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Abstract

Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA 

splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential 

to unravel the intricacies of biological systems and bridge the gap between genotypes and 
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phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides 

a holistic view of the proteome and can decipher protein function, uncover disease mechanisms 

and advance precision medicine. This Primer explores TDP, including the underlying principles, 

recent advances and an outlook on the future. The experimental section discusses instrumentation, 

sample preparation, intact protein separation, tandem mass spectrometry techniques and data 

collection. The results section looks at how to decipher raw data, visualize intact protein 

spectra and unravel data analysis. Additionally, proteoform identification, characterization and 

quantification are summarized, alongside approaches for statistical analysis. Various applications 

are described, including the human proteoform project and biomedical, biopharmaceutical and 

clinical sciences. These are complemented by discussions on measurement reproducibility, 

limitations and a forward-looking perspective that outlines areas where the field can advance, 

including potential future applications.

Introduction

The central dogma of biology describes the flow of information from DNA to processed 

mRNA and finally proteins, which are the primary effectors of biological function1,2. 

Numerous proteoforms lead to a vast range of chemically diverse protein families. 

Proteoforms occur due to post-translational modifications (PTMs), RNA splice variants and 

genetically defined amino acid sequences, including genetic polymorphisms2 (Fig. 1a). As 

a result, a comprehensive knowledge of proteoforms is essential to understand biological 

systems and establish the link between genotypes and phenotypes3. However, the number 

of possible proteoforms greatly exceeds the number of genes, presenting an analytical 

challenge4.

Top-down proteomics (TDP) has emerged as the most powerful experimental strategy 

for comprehensive analysis of proteoforms5–8. The base experiment is top-down mass 

spectrometry (TDMS)9, which analyses intact proteins without digestion to provide 

a holistic view of the proteoforms. Importantly, unlike intact mass spectrometry10, a 

TDMS experiment requires both an accurate intact molecular mass measurement (top) 

and controlled fragmentation of the gas-phase molecule (down). Top-down sequencing 

was challenging until electrospray ionization (ESI) and matrix-assisted laser desorption/

ionization (MALDI) could be sufficiently used for tandem mass spectrometry (MS/MS or 

MS2) measurements. Although MALDI-MS can fragment intact protein ions, the multiply 

charged ions generated by ESI are more effectively dissociated in tandem mass spectrometry 

to produce sequence-informative product ions11. A variation of TDMS, termed native 

TDMS (nTDMS)12,13, performs both ionization and backbone cleavage in a way that 

maintains higher order structure. The ability of nTDMS to yield sequence information 

directly from protein complexes is enhanced by using electron-based fragmentation 

methods, such as electron capture dissociation (ECD)14,15, and ultraviolet photodissociation 

(UVPD)16,17. Native mass spectrometry18 and nTDMS are now a viable complement 

to traditional structural biology tools and are starting to be applied more broadly in 

biopharmaceutical research19.

Roberts et al. Page 2

Nat Rev Methods Primers. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The alternative to TDP, bottom-up proteomics (BUP), involves extensive proteolysis to 

yield peptides that are typically <3 kDa. BUP is currently used more widely than TDP as 

peptides are easier to separate, ionize and fragment than proteins. There is also a greater 

technological maturity and more established informatics tools for BUP20. However, there 

is an intrinsic limitation of BUP owing to the peptide-to-protein inference problem, as 

only a limited number of peptides are detected per protein, with generally low protein 

sequence coverage. This leads to a loss in proteoform information and connectivity when 

mapping sequence variations and PTMs1,3,21,22. Another limitation of BUP is an inability 

to infer different combinations of modifications on various proteoforms. Capturing this 

combinatorial information is important to understand proteoform function and regulation 

(Fig. 1b). Consequently, BUP is not optimal for profiling the complete repertoire of 

proteoforms23.

By contrast, TDP forgoes protein digestion and analyses the intact protein directly to 

achieve unambiguous, proteoform-resolved molecular details. This enables accurate protein 

identification, PTM localization and quantification for different proteoforms. The top-down 

strategy (Fig. 2) starts by measuring the intact protein mass. As modifications change 

the molecular mass of the protein, TDP can inherently capture proteoform information. 

Subsequent fragmentation of intact proteins identifies the protein and all its modifications, 

as well as any correlations that exist between modifications24. Classically, the three basic 

pillars of TDP25 are front-end sample preparation; top-down mass spectral data acquisition 

of the intact mass and corresponding fragmentation; and informatics for proteoform 

identification, characterization and quantification (Fig. 2). In a typical TDP experiment, 

proteins are separated through either offline fractionation coupled with direct infusion mass 

spectrometry26 or online separation27. For example, online separation could use liquid 

chromatography (LC) or capillary electrophoresis (CE) with MS/MS detection27. This type 

of setup was used to map intact proteoforms with a 4D separation system and identified 

1,043 gene products from human cells dispersed over 3,000 proteoforms28.

A final requirement in the TDP workflow is software to compare experimental TDP data 

with possible protein sequences. Without databases of sequenced genomes, BUP as it 

is currently used would not exist. The same is true for TDP. Multiple tools have been 

developed for large-scale TDP projects involving direct fragmentation of intact protein 

ions24,29,30. Current TDP platforms are largely the same as originally established. However, 

advances in sensitivity and efficiency for all TDP components – sample preparation, 

separation/fractionation, ionization, mass analysis, ion dissociation and bioinformatics – 

enable exceptional breadth and depth. An example of this was the identification of 

approximately 30,000 unique proteoforms expressed from human genes across 21 cell types 

and plasma from human blood and bone marrow31.

This Primer focuses on the methodology of TDP. Experimental approaches required for TDP 

are described, as well as key issues related to sample preparation, proteoform separation 

and identification and data acquisition and processing. Example applications of TDP 

are described to show current capabilities and highlight the challenges of extending the 

technology in the future.
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Experimentation

Sample preparation and controls

Sample preparation is a critical step for TDP (Fig. 3a). Traditionally, protein extraction 

methods use Good’s buffers, which have high salt concentrations (>100 mM), protease 

and phosphatase inhibitors and surfactants, such as sodium dodecyl sulfate (SDS) or Triton 

X-100 for total protein solubilization32. These conventional reagents are often incompatible 

with TDP because they can interfere with protein ion detection and suppress the mass 

spectrometry signal. As a result, they must be removed for high-quality data. Incompatible 

salts and small molecules can be removed by ultracentrifugation filters or replaced using 

size exclusion chromatography (SEC) spin columns. The broader term buffer exchange is 

sometimes used to refer to solvent replacement. However, this is an inaccurate term for TDP 

workflows, which often require complete removal of buffer salts or other solution stabilizing 

agents, rather than a simple exchange. A protocol describing typical biological buffers, 

standardized sample preparation and performance benchmarks was developed from a best 

practices and benchmark study by the Consortium for TDP (CTDP)33. TDP performance 

can be evaluated using a standard intact protein mixture containing ubiquitin, myoglobin, 

trypsinogen and carbonic anhydrase, established by the National Resource for Translational 

and Developmental Proteomics. Care should be taken to minimize the introduction of 

artefactual proteoform changes during sample preparation. For example, protease and 

phosphatase inhibitors are commonly included in the extraction buffers to minimize in vitro 

protein degradation and dephosphorylation, respectively34. Temperature-sensitive protein 

modifications, such as oxidation, should always be considered during TDP experiments. 

Samples should be handled at low temperatures (~4 °C) to slow the rate of any modification 

processes35.

Surfactants are often used for general biological sample preparation and can facilitate 

cell permeabilization and solubilization of hydrophobic membrane proteins36–38. However, 

surfactants are a particular challenge for downstream mass spectrometry analysis owing 

to signal suppression39. Protein precipitation methods, which usually involve a chloroform/

methanol mixture or acetone, can remove surfactants and other mass spectrometry-

incompatible contaminants40–42. However, protein precipitation methods can be time-

consuming and may lead to protein loss, experimental variability or solubilization 

challenges41,43. Cleavable surfactants have been developed – such as Rapigest44, 

ProteaseMAX45 and MaSDeS46 – that are acid-labile and compatible with BUP after acid 

degradation. However, these acid-labile surfactants are not directly compatible with TDP. To 

address this, a photocleavable surfactant, 4-hexylphenylazosulfonat, was developed, referred 

to as Azo47. Azo can effectively solubilize proteins, including membrane proteins, with 

performance comparable to SDS and rapidly degrades on exposure to ultraviolet radiation. 

Photodegradation of Azo requires ultraviolet B irradiation (maximal absorbance ~305 nm), 

rather than the conventional ultraviolet C (254 nm), plus additives – such as isopropanol, L-

methionine and tri(2-carboxyethyl) phosphine – to prevent protein precipitation and radical-

induced oxidation47. Surfactant-aided TDP workflows require careful sample handling steps 

and future optimization will enhance the depth of coverage, especially for the membrane 

proteome48. For instance, a non-ionic, redox-cleavable surfactant, n-decyl-disulfide-β-D-
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maltoside, was developed as a mass spectrometry-compatible surfactant that mimics the 

properties of n-dodecyl-β-D-maltoside to facilitate protein solubilization, in particular for 

membrane proteins49.

Front-end fractionation and enrichment strategies (Fig. 3b and Table 1) can selectively 

isolate subproteomes to capture and enrich low-abundance proteins from intricate biological 

samples before mass spectrometry analysis50,51. Organelle fractionation is performed by 

differential centrifugation. This captures most subcellular components, including nuclear, 

cytosolic, mitochondrial and mixed microsomal – Golgi, endoplasmic reticulum, other 

vesicles and plasma membrane – fractions52. Proteins can be extracted from subcellular 

fractions for the downstream mass spectrometry-based proteomic analysis. For example, 

a TDP study of a mitochondrial fraction identified 347 mitochondrial proteins with 

comprehensive profiling of proteoforms specific to organelle targets53. An alternative 

approach is to use affinity-based enrichment methods, traditionally with antibodies for 

protein capture and quantification51,54,55. Antibody-based affinity purification has been 

favoured for targeted analysis of intact proteins and protein complexes56,57. However, 

it has major limitations, such as challenges in generating highly specific antibodies, 

limited availability of high-quality antibodies, batch-to-batch antibody variability, relatively 

low stability and high costs58–61. To address these challenges, surface-functionalized 

multivalent superparamagnetic nanoparticles were designed as a versatile affinity platform 

for highly specific capture and enrichment of low-abundance proteoforms. This approach 

is based on nanoparticles being functionalized with an appropriate affinity reagent62–65. 

For example, superparamagnetic nanoparticles functionalized with a multivalent ligand 

specific to phosphate groups have a high specificity for global capture of phosphoproteins62–

64. Another example is an integrated nanoproteomics method that combines peptide-

functionalized nanoparticles with TDP to enrich and analyse cardiac troponin I – a 

gold-standard biomarker for cardiac injury – directly from serum to uncover proteoform–

pathophysiology relationships65,66. However, functionalized nanoparticles specific to TDP 

are not yet broadly commercially available. Engineered nanoparticles with tunable 

nanobiological interactions have been developed for deep plasma BUP; however, they have 

not yet been applied to TDP67,68.

Equipment

The top-down approach requires three major steps (Fig. 2b): ionization to produce gas-phase 

ions from the protein of interest that can be transported in the mass spectrometer; intact mass 

analysis of the ionized protein by MS1 (the top portion) and intact gas-phase fragmentation 

to generate sequence-informative product ions (the down portion)8 by MS2; and data 

processing, including database searching, for proteoform identification, characterization 

and quantification. As TDP is performed on protein mixtures, the workflow typically 

requires analyte separation. Direct infusion, which involves introducing the analyte solution 

directly to the mass spectrometer, can be used for TDP69. Although methods for TDP by 

MALDI have been explored70,71, TDP is conventionally performed with ESI9. Early TDP 

experiments relied on single-quadrupole and triple-quadrupole (Q and QqQ, respectively) 

mass spectrometers for intact protein analysis72,73. These systems have poor mass resolving 

power, making charge state determination difficult, and limited mass-to-charge (m/z) range 
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resulting in lower applicability to large proteins. High mass resolving power is particularly 

important for TDP, as fragment ions produced from intact proteins can generate convoluted 

mass spectra, in which various ions with different charge states can partially overlap. Many 

modern mass spectrometry instruments can reliably achieve high resolving power, including 

Fourier transform mass spectrometry systems, such as ion cyclotron resonance (FTICR)74 

and Orbitrap75 mass spectrometers, as well as time-of-flight (TOF) and quadrupole TOF 

(QTOF) instruments76.

Intact protein separations

The proteome complexity presents a substantial challenge for TDP, requiring separation of 

intact proteins before mass spectrometry analysis5. This challenge is particularly pronounced 

when dealing with larger proteins (≥30 kDa) because, as protein size increases, ion signals 

in ESI mass spectra rapidly decrease77. To address this issue, deep proteome profiling with 

TDP first separates intact proteins78. Early demonstrations used gel-electrophoresis-based 

fractionation techniques, such as gel-eluted liquid fraction entrapment electrophoresis79 

or 2D gel electrophoresis80. One example, termed the integrative approach, involves 

front-end 2D gel electrophoresis separation of complex protein mixtures, followed by 

in-gel extraction and LC–MS/MS analysis81. Another example is the virtual 2D gel 

mass spectrometry platform, which combines high-resolution isoelectric focusing with 

immobilized pH gradient polyacrylamide gels to separate complex protein mixtures. These 

mixtures are then incubated with a MALDI matrix and analysed by MALDI MS directly 

from the matrix-embedded dry gels, referred to as xerogels82. A recent method – passively 

eluting proteins from polyacrylamide gels as intact species for mass spectrometry (PEPPI-

MS) – was developed as a TDP-compatible front-end separation approach for size-based 

proteome fractionation83. Although PEPPI-MS is promising for enhancing proteoform 

coverage, further optimization is needed to improve protein recovery rates for large-scale 

proteomics analysis. Serial SEC was developed as an online or offline technique to separate 

smaller proteoforms from larger ones. Using serial SEC followed by reversed-phase LC 

(RPLC) enables detection of proteoforms up to 223 kDa on a QTOF mass spectrometer84,85.

Advances in chromatographic stationary phases, liquid chromatographs and new column 

chemistry have improved the resolution and efficiency of intact protein separations5,86,87. 

Compatibility of the mobile phase with ESI is crucial when developing new separation 

methods88. To stabilize the protein tertiary structure and optimize separation selectivity, 

techniques such as hydrophobic interaction chromatography (HIC)89 and ion-exchange 

chromatography (IEX)90 require high concentrations of buffer salt in the mobile phase. 

Conventional non-volatile buffers – such as sulfate, phosphate or citrate salts – are typically 

used in HIC and IEX89,91–93. Direct online coupling of HIC and IEX with TDMS was 

demonstrated, using the volatile buffer ammonium acetate for TDP analysis90,94.

Despite the rapid growth of new intact protein separation modalities, no single modality can 

fully resolve all species in a proteome of interest. Multidimensional liquid chromatography 

(MDLC) presents opportunities to increase resolution by combining multiple separation 

modalities for TDP95,96. Two-dimensional LC, coupling HIC and RPLC, can greatly 

enhance the range of separable proteins in an Escherichia coli cell lysate92. A 3D LC 
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approach, coupling HIC–IEX–RPC – offline first-dimension HIC and second-dimension 

IEX separation, before third-dimension online RPLC-MS – showed a 14-fold improvement 

in protein identifications compared with 2D IEX–RPLC-MS93. However, offline MDLC 

methods are time-consuming and labourintensive. It is expected that MDLC coupled with 

automation will lead to exciting new approaches, such as active solvent modulation and 

stationary-phase-assisted modulation97,98.

Recent developments in CE–MS enable it to be used as both a denaturing and non-

denaturing separation technique for TDP99–103. The orthogonality of separation selectivity 

to conventional LC–MS methods, low sample volume requirements and commercial systems 

make CE–MS an attractive technique for TDP104–106. Alongside the increasing array of 

liquid-phase separation methods, gas-phase ion mobilities can also be used to separate 

intact proteins107–109. Ion mobility spectroscopy (IMS) is based on the gas-phase transport 

properties of a molecule in the presence of an electric field and its rotationally averaged 

collision cross-sections (CCSs). The CCS is a unique physical property that captures 

information related to individual conformers in the population of gas-phase structures. CCS 

can be related to molecular conformation and structural dynamics110. IMS has expanded 

to include new techniques and devices. Drift tube ion mobility spectrometry involves ion 

separation under a uniform electric field that propagates through a buffer gas drift region. 

Trapped ion mobility spectrometry uses radially confining radiofrequency voltages and 

an axial electric field to counteract the drag force from a gas flow to trap and release 

ions according to their mobility. Field asymmetric ion mobility spectrometry (FAIMS) 

separates ions in a carrier gas by their behaviour in strong and weak electric fields 

under atmospheric pressure. Differential mobility spectrometry performs ion separation 

under atmospheric pressure with a similar operating principle to FAIMS, but using a 

different electrode geometry. Travelling wave ion mobility spectrometry uses an oscillating 

electric field to produce a set of voltage waves that pushes ions through a drift gas 

towards the mass analyser110. High-resolution IMS is promising for fast separation of 

proteoforms, with a high level of sequence homology. For example, travelling wave ion 

mobility spectrometry with pervasive charge solvation was integrated with TDMS to analyse 

chemically derivatized native-like protein ions with greatly improved TDMS sequencing111. 

Trapped ion mobility spectrometry was shown to be effective for characterizing complex 

glycoproteins by TDMS112,113, and FAIMS was shown to enhance TDP coverage in 

complex protein mixtures114–116.

Tandem mass spectrometry techniques

Tandem mass spectrometry (MS/MS) is a powerful analytical technique used to identify 

and characterize molecules. It usually involves two consecutive stages of mass spectrometry 

to elucidate the identity and structure of a molecule. In TDP, MS/MS typically involves 

analysing intact proteins by selecting a precursor protein ion, dissociating it into smaller 

fragment ions and analysing the fragment ions to derive the primary structure and 

modifications of a protein. Mass spectrometers used for TDP tend to be hybrid instruments, 

in which precursor ion selection (MS1) is followed by measurement of product ions 

generated by fragmentation of the precursor (MS2) (Fig. 4a). Such instruments could be 

tandem in space designs – such as hybrid QTOF and quadrupole Orbitrap platforms with 
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two separate mass analysers – or tandem in time designs, such as ion traps that perform 

MS1, MS2 and higher MSn in the same mass analyser.

Various activation/dissociation methods are available to generate product ions (Fig. 

4b). Most instruments can perform collision-induced dissociation (CID), also known 

as collisionally activated dissociation, to generate backbone b-/y-ions (Fig. 4b) through 

collisional activation from interactions with neutral gas molecules, such as N2 or argon. 

Infrared multiphoton dissociation involves the absorption of low-energy infrared photons 

to produce b-/y-ions and potentially generate secondary and higher order fragment 

ions upon the absorption of multiple photons to yield more extensive protein sequence 

information117,118. Historically, TDMS used CID to fragment protein ions9, either through a 

formal MS2 process from a precursor ion or through in-source fragmentation of all ions at 

the atmosphere–vacuum interface73. CID processes usually generate enough product ions for 

identification, but the depth of sequence coverage may not be sufficient for unequivocal 

proteoform identification of, for example, PTMs. Electron-based dissociation methods 

(ExD)119, such as ECD15 and electron-transfer dissociation (ETD)120, are often better than 

CID at generating high sequence coverage. ExD leads to c-/z·-products that can be used for 

confident proteoform characterization and PTM localization. More complex tandem mass 

spectra are generated by UVPD using 193 nm or 213 nm lasers121, with sequence coverage 

comparable to or higher than ExD methods. Tribrid platforms, combining a quadrupole mass 

filter, linear ion trap and Orbitrap, can perform proton transfer charge reduction (PTCR) 

to simplify product ion spectra122. PTCR reduces the product ion charge states, pushing 

product ions to higher m/z, owing to a lower z, and reducing overlap with other product ions 

at a similar m/z but different z values.

Data collection

Generally, TDP analyses multiple proteins that could coelute at similar chromatographic 

times, convoluting the mass spectrometry analysis. The number of MS2 spectra that can 

be collected depends on the peak width of the separation technique and the spectrometer 

duty cycle; the amount of time the mass spectrometer is actively acquiring data in a given 

instrument setting. Key considerations for data acquisition involve selecting appropriate 

high-resolution instrumentation and methods to provide suitable peak resolution, analytical 

separation, sensitivity and depth of coverage for tandem mass spectra. Such evaluation steps 

are essential to improve the downstream calculation of accurate intact masses and resolve 

proteoforms with unusual and combinatorial PTMs, or single amino acid substitutions not 

easily separated by chromatography. The goal is to obtain unit mass resolution across 

the entire observed mass range123 and isotopically resolve each protein molecular ion. 

The most common TDP data acquisition method is data-dependent acquisition124. In data-

dependent acquisition, a full mass spectrometry scan is collected and several precursor ions, 

usually the most abundant, are selected for fragmentation53. Data-independent acquisition 

methods125, which involve fragmentation of a mass spectrometry scan without precursor ion 

isolation, are being rapidly developed and adopted in BUP workflows126 and offer exciting 

opportunities for TDP.
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Results

Raw data interpretation and visualization

TDP data sets are rich in information but have a high level of complexity. As a result, 

analysis and interpretation can be a challenge for new-comers127. Accounting for the 

effects of isotopes and charge states on instrument signal to noise (S/N), in addition to 

the high dynamic range (108–1012) and broad mass range of the human proteome77,128, 

makes intact protein spectra complicated to analyse and detection of low-abundance proteins 

difficult (Fig. 5a). Unlike mass spectra of smaller biomolecules or peptides, in which the 

most abundant isotopologue typically corresponds to the monoisotopic mass – the sum of 

the atom masses based on the most abundant isotope for each element – proteins have 

complex isotopic envelopes, often without an observable monoisotopic peak (Fig. 5b). 

Spectral deconvolution is a critical step to simplify TDP data by converting a complex 

isotope and charge state distribution to a single monoisotopic mass129–135. For isotopically 

resolved spectra, collected with sufficient resolution for various possible isotopic peaks of a 

molecule to be observed, most tools rely on the Averagine model129 to deisotope and predict 

theoretical isotopic distributions. Predictions are then fit to experimental isotopic envelopes 

to extrapolate a monoisotopic mass. Mass spectra are acquired continuously across an LC 

gradient and precursor ions are often represented by multiple charge states. As a result, 

additional information from extracted ion current chromatograms and multiple charge state 

peaks can aid spectral deconvolution131,133,135. When spectra are not isotopically resolved, 

spectral deconvolution can use multiple charge state ions to derive the average neutral mass 

of a proteoform136.

The greater complexity of TDP spectra requires specialized interpretation and processing 

software to extract molecular information. Continuous efforts aim to develop standardized 

file formats for storing mass spectrometry data137–139. The most universal file format 

is mzML (latest version 1.1.1)138, an XML format supported by the Human Proteome 

Organization Proteomics Standards Initiative (HUPO-PSI). Several open-source software 

libraries can convert, read and write mass spectrometry file formats, including 

ProteoWizard140, JmzML141, mzJava142 and pymzML143. Many open-source visualization 

tools developed for BUP can be used for TDP, such as BatMass144 and OpenMS145, 

but there are also open-source tools developed explicitly for TDP data visualization, 

including MASH Explorer/MASH Native146,147 and TopMSV148. In addition, instrument 

manufacturers and third-party companies offer commercial tools to directly process vendor 

file formats or convert files into mzML or another open-source format149.

Data analysis

A TDP data analysis pipeline begins with top-down mass spectral pre-processing and 

deconvolution, which generates deconvolved mass spectra for proteoform spectrum matches 

(PrSMs). The next step involves searching the deconvolved mass spectra against a protein 

or proteoform sequence database to identify proteoforms with a false discovery rate 

(FDR) control and characterize PTMs. Finally, proteoform abundances are quantified and 

differentially abundant proteoforms between samples are identified. TDP workflows are 

often separated into two experiment types: targeted workflows, where an individual or set of 
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proteins with a priori knowledge is used to inform measurement and analysis; or discovery 

workflows, where little-to-no information is known about the possible proteoforms and 

modification states.

There are several approaches for proteoform sequence database construction. As 

proteoforms from a biological sample often contain various alterations – such as 

gene mutations, alternative splicing events and PTMs2 – building a database that 

accurately reflects proteoforms in the sample is essential for high-sensitivity proteoform 

identification150. The most common approach is to directly use protein sequence databases 

from UniProt151, RefSeq152, GENCODE153 or related resources. However, these sources 

only contain reference sequences and do not include proteoforms with various alterations. 

PTM annotations in protein knowledgebases and variable PTMs have been used to build 

proteoform sequence databases154. Combining many PTMs or alteration sites leads to a 

combinatorial explosion of the search space, making it impractical to add all combinations 

to a database. To address this challenge, the number of PTM/alteration combinations can 

be constrained or all possible combinations of PTMs can be represented using graphs155. 

Alternatively, DNA or RNA-seq data can be used to build proteoform sequence databases 

with sample-specific gene mutations and alternative splicing events150.

Matching mass spectra and candidate proteoforms typically starts with a fast filtering 

method to reduce the number of candidates from thousands to tens156. After this, a slower 

matching method is used to determine a match score between the mass spectrum and 

candidate proteoform from the first step154. Many filtering methods have been developed 

for TDP spectral identification156. When matching reference sequences, the precursor mass 

from tandem mass spectrometry is matched to the molecular masses of proteoforms, or 

proteoform fragments, in the database. When variable PTMs are included, a multinotch 

search157 is used, which allows multiple precursor mass differences. When unexpected mass 

shifts are allowed, the most common approaches include sequence tags158, open search 

strategy159,160 and an unmodified protein fragment approach161. Proteoform candidates 

reported by filtering methods are aligned with the spectrum to identify proteoforms with 

variable PTMs or unexpected mass shifts162. Alignment algorithms for top-down mass 

spectra originated from BUP163 and many variations exist131,155,162,164. For example, the 

number of atoms replaces residue masses in MSPathFinder131, and the alignment between a 

mass spectrum and candidate proteoforms with variable PTMs is allowed in TopMG155.

Proteoform identification and characterization

Understanding the functional role of proteoforms requires identification and 

characterization3. Unlike BUP, which uses a limited number of peptides as a proxy for 

proteins based on partial sequence information, TDP analyses whole proteins. Consequently, 

TDP offers a comprehensive insight into the proteoform landscape, enabling proteoform 

identification, novel proteoform discovery and in-depth sequence characterization5,32,34,124. 

TDP has unique strengths, as it can characterize combinatorial PTMs alongside the 

isoforms encoded by different genes in a multigene family, which often have high sequence 

homology165,166. For example, sarcomere proteins have diverse isoforms and PTMs, such 

as N-terminal di-methylation, acetylation, phosphorylation and methylation. Proteoform 
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variations from individual muscle cells can be investigated by TDP, enabling proteomics 

to be integrated with functional properties165. In a practical example, TDP was used 

to investigate the expression of ventricular isoform myosin light chain 2 (MLC2v), a 

critical cardiac regulatory protein167. MLC2v is considered the standard isoform marker 

of ventricular specification and is commonly used to assess human stem-cell-derived 

cardiomyocyte cultures. However, unlike previous genomic annotations for heart chamber 

specificity of MLC2, TDP revealed that MLC1v, but not MLC2v, exhibits ventricular-

restricted expression. When multiple PTMs are present on a single protein molecule, TDP 

is the only technique that can resolve the complex proteoforms and combinatorial PTMs168. 

For example, histones are highly modified structural proteins associated with DNA. Histones 

have many PTMs – acetylation, methylation, phosphorylation and ubiquitylation – and 

are present as multiple isoforms169. TDP is a crucial tool to decipher histone proteoform 

complexity and quantitatively describe molecular stoichiometries, such as connecting 

combinatorial histone H4 – an essential regulator of all eukaryotic DNA-templated processes 

– PTMs with potential biological functions170,171. A recent example applied Nuc-MS as 

a top-down technique to characterize whole nucleosomes and unravel the histone code172. 

This approach can quantify histone variants and their PTMs with results highly concordant 

with chromatin immunoprecipitation sequencing.

Proteoform quantification

TDP can quantitatively analyse proteoform changes in response to changes in the 

environment, disease state and differential cellular development in biological pathways173. 

Similar to BUP, three distinct quantitative approaches have been developed for TDP (Fig. 

6): label-free, in which proteoforms are quantified using proteoform intensity174,175; isotope 

labelling, in which proteoforms are quantified by differential isotope labelling176–178; and 

chemical labelling, in which proteoforms are quantified with a chemical reporter, typically at 

the MS2 level173. The advantages of label-free quantification are simplicity, high throughput 

and adaptability to most experiments and sample types179,180. Label-free quantification 

can be applied to any protein sample and facilitates analysis of highly complex samples. 

Additionally, label-free quantitation can be used with direct infusion or online separation 

techniques such as LC or CE181–183. Many studies have demonstrated the accuracy and 

reproducibility of the label-free approach175,180,184–187. For example, a label-free top-down 

LC–MS quantification method was developed to simultaneously quantify protein expression 

based on extracted ion chromatograms and PTMs derived from relative quantification in the 

mass spectra188. The results aligned well with western blot conclusions, demonstrating that 

TDP can offer an antibody-independent approach to quantify intact proteins and modified 

proteoforms188.

Label-free quantification involves identifying mass features, calculating intensities and 

making relative comparisons. Online LC–MS/MS typically has a low duty cycle. Common 

practice is to generate proteoform libraries by combining all LC–MS/MS analyses 

or conducting additional experiments to maximize the identification of quantifiable 

proteoforms. The identification of mass features is performed by comparing to a proteoform 

library using mass measurement accuracy and LC retention time. In TDP with ESI, 

intact proteoforms will often contain multiple charge states77. As a result, combining the 
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ion intensities of multiple charge states can enhance the accuracy of intact proteoform 

quantification175,180. This process can be accomplished through various deconvolution 

algorithms, including open-source – MS-Deconv+ (ref. 134), TopFD135, THRASH129, 

ProMex189, Xtract190, Mesh191, ICR-2LS192, Mascot193 and FLASHDeconv133 – and 

commercially available software. To minimize variation between runs, intensities are 

normalized based on the total ion current levels of each LC–MS run194. Quality control 

and sample blank runs are also included in TDP workflows to ensure that variations in the 

detected features are not due to the system. Label-free TDP has been widely applied to 

quantify proteins from several or single cells195–197.

Although label-free quantification is the most applied quantification method in TDP, isobaric 

chemical tag labelling is the gold standard for BUP, as it enables multiplexing for improved 

throughput and lower run-to-run variation. Previously, isobaric chemical tag labelling of 

intact proteins was limited to individually purified proteins and simple protein mixtures198–

200, and application to complex protein mixtures, such as whole cell lysates, was challenging 

owing to protein aggregation and insufficient labelling. However, recent optimizations 

enable better labelling of complex protein lysates. For example, tandem mass tag labelling 

of intact complex protein mixtures can be achieved by enrichment of low-molecular-mass 

proteins (<30 kDa)201, optimization of chemical labelling parameters177 and optimization of 

CID and high-energy collisional dissociation fragmentation energies202.

Other labelling techniques – such as stable isotope labelling by amino acids (SILAC)203, 

isobaric and pseudoisobaric tags199,204,205 and NeuCode SILAC206 – have shown potential 

for quantitative TDP. For example, an intact-mass strategy with NeuCode SILAC was used 

to determine lysine count in the elucidation of proteoform families207,208. Isobaric chemical 

tag labelling enables relative quantification by measuring reporter ions that are fragmented 

during MS2. However, as mass feature identification is also performed at the MS2 level, 

the fragmentation energy required for quantification and identification often requires careful 

optimization.

Statistical analysis and error calculations

TDP software tools evaluate the similarity between a tandem mass spectrum and a candidate 

proteoform by assigning a numeric score to reflect the degree of matching, a measure of 

how well the fragment data match the identified protein sequence. Typically, a P value – 

the probability that an annotated PrSM between a mass spectrum and protein sequence from 

a randomized database is within a specified threshold – or E value – the expected number 

of PrSMs in a specified threshold between a mass spectrum and protein sequence from 

a randomized database – is provided. These values indicate the probability of randomly 

obtaining the observed number of matching fragment ions by chance, considering the total 

number of proteoforms interrogated for PrSMs209. Poison models154, generating function 

approach131,161 and Markov chain Monte Carlo210 methods have been used to compute E 
values of proteoform identifications. FDRs of identified PrSMs – the ratio of false positives 

to the number of total positive PrSM identifications – are usually estimated using the 

target-decoy approach, which determines the ratio of identified decoy hits from a shuffled 

decoy database to target hits from a target database211. A shuffled database is appended to 
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the target database to estimate the Q value, an alternative to the P value that incorporates 

FDR control and represents the minimum FDR in which a result may be considered 

statistically significant, which are computed at the PrSM level, proteoform level and intact 

protein level212. For quantitative TDP analysis, one-way analysis of variance and Student’s 

t-tests (two-tailed) are commonly used for statistical analysis166,187,213. Multiple testing 

adjustment is usually performed using the Benajamini–Hochberg method166. If necessary, 

non-parametric Kruskal–Wallis one-way analysis of variance and Wilcoxon rank-sum test 

can be used for group comparisons214. For quantitative TDP of human clinical samples, 

a linear mixed effects model with random intercept can further characterize heterogeneity 

among human individuals185.

There are more proteoforms than corresponding genes4, making the search space of potential 

proteoforms vast. Automated proteoform identification solutions are prone to errors. They 

frequently mislocalize PTMs, report false cleavages and incorrectly calculate the precursor 

mass131,211. As a result, users often need to manually validate and refine software results. 

Modern TDP software solutions, both open source and commercial, are continuously 

developing rigorous and sophisticated statistical approaches to improve accuracy in the 

TDP analysis. Accurate proteoform matching involves spectral alignment215 with possible 

PTMs – TopPIC161, MSPathFinder131, TopMG155 and pTop216 – and statistical significance 

computed as a P value – for example, in MS-GF+, MS-Align+, TopPIC and MSPathFinder 

– E value and FDR217. Newer characterization methods, such as C-score and MIscore218,219, 

have integrated Bayesian approaches to improve proteoform identification and provide 

a more accurate scoring system. Additionally, there are several emerging TDP software 

packages for simpler statistical analysis workflows, such as TopPICR220 and Informed-

Proteomics131. Visualization of deconvolved TDP data, peak lists and sequence coverage 

maps is essential for validation and refinement of the TDP analysis and can be achieved with 

open-source software, including ProSight, LcMsSpectator, TopMSV and MASH Explorer/

MASH Native146–148,154,221,222. The identification of differentially expressed proteoforms 

in TDMS is similar to the identification of differentially expressed genes in the RNA-Seq 

data analysis. Consequently, many statistical methods developed in transcriptomics – based 

on Poisson, negative binomial, linear and non-parametric models – can be applied to TDMS, 

such as Limma, EdgeR and DESeq2 (ref. 223). Similarly, statistical methods developed for 

BUP, such as MsStats and MaxQuant, can be extended to identify differentially expressed 

proteoforms in TDP224,225.

Applications

Global proteoform discovery

Improved sample prefractionation methods and robust LC–MS/MS workflows have 

expanded the application of label-free TDP, enabling the global proteoform analysis of 

biological samples226. The first discovery-mode global TDP study that mapped intact 

proteoforms used a 4D separation system28. Recently, proteoform landscapes from five 

human tissues – lungs, heart, spleen, small intestine and kidneys – were comparatively 

mapped using a combination of capillary zone electrophoresis (CZE)-MS and RPLC-MS227. 

Over 11,000 proteoforms were identified, 64% of which were not previously reported227. 
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In another example, the Blood Proteoform Atlas revealed approximately 30,000 unique 

proteoforms, offering a nuanced understanding of cellular differentiation and demonstrating 

the clinical potential of TDP31.

Advanced global proteoform platforms and instrumentation are increasingly able to 

discover and characterize proteoforms228, reinforcing the importance of proteoform-level 

knowledge4. CTDP has begun an effort analogous to the 2002 Human Genome Project, 

called the Human Proteoform Project & Atlas, which seeks to construct the first Human 

Proteoform Atlas3. The goal of this initiative is to map the entire human proteome, an 

effort that will require technical leaps in the discovery and characterization of proteoforms 

in health and disease. It is anticipated that the next generation of human proteomics 

will be structured around ~20,000 proteoform families1, each corresponding to a specific 

gene. Extensive proteoform repositories assembled for key model organisms and thoroughly 

characterized mammalian cell lines are expected to provide foundational knowledge of the 

global proteome. This will likely serve as an essential cornerstone in modern biology.

Biomedical applications

Mass spectrometry-based proteomics has become an indispensable technique for biomedical 

research (Fig. 7a), playing a crucial role in uncovering novel disease biomarkers and 

unravelling the mechanisms underlying human disease185,229,230. Large-scale, discovery-

mode, global profiling of proteoforms has provided critical knowledge to map the overall 

proteoform landscape. However, hypothesis-driven, targeted TDP at the sub-proteome 

level can offer novel molecular insights to understand structure–function relationships 

and underlying disease mechanisms34,231,232. TDP has analysed many clinically relevant 

sample types, including serum, biofluids or biopsy tissue, to identify specific proteoform 

biomarkers233–235. This section illustrates four important human disease areas, showcasing 

instances in which proteoforms were recognized by TDP and associated with disease 

development.

Cancer.—Understanding cancer biology involves studying proteins and their PTMs, 

especially in signalling pathways governed by intracellular phosphorylation3. As TDP can 

detect the entire proteoform landscape, it has the potential to discern oncoproteoforms, 

particularly those arising from combinations of driver mutations, PTMs and RNA splice 

variants. This capability is exemplified in the context of rat sarcoma (RAS) biology, 

in which TDP has precisely distinguished PTMs in four isoforms derived from RAS 

family genes and established driver mutation/PTM crosstalk in human colorectal cells 

and tumours236. Gene mutations in the RAS family, which encode small GTPases, are 

responsible for more than 40% of all cancers, with a particularly high incidence exceeding 

90% in pancreatic tumours. The complex RAS isoforms are derived from three genes, 

yielding four isoforms with a high sequence homology in the initial 165 residues. The PTMs 

of these isoforms can be precisely characterized by TDP after immunoprecipitation236. The 

proteoform-level study offers a thorough molecular definition and abundance comparison 

between wild-type and mutant RAS proteoforms, providing insights not accessible with 

conventional BUP. Large-scale global TDP has helped advance cancer research. For 

instance, a global TDP study identified more than 23,000 proteoforms from 2,332 proteins 
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in colorectal cancer cells and revealed substantial proteoform-level differences between 

metastatic and non-metastatic cells237. The study was limited owing to the majority of 

identified proteoforms having a low-molecular mass (<20 kDa). More work is needed for 

global identification and quantification of larger proteoforms (>30 kDa).

Cardiovascular disease.—Cardiovascular diseases are the primary global cause of 

death and the affected population is projected to rise as demographics shift towards an 

ageing population238. Efforts have been made to use proteomics with cardiac biology 

and clinical diagnosis239,240. For instance, TDP analysed paired serum samples in the 

CARDIA study, revealing proteoform-specific association between apolipoproteins AI and 

AII with cardiometabolic indices241. Several TDP studies have associated changes in cardiac 

proteoforms with disease phenotypes, in both human clinical samples and animal models 

of heart diseases32,240. A quantitative TDP study identified phosphorylated proteoforms 

of cardiac troponin I (cTnI) as potential biomarkers for chronic heart failure, the first 

TDP study discovering biomarkers from tissues185. An enrichment strategy using peptide 

functionalized nanoparticles was integrated with TDP to capture cTnI directly from human 

serum. This unveiled molecular fingerprints of various cTnI proteoforms, underscoring their 

potential for disease diagnosis in serum at the proteoform level65. TDP has also identified 

actin proteoforms as potential cardiac disease markers242 and uncovered newly identified 

phosphorylation of a pivotal Z-disc protein, enigma homologue isoform 2, in a swine model 

of acute myocardial infarction229. Given the critical role of PTMs and alternative splicing 

during maturation of human pluripotent stem-cell-derived cardiomyocytes, identifying and 

quantifying proteoforms and splicing isoforms enables unambiguous assessment of the 

maturation stages166. TDP was used to analyse heart tissue samples from septal myectomy 

surgery in patients with hypertrophic cardiomyopathy, the most common heritable heart 

disease. The genetic cause of hypertrophic cardiomyopathy is linked to mutations in 

genes encoding sarcomeric protein214. The TDP study uncovered unexpected results 

and demonstrated the capacity of proteoforms to more accurately reflect the clinical 

manifestation of a patient. Most identified cardiovascular proteoforms are from the cardiac 

sarcomere and further efforts will be needed to expand coverage to the broader cardiac 

proteome.

Neurodegenerative diseases.—More than 47 million people globally are affected by 

dementia and this number is expected to reach 135 million by 2050 (ref. 243). Dysregulated 

PTMs can impact protein aggregation in neurodegenerative disease (Fig. 7a) and many 

PTMs are modulators of proteinopathy in neurodegenerative conditions. For instance, 

Alzheimer disease is impacted by phosphorylation of amyloid-β or tau and isoaspartate 

formation in amyloid-β; Parkinson disease is related to deacetylation, 4-hydroxy-2-neonal 

modification, O-GlcNAcylation or phosphorylation of α-synuclein; amyotrophic lateral 

sclerosis is influenced by acetylation or phosphorylation of transactive response DNA-

binding protein-43 and SUMOylation of superoxide dismutase 1; and Huntington’s disease 

by phosphorylation of huntingtin244. Studies with superoxide dismutase 1 emphasize the 

importance of TDP to understand relationships among PTMs, sequence variants and 

protein complexes involved in proteinopathies245. This knowledge is vital to understand 

the mechanisms underlying neurogenerative diseases and help develop innovative diagnostic 
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and therapeutic treatment methods109. However, the complexity of proteoforms in 

neurodegenerative diseases, such tau proteins in Alzheimer disease246, means that there 

is need for improved instrumentation to resolve large and highly modified proteins, and data 

analysis methods to resolve combinatorial PTMs. A proteoform imaging mass spectrometry 

method, which combines individual ion mass spectrometry for TDMS of brain cells, could 

help address these challenges247.

Infectious diseases.—Severe infectious disease outbreaks, such as the COVID-19 

pandemic, can have a large impact on lives of people worldwide. Alongside pandemics, 

antimicrobial resistance is continuing to spread. Alternative strategies to better detect, 

characterize and treat infectious diseases are urgently needed. Assessing proteoforms is a 

promising approach. The cause of cerebrospinal meningitis, Neisseria meningitidis, was 

found to have a specific PilE proteoform that is tightly associated with crossing the epithelial 

barrier and accessing the bloodstream248. Highly glycosylated PilE proteoforms are linked 

to immune escape249. For Salmonella enterica subsp. enterica serovar Typhimurium, the 

most common foodborne pathogen, specific S-cysteinylated proteoforms were reported in 

response to infection-like conditions250. The large-scale analysis of bacterial proteoforms 

using TDP can also overcome the limitations of MALDI-TOF-MS, the method used in 

hospitals to rapidly identify bacterial pathogens and discriminate closely related bacteria251. 

In a more straightforward approach, liquid extraction surface analysis mass spectrometry 

can identify ESKAPE pathogens directly from live cultures252. For SARS-CoV-2, specific 

proteoforms of the nucleocapsid protein were found to bind viral RNA and exhibit 

significantly different interactions with IgM, IgG and IgA antibodies from convalescent 

plasma and could be candidates for immune-directed therapies253. For the same virus, 

specific O-glycosylated proteoforms of the spike protein were associated with the omicron 

variant, which could provide information about how the variant escapes immunological 

protection254.

Biopharmaceutical applications

Protein-based pharmaceuticals represent an increasingly large share of total drug sales, 

currently more than 50% of ongoing drug development pipelines and FDA approvals255. 

Biotherapeutics cover a broad spectrum of masses, ranging from 5.8 kDa for human 

insulin to approximately 150 kDa for monoclonal antibodies (mAbs) and antibody–drug 

conjugates (ADCs). Additionally, fusion proteins exceeding 150 kDa were created as 

innovative treatments for cancer, autoimmunity, inflammation and genetic disorders256. 

In both academic and industrial laboratories, TDP is increasingly used to analyse the 

structure of biotherapeutic mAbs and advanced modalities256–261 (Fig. 7b). Most ADCs 

currently available or in clinical trials use either Lys or Cys conjugation. Both conjugation 

methods lead to multiple positional isomers for a specific drug-to-antibody ratio species. 

These isomers play a crucial role in influencing the efficacy, stability and safety of the 

ADCs, making the drug-to-antibody ratio analysis highly important in quality control262. 

Importantly, TDP reduces the risk of introducing artefactual modifications by minimizing 

sample preparation and providing complementary structural information to conventional 

BUP263. Coupling with front-end separation approaches – such as HIC, RPLC, SEC or 

CE – is promising for ADC separation and drug conjugation site localization264–268. The 
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original TDP approaches applied to intact ~150 kDa mAbs analysis were based on CID 

and provided limited total sequence coverage (~10%)269–271. A significant increase in the 

sequence coverage, up to 35%, was achieved by applying ETD to the intact murine and 

human IgG1 species272. This advance motivated new developments in the mAbs TDP 

analysis, followed by application of ETD on other mass spectrometry platforms273, and 

alternative MS/MS approaches256.

Methods to enhance sequence coverage use a middle-down mass spectrometry approach, 

using a limited digestion of intact biomolecules to simplify the analytical challenges of 

characterizing large proteins274,275. Compared with the intact mAbs analysis, middle-down 

approaches characterizing ~25 kDa antibody subunits – for example, Fd, Fc/2 and light 

chain – show substantially improved separation performance by RPLC, CE and CZE, 

yielding higher fragmentation efficiency and better product ion detection276–278. Various 

MS/MS methods coupled with ion activation, either before or after the electron transfer/

capture or ion–ion reaction, can enhance protein sequence characterization256. Including 

assignment of internal fragments also enhances TDP-derived mAb sequence coverage, as 

demonstrated by the analysis of intact NIST mAb, in which a sequence coverage of >75% 

was reported279. Including internal product ions also helps provide information about PTMs, 

intrachain disulfide bond connectivity, N-glycosylation sites and chain pairing280. Although 

IgG1 is the most frequently studied mAb in TDP applications, several works describe the 

analysis of IgG2, IgA and the MDa molecular mass IgM species259. These results suggest 

that TDP may be useful for de novo sequencing of mAbs, such as IgA1s from milk, saliva or 

serum.

Currently, TDP requires multiple targeted experiments on selected biopharmaceuticals using 

a combination of fragmentation methods and experimental parameters. When performing 

large-scale, proteomics-grade TDP analysis on biopharmaceutical, constraints of time, 

sample quantity and protein structure can substantially reduce spectral data quality and limit 

the obtainable sequence coverage29. As a result, crucial information typically found at low 

abundance levels is not achievable in LC timescales. Developments to TDP methodologies, 

techniques, automation and data analysis are needed for broader adoption of TDP. In 

biopharmaceutical applications, examples in which TDP complements and exceeds the 

capabilities of the current gold standard – BUP, subunit and intact mass spectrometry – are 

needed for it to be used more widely.

Clinical TDP

Clinical TDP analysis at the proteoform level has been effectively implemented in many 

clinical laboratories, particularly to identify pathogens with MALDI-TOF-MS, which can 

rapidly detect proteoform profiles directly from an intact bacterial cell surface281. This 

has resulted in commercialization of specialized MALDI-TOF-MS technologies, such as 

the Bruker biotyper and VITEK mass spectrometer, to establish a public health reference 

laboratory for identifying microorganisms with high throughput, accuracy and low cost282. 

A large number of protein markers are tested in clinical laboratories, and proteoforms, 

which are influenced by pathophysiological conditions, are increasingly being recognized 

as holding important clinical diagnostic value283. In most cases, conventional clinical 
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tests cannot resolve proteoforms as few clinical analytical platforms are compatible with 

molecular characterization of intact proteins. The promise of TDP in clinical diagnosis 

is shown by the identification of haemoglobin variants for haemoglobinopathy284 and the 

detection of monoclonal immunoglobulins for monoclonal gammopathy285. Specifically, 

TDP can accurately identify and characterize haemoglobin variants from clinical patient 

blood286, presenting advantages for diabetes diagnosis compared with conventional methods 

and next-generation gene sequencing284. TDMS was successfully applied to detect 

and characterize immunoglobulins (M-proteins) for plasma cell disorder diagnosis287. 

Additionally, TDMS can differentiate endogenous M-proteins from therapeutic mAbs in 

serum for accurate diagnosis, potentially replacing traditional methods of serum protein 

electrophoresis and immunofixation. The traditional techniques have limited resolution 

and cannot accurately monitor therapeutic response when the M-protein co-migrates with 

therapeutic mAbs288.

Proteoforms are important to understand disease and as prognostic biomarkers. This is 

illustrated in a report showing that monoclonal gammopathy of uncertain significance 

patients with glycosylated light chains has significantly increased risk of progressing to 

plasma cell dyscrasias in clinical pathologies289. As the role of proteoforms is better 

understood, the more TDP is expected to impact the clinical arena290. Although TDP 

technology is rapidly advancing in clinical settings, there is a limit to what can be 

achieved in clinical laboratories, even with advanced instrumentation. Efforts to improve 

TDP proteome depth and sensitivity will be needed to analyse low-abundance proteoforms 

and biomarkers from clinical samples. Automation and streamlining informatics are also 

required for TDP to be widely adopted in the clinic.

Reproducibility and data deposition

Reproducibility

Reproducibility of TDP data is critically important to ensure reliable, accurate proteoform 

annotations and for broader adoption of TDP in academia and industry. TDP is a 

relatively new field and, unlike the mature BUP approach, universally accepted experimental 

methods and data reporting standards have yet to be developed. Standardization efforts 

led by the CTDP push for inter-laboratory comparisons to better understand challenges 

and improve reproducibility29,33. Proteoforms are suspectable to variations in sample 

handling and instrumentation methodologies, making scientific rigour and sufficient data 

reporting practices important. Appropriately detailed descriptions of sample preparation, 

separation methods and instrumentation parameters need to be given for reliable proteoform 

and PTM reporting. This is especially critical when reporting PTMs that are easily 

artefactually produced by variations in experimental design or instrument settings, such as 

oxidation240, non-enzymatic glycation291 or labile PTMs, for instance, phosphorylation292, 

palmitoylation293 and glycosylation112,254. Standards for proteoform annotation and data 

reporting are continuously improving. Efforts to formally define a proteoform-level 

classification system212 develop a standardized lexicon for enhanced data reporting clarity12, 

and multi-software tool comparisons29 can define best practice in collection, reducibility and 

analysis.
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Data deposition

All TDP data should be made publicly available. Many journals have implemented this 

requirement, but it will require a community effort to ensure proper data handling and 

reporting practices are enforced. As the TDP field is relatively new, there are few dedicated 

top-down data repositories. Instead, TDP data are often deposited in general proteomics 

repositories that are mainly formulated for BUP data sets: PRIDE (EMBL-EBI, Cambridge, 

UK)294, PeptideAtlas (ISB, Seattle, WA, USA)295, MassIVE (UCSD, San Diego, CA, 

USA)296, jPOST (various institutions, Japan)297, iProx (National Center for Protein 

Sciences, Beijing, China)298 and Panorama Public (University of Washington, Seattle, WA, 

USA)299. The Proteoform Repository at the CTDP represents a unique hub for scientists 

to browse deposited proteoforms and contribute TDP data sets300. Data repositories are 

essential for TDP data to comply with the FAIR data deposition standards301. New avenues 

and initiatives to platform TDP data sets and serve as central repositories will be extremely 

valuable to advance the accessibility and sharing of TDP data, which will in turn benefit the 

TDP field300.

Limitations and optimizations

TDP has grown rapidly owing to many new technologies and methods. Techniques 

are continuing to emerge, aiding analysis of complex protein mixtures, basic scientific 

research, new biomarker discovery and novel biological insights166,214,236,248,250,302–304. 

However, challenges remain5, including protein solubility, proteome complexity, data 

analysis, connecting and establishing proteoform-to-function relationships and analytical 

throughout5. Although solutions are being developed, this section highlights limitations to 

demonstrate the assumptions underpinning TDP workflows, with strategies suggested to 

overcome current limitations.

High sensitivity

High analytical sensitivity is needed to analyse proteoforms from sample-limited biological 

systems. However, achieving high sensitivity is a major challenge in TDP. Conventional 

TDP workflows require a relatively large amount of starting sample – micrograms of total 

protein or millions of cells – for high-quality data and sufficient analyte signals for MS/

MS124. By contrast, the well-established BUP approach enables deep proteome coverage 

across many biological samples and can be performed with relatively low sample amounts 

(<200 ng)20,305,306. The need for relatively large protein quantities is a major barrier when 

applying TDP in sample-limited biological settings, such as clinical samples and single 

cells. To address this, a high-sensitivity TDP method was developed and used to identify 

proteoform variations in large proteins in individual muscle cells. This high-sensitivity 

approach enabled proteomics to be integrated with functional properties165. Initially, CE–

MS showed potential for high-sensitivity TDP analysis of single cells using an on-capillary 

cell lysis approach307. The nanoPOTS – nanodroplet processing in one pot for trace 

samples196 – technology was originally developed for single-cell BUP and can be used for 

high-sensitivity TDP. Protein extraction can be enhanced with a combination of n-dodecyl-

β-D-maltoside surfactant and urea308. This approach relies on specialized devices that are in 
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the early stages of development. Despite this, high-sensitivity platforms have the potential to 

accelerate highly sensitive TDP applications, enabling routine single-cell TDP.

Large proteoform identification

High-molecular mass proteoforms are often under-represented in top-down data sets309. 

TDP has major limitations in the effective depth of proteome coverage owing to the large 

range of protein molecular masses within a proteome310 and difficulties in effectively 

separating intact proteins before mass spectrometry. This challenge is compounded by the 

high dynamic range of the proteome, the exponential decay S/N of large proteoforms 

owing to increasing charge states from ESI, greater contribution of heavy isotopes at 

higher precursor mass and detrimental presence of smaller, coeluting proteoforms during 

the large proteoform analysis. In general, larger proteoforms (>30 kDa) tend to generate 

larger MS/MS product ions (>10 kDa), exacerbating the already high instrumentation 

burden of TDP. To analyse larger ions, ultrahigh resolution platforms, such as FTICR 

mass spectrometers311, may be required. Size-based fractionation methods with SEC or 

gel-based techniques, for instance, the integrative proteomics approach or PEPPI-MS, 

before mass spectrometry could address the challenge of large ion analysis81,83–85. 

However, broad use of size-based fractionation is hindered by time-consuming sample 

processing and large sample requirements (typically >100 μg). Advanced sheath-flow and 

sheathless interfaces have enabled wider application of CZE in TDP312–316. Limited sample 

loading quantities constrain the total number of identifications attainable from the CZE 

analysis of protein mixtures314. Obtaining sufficient fragmentation for large proteoform 

identification is also a challenge, especially in the chromatographic timescale of an LC–

MS/MS experiment. Currently, no single separation strategy or MS/MS configuration can 

comprehensively resolve the entire proteome. Increasingly sophisticated instrumentation, 

new method development and improved informatics tools will be needed to address this 

challenge.

Tandem mass spectrometry of proteins

Protein fragmentation typically yields protein products with an N or C terminus317,318. 

In general, protein fragmentation efficiency is higher towards either end of the sequence 

termini, whereas fragmentation coverage in the middle is limited319,320. This discrepancy is 

more evident in larger proteins and is believed to arise from residual higher-order protein 

structures (secondary and tertiary) that persist even under denaturing conditions, restricting 

accessibility25,320. Fragmentation depth in TDP is also constrained by the network of protein 

disulfide bonds256. For example, disulfide bond reduction before TDP facilitates protein 

unfolding and increases sequence coverage from regions previously shielded by disulfide 

bonds, such as the middle region321. Cleavage events from the middle region often result 

in large product ions with lower S/N and isotopic resolution, complicating identification 

and characterization320. Secondary gas-phase dissociation of large fragment ions can hinder 

fragment ion identification but, in certain cases, can also help uncover the restricted middle 

region319. Internal fragments, which result from at least two backbone cleavages and do 

not have N or C terminus, are being increasingly considered in top-down fragmentation322. 

As the molecular size of a protein increases, the total number of unique internal ions 

that can form increases markedly323. New methods and data analysis workflows that can 
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accurately integrate internal fragmentation could enhance protein sequence characterization 

and proteoform annotation324. The recently developed TDP software, ClipsMS, can assign 

internal fragment masses to protein sequences, improving overall coverage depth325,326. 

However, limitations remain, such as duplicated fragment assignment from identically 

matching fragment masses, lower statistical confidence in matching smaller internal 

fragments, no neutral losses assignments and lack of annotation for more diverse fragment 

types, namely, c + 1, z + 1 and z· fragments. Internal fragmentation assignments and new 

protein dissociation technologies327 are likely to improve the understanding of top-down 

fragmentation mechanisms and lead to new data analysis pipelines that can handle multiple 

fragmentation types.

Localization of specific modification sites

The TDP approach is the most practical method for characterizing proteoforms. Unlike 

BUP, which benefits from primary sequence simplification using enzymes and other 

cleavage methods20, TDP lacks a straightforward and reliable way to resolve proteoform 

complexity. Experimental localization of PTMs and precise characterization of proteoform 

chemical composition are challenging212. Low-abundance proteoforms, such as those 

with phosphorylation, are often hindered by low sensitivity and limited retention of 

covalent phosphate linkages owing to labile PTMs328. Enrichment strategies can boost low 

stoichiometric or low abundance signals; however, addressing labile PTMs often requires 

optimization of the specific fragmentation method, for instance, by using a gentler electron-

based method such as ETD or ECD329. Intact protein ions are less susceptible to cleavage of 

labile PTMs by CID, in contrast to peptides, potentially owing to protein ions retaining 

a degree of high-order structure in the gas phase25. Studies have shown that targeted 

TDMS by ECD and ETD can effectively elucidate the primary sequences of biologically 

relevant proteoforms, particularly those with labile PTMs330–333. A five-level proteoform 

classification system was proposed to clarify ambiguities in proteoform identification 

and compare results from different laboratories and techniques212. Beyond classification, 

localization of specific PTMs is also limited by the robustness of MS/MS spectra obtained 

for a given proteoform. It can be laborious, often requiring multiple fragmentation methods 

or internal fragment ion products, to achieve sufficient fragment ion complementarity for 

accurate PTM assignment, localization and sufficient protein sequence coverage279,334.

Throughput and ease of analysis

The relatively low throughput and high data complexity of TDP are major barriers for both 

new and experienced users32,127. With the exception of MALDI-TOF-based intact protein 

assays335, label-free discovery-based TDP has low measurement throughput, requiring 

time-consuming optimization of the whole workflow, particularly for sample preparation, 

separation and data analysis5. Detailed characterization of low-abundance membrane 

proteins336 and whole protein complexes337 is possible using a direct infusion approach. 

However, these direct infusion or injection methods require sophisticated hardware and 

robust analytical methods, limiting general applicability. Automated sample preparation338 

and separation systems would enhance the throughput, enabling broader application to 

complex biological systems339,340. Currently, discovery-based TDP data processing includes 

deconvolution and database searches, which can take several hours to several days, 
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depending on software performance and search parameters146,147. This underscores the need 

for continuous benchmarking to systematically monitor and compare informatics across 

laboratories29. Future developments in software and hardware are expected to enhance the 

throughput of TDP analyses. This will streamline experiments and alleviate computational 

burden associated with the data analysis. For example, by omitting the step of spectral 

deconvolution and directly matching expected features in experimental and simulated data, 

sensitivity and specificity of precursor and product ion analysis can be improved280. 

Continual developments in computational resources and programming capabilities will 

enable acquisition and processing of increasingly large data sizes (10–100 GB per single 

TDP experiment). This will enhance the achievable analytical performance to improve 

proteoform coverage depth and analysis ease.

Outlook

TDP is currently the only technology able to determine proteoform identities and quantify 

their abundances. The fundamental importance of proteoforms and their potential role as 

markers of cellular, environmental or biosystem health means that TDP technologies are 

expected to continue rapidly developing.

Two key areas to address are improving deep characterization of complex proteoform 

mixtures and the identification and characterization of larger proteoforms. An exciting 

development is single ion measurements, which can be implemented on existing commercial 

instruments and on specialized prototypes341–343. However, this approach is limited 

by the fundamental constraints of single-molecule methods when sampling complex 

proteomes that have a range of protein abundances344. Efficient proteoform separation 

is particularly critical but remains underdeveloped. It is often challenging to implement 

separation globally owing to the large diversity in proteoform physicochemical properties. 

Recent advances in integrative proteomics approaches, liquid chromatography stationary 

phases, implementation of CE modalities, development of IMS-based separations and 

integration into multidimensional approaches will continue to improve proteome-wide 

measurements5,345.

Opportunities are available by integrating top-down data flows with other data types, 

including genome and transcriptome sequences, BUP and glycomics3. Genome sequences 

are fundamental to proteomics, providing the gene models that underlie database 

construction and search algorithms used for proteomic identifications. Transcriptome 

information enables searches to focus on subsets of genes and RNA splice variants 

expressed in the tissues under study. Bottom-up data can further specify which proteins 

are present and the PTMs they contain. Protein glycoforms are among the most 

challenging112,346,347 but also the most functionally important proteoforms. There is a 

trade-off between constructing and searching against vast proteomic databases that contain 

all possible sequences and the cost of false identifications arising from an expanded search 

space. Integrating and using multiple data types to restrict the size of search databases while 

increasing their relevance to the sample is an emerging area for TDP optimization3.
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One of the largest barriers for new TDP users is data analysis. The complex nature of 

MS1 and MS2 spectra makes them virtually impossible to decipher manually. Software 

is required to parse the data into a comprehensible result, but the relatively small size of 

the field has limited the development of these tools. Proteoform quantification is more 

difficult than peptide quantification owing to the presence of many charge states and 

isotopologues, which result in lower S/N values. Turn-key tools that are intuitive and easy 

to use are urgently needed. Statistical methods that give confidence metrics for proteoform 

identifications are not well developed. All proteomic analyses are statistical in nature, and 

metrics such as FDR and posterior error probability are essential to interpret results. Further 

development of these areas will provide a foundation for expanded applications of TDP into 

the clinical and biopharmaceutical arenas.

As technology improves, important new application areas are becoming accessible. Single-

cell proteomics is in its infancy but is already producing important new insights165,196,348–

350. Spatial biology351 is close to understanding the mechanisms responsible for tissue 

and cellular organization. As the primary effectors of function, proteoforms determine 

cellular identities. However, measuring proteins and proteoforms in single cells or with 

near-single-cell resolution is a major challenge. Current approaches typically rely on 

labels or antibodies, which are limited in availability and specificity59. They also require 

a priori knowledge of protein targets and are only able to provide a restricted view of 

what is present. Although BUP has been demonstrated for proteome-wide spatial profiling 

of tissue sections when coupled with laser capture microdissection352, the approach uses 

peptides as a proxy for proteins and cannot characterize proteoforms. Extending single-cell 

and spatial measurements to the proteoform analysis will become possible by combining 

advanced technologies, such as microfluidics, mass spectrometry imaging and single ion 

measurements165,247,308,353–355.

New proteomic platforms have emerged, adopting concepts pioneered in next-generation 

sequencing of nucleic acids356. Nanopore sequencing of proteoforms is being developed357, 

and several companies are exploring how to fabricate and interrogate complex protein and 

peptide arrays for target proteomes. Once a proteoform database is constructed for a system 

of interest, data produced by next-generation platforms can be searched against the database, 

transforming proteoform identification from a discovery process to a scoring process.

Although proteoforms offer unique insights into cellular processes, alone they cannot 

provide a biological interpretation. Integration with other omics measurements is necessary 

to link proteoforms to related measurable outputs — for example, transcripts and 

metabolites — and decipher the basic principles of biology. One example is the recently 

introduced nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of 

Trace Samples) technology, which enables parallel transcriptomics and BUP from the same 

single cell358. With single-cell proteoform measurements rapidly emerging, technologies 

will expand to give an unprecedented view of transcripts, proteins and proteoforms in single 

cells. These exciting multiomics developments promise to bring a new era of biological 

prediction and control.
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Glossary

Bottom-up proteomics
A technique used to analyse peptide fragments from the proteolytic digestion of intact 

proteins by mass spectrometry, enabling sensitive and high-throughput identification of 

proteins.

Convoluted mass spectra
Refers to the potential overlap of two or more peaks with similar mass-to-charge (m/z) 

ratios. This can lead to incomplete separation of two or more mass spectral peaks owing to 

resolution limits and complicated mass spectral identification.

Data-dependent acquisition
Refers to the tandem mass spectrometry technique that involves specific selection of 

precursor ions before MS2 fragmentation. This technique commonly selects several of 

the most intense peaks observed in a single MS1 survey scan for fragmentation and only 

fragmenting a small subset of the total ions present.

Data-independent acquisition
Refers to the tandem mass spectrometry technique that forgoes specific selection of 

precursor ions and instead fragments all ions present in an MS1 survey scan.

Monoisotopic peak
The exact mass of a molecule, represented by the sum of the masses of the atoms in the 

molecule using the principal (most abundant) isotope for each element.

Post-translational modifications
All covalent processing events and modifications to the amino acid sequence of a given 

protein occurring after protein biosynthesis.

Proteoforms
A term used to describe all the different molecular forms of a protein product from a single 

gene. This includes changes from genetic variations, alternatively spliced RNA transcripts 

and post-translational modifications such as protein phosphorylation, glycosylation and 

protein truncations.

Tandem mass spectrometry
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A technique performed using one or more mass analysers, involving multiple consecutive 

stages of mass spectrometry analysis — typically two, MS/MS, also known as MS2 — to 

fragment selected precursor ions in the MS1 spectrum and generate product ions that can 

elucidate the structure and chemical composition of a molecule.
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Fig. 1 |. Proteoforms and the top-down approach.
a, A revised central dogma of biology describing the flow of information from DNA 

to RNA, and, after processing, from RNA to mRNA and finally protein. Genetic 

variations, alternative splicing and post-translational modifications (PTMs) can form many 

proteoforms, all originating from the same gene. b, Illustration of the conventional bottom-

up proteomics approach that analyses peptides obtained from protein digests and the 

alternative top-down proteomics approach that analyses intact proteins. The red p represents 

protein phosphorylation.
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Fig. 2 |. The pillars of top-down proteomics.
a, Front-end sample preparation including sample fractionation; in this example, a protein 

mixture is separated by liquid chromatography (LC). The resulting separated proteins are 

analysed by high-resolution mass spectrometry (MS) for intact mass measurement (the top 

portion) and then fragmented (the down portion) to obtain proteoform sequence-informative 

product ions. b, Data analysis and database searching are performed on the resulting tandem 

mass spectra for proteoform identification, characterization and quantification. The red p 

represents protein phosphorylation.

Roberts et al. Page 43

Nat Rev Methods Primers. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. Top-down proteomics sample preparation.
a, General surfactant-aided sample preparation methods for top-down proteomics (TDP). 

Surfactant-aided preparation typically proceeds by extracting proteins from a biological 

sample using a chaotropic buffer with a surfactant to efficiently solubilize proteins and 

yield a complex protein mixture. Without additional cleanup, top-down mass spectrometry 

(MS) signals suffer from immense signal suppression, leading to low-quality data. With 

proper sample cleanup using either wash methods, MS-compatible surfactants or protein 

precipitation methods, high-quality top-down MS data can be acquired. b, Illustration of 

front-end fractionation and enrichment strategies for TDP. Protein-containing samples are 

first extracted using a chaotropic buffer with or without (indicated by +/− in the illustration) 

surfactant. Affinity-based enrichment with antibodies or functionalized nanoparticles (NPs) 

is often used to enrich specific protein targets or protein families from a complex lysate 

to give an enriched subproteome. Front-end fractionation of the starting lysate and the 
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enriched subproteome are performed using chromatographic methods – such as reversed-

phase liquid chromatography, size exclusion chromatography, hydrophobic interaction 

chromatography, ion-exchange chromatography or multidimensional liquid chromatography 

– or electrophoresis-based methods, for instance, capillary electrophoresis or gel-based 

separation. BGE refers to the background electrolyte used in capillary electrophoresis.
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Fig. 4 |. Tandem mass spectrometry techniques for top-down proteomics.
a, Illustration of the process of an intact protein undergoing ionization/dissociation events 

in a mass spectrometer to yield various fragment ions. The corresponding intact protein 

precursor ion spectrum (MS1) and product ion spectrum (MS2) are shown for the beginning 

and end stages of the process. b, Peptide backbone fragmentation scheme showing selected 

tandem mass spectrometric techniques. Fragment ion nomenclature is depicted with a, x, b, 
y, c, z· notation depending on the specific cleavage along the amino acid backbone. Various 

fragment ion types are shown for the common tandem mass spectrometry (MS/MS or MS2) 

methods used in top-down proteomics.
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Fig. 5 |. Fundamental concepts in protein analysis by top-down proteomics.
a, The effects of protein size on mass spectrometry signal to noise (S/N) and charge state 

distribution under electrospray ionization. A histogram of protein molecular masses for all 

known proteins in the human proteome is shown. The plot was created using 20,423 entries 

for Homo sapiens using the UniProt Knowledgebase released on 21 April 2023, and the bin 

size is 500 Da. Illustration of the decay in S/N as a function of increasing mass resulting 

from the increasing number of charge states observed for electrosprayed protein ions with 

the average protein mass (55 kDa) annotated. A typical top-down mass spectrum obtained 

for a 10 kDa protein under electrospray ionization with all charge states annotated. The most 

abundant charge state is given by z = 11+. b, Example of the differences in isotopologue 

distribution between a small (3.4 kDa) and large (45.9 kDa) protein. For sufficiently large 

protein ions, the monoisotopic mass is no longer observed and the difference between the 

most abundant and average mass decreases. The monoisotopic mass is the sum of the masses 

of the atoms in a molecule using the principal (most abundant) isotope for each element, 

also known as the exact mass. The nominal mass is the sum of masses of the closest integer 

value of the most abundant mass of an atom. The average mass is the sum of the masses 

of the atoms from their respective weighted averages. The average mass of a compound is 

sometimes referred to as the relative molecular mass, denoted by Mr. The most abundant 

mass is the mass of the highest abundance peak in the entire isotopic cluster.
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Fig. 6 |. Overview of top-down proteomics quantification methods.
a, Label-free quantification, which relatively compares the mass spectral signal abundance 

of various proteoforms between individual liquid chromatography–mass spectrometry (MS) 

runs. b, Metabolic labelling, including isotopic labelling of proteins in vitro, for comparative 

MS1 quantification of proteoforms expressed by cells cultured under various conditions. c, 

Chemical labelling strategies, which involve covalently modifying proteins at specific amino 

acid residues, generally Lys residues, and the N-terminal domain. Typically, tandem mass 

tag labelling is used and quantification is performed at the MS2 level. The red p represents 

protein phosphorylation. PTM, post-translational modification.
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Fig. 7 |. Biological applications for top-down proteomics.
a, Schematic depiction of various human organ systems and representative examples 

of biomedical top-down proteomics (TDP) applications. Four major human disease 

applications are shown. Neurodegenerative disease involving TDP analysis of hypermodified 

brain proteins linked to Alzheimer disease. Cardiovascular disease showing the top-down 

label-free quantification of cardiac troponin I (cTnI) phosphorylation state, which can 

serve as a biomarker for major cardiac diseases, such as ischaemic cardiomyopathy or 

hypertrophic cardiomyopathy (HCM). In clinical applications of TDP, haemoglobinopathy 

involves the top-down mass spectrometry analysis of haemoglobin (Hb) variant 

characterization from various human clinical blood samples. Colorectal cancer showing the 

top-down mass spectrometry analysis of various KRAS4b proteoforms to inform disease 

state. The p and pp represent phosphorylation and bisphosphorylation, respectively. b, 
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Illustration of major biopharmaceutical analysis of antibody–drug conjugates (ADCs). Here, 

a Cys-based ADC is shown. The top-down approach is ideal for determining the drug-to-

antibody (DAR) ratio of ADCs by direct infusion analysis of intact ADCs. Site-specific 

localization of covalent drug attachment can be achieved through an online top-down 

liquid chromatography–mass spectrometry (LC–MS) approach. Disulfide reduction and 

enzymatic treatment can result in a total of seven separated subunits including Fc/2, 

Lc without drug (Lc0), Lc with 1 drug (Lc1), Fd without drug (Fd0) and Fd with 1–

3 drugs (Fd1–3). Electron-transfer dissociation (ETD) and collision-induced dissociation 

(CID) tandem mass spectrometry characterization of reduced Fd1 isomer of brentuximab 

vedotin after IdeS digestion are shown, with a corresponding truncated protein sequence 

table as an example. The stars represent possible conjugation site, with Cys220 (yellow 

star) the confidently localized Fd1 drug-bound isomer that was identified. Theoretical ion 

distributions are indicated by the red dots. ECD, electron capture dissociation; HIC–MS, 

hydrophobic interaction chromatography–mass spectrometry; RPLC, reversed-phase liquid 

chromatography; WT, wild type.
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