters with high predictive performance for PMI and in-
hospital death; these results/data may help to optimise clinical decisions (i.e., distinguish
between patients who may benefit from surgical treatment and those who will not) and
provide an individualised therapeutic approach.

Evolving evidence suggests that assessing IIM status in the general population in
primary care settings (before an individual become clinically symptomatic) might present
suitable biomarkers to predict, diagnose, and manage risks and outcomes for a whole range
of chronic diseases, including OP/OF, in the preclinical stages.
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