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Abstract: The rapid advancement of technology necessitates the continual development of versatile
materials that can adapt to new electronic devices. Rare earth elements, which are scarce in nature,
possess the set of properties required for use as semiconductors. Consequently, this research aims to
achieve similar properties using materials that are abundant in nature and have a low commercial
cost. To this end, nickel and copper were utilized to synthesize thin films of nickel–copper binary
oxynitride via reactive RF sputtering. The influence of nitrogen flow on the structure, morphology,
chemical composition, and optical properties of the films was investigated using various characteri-
zation techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic
force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), as well as transmittance and
absorbance measurements. The crystalline structure of the films shows that they can have preferential
growth or be polycrystalline according to the nitrogen flow used during deposition and that both the
oxides and oxynitrides of metals are formed. We identified unknown phases specific to this material,
termed “NiCuOxNy”. The morphology revealed that the grain size of the coatings was dependent on
the nitrogen flow rate, with grain size decreasing as the nitrogen flow rate increased. Notably, the
coatings demonstrated transparency for wavelengths exceeding 1000 nm, with an optical band gap
ranging from 1.21 to 1.86 eV.

Keywords: NiCuOxNy films; band gap; semiconductor

1. Introduction

The electromagnetic transparency exhibited by materials like transparent conductive
oxides (TCO) across various regions of the electromagnetic spectrum has facilitated their
utilization in diverse industrial applications, including smart windows, solar cells, high-
emission diodes, and liquid crystal displays [1,2]. Among the wide array of TCO coatings,
there are n-type wide-bandgap oxides such as Al-doped zinc oxide (Al-ZnO), indium tin
oxide (ITO), Sb-doped SnO2, and In2O3 [3]. Nonetheless, certain elements like indium pose
significant toxicity concerns and are costly, primarily due to limited production sources [4],
underscoring the necessity for non-toxic, cost-effective alternative materials exhibiting
similar or enhanced properties.

Copper and nickel, along with their oxides, find extensive use in electronic devices and
solar cells owing to their affordability and favorable electrical conductivity, thus presenting
themselves as potential substitutes for the aforementioned materials [5]. Materials based
on these metals could offer a viable alternative. However, the scope of TCO applications is
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constrained by the fact that most are n-type semiconductors, which, despite their efficiency,
come with a high cost. Consequently, recent research endeavors have focused on exploring
p-type semiconductors. Copper oxides (CuO, Cu2O) and nickel oxide (NiO) are examples of
p-type semiconductors [6] exhibiting high optical transmittance and low electrical resistivity,
making them suitable candidates for the development of photoelectronic devices like solar
cells and transparent electrodes.

Additionally, Cu-based oxides and Ni-based oxides exhibit remarkable chemical
stability across all concentration ranges, suitable crystallinity, and possess wide direct
energy band gaps: NiO (>3.0 eV), CuO (1.2–2.6 eV) [6,7], and Cu2O (2.1–2.6 eV) [8]. More-
over, Cu2O demonstrates a significant exciton binding energy (150 meV), enabling the
observation of well-defined excitonic characteristics in the absorption spectrum at low tem-
peratures [9]. Its high optical absorption coefficient within the visible range (350–800 nm)
and favorable electrical properties make it suitable for thin film solar cell fabrication, with
a theoretically achievable efficiency of up to 13%. Furthermore, Cu2O holds promise for
applications in photochemistry, serving as a catalyst for water splitting. Conversely, the
electro-optic behavior of nickel oxide varies depending on the atomic Ni/O ratio, influ-
enced by Ni vacancies and/or interstitial oxygen in the NiO structure, leading to alterations
in the absorption edge of the NiO coating. These variations impact the applications of
NiO, including its use as an electrochromic material [10], solar cell electrodes [11], chemical
gas sensors [12], and organic light-emitting diodes [13]. There are chemical and physical
techniques to grow thin films of copper and nickel oxides, such as chemical bath depo-
sition, dipping, spin coating [14], the sol–gel method [15], chemical spray pyrolysis [16],
sputtering, and pulsed-laser deposition [17].

In this study, we determined new crystallographic structures of Ni-Cu coatings de-
posited in oxygen and nitrogen atmosphere via RF-magnetron sputtering, which were
called NiCuON. The optical response of these coatings was analyzed, and a potential
application as an optical filter in the UV electromagnetic spectrum was found.

2. Materials and Methods
2.1. Deposition of NiCuOxNy Coatings

NiCuOxNy films were deposited on standard glass substrates using RF reactive mag-
netron sputtering with Alcatel equipment model HS 2000 (Alcatel Vacuum Technology,
Annecy, France). The device comprises an unbalanced magnetron operating at an RF
frequency of 13.56 MHz, a vacuum chamber equipped with both mechanical and turbo-
molecular vacuum pumps, a gas mixer, a gas flow meter, and pressure control mechanisms.
Gas flow was regulated and monitored using a mass flow controller and a capacitance
manometer (MKS), respectively [18]. The chamber underwent evacuation to a base pressure
of 1.0 × 10–3 Pa for 4 h, initially with the introduction of Ar (99.999%, Linde, Colombia)
until reaching a pressure of 1.0 × 10−1 Pa, followed by the introduction of nitrogen and
oxygen to achieve a working pressure of 7.4 × 10−1 Pa. This procedure ensured the re-
moval of residual gases. Gas pressure was continuously monitored during each sputtering
deposition to keep it constant, as the sputtering current is highly sensitive to pressure
fluctuations. Deposition was carried out over 60 min using a copper (99.9%) target with a
diameter of 8.0 cm and an exposed zone area of 0.60 cm thick, along with a nickel (99.9%)
piece, 3.0 cm in diameter and 1.5 mm thick, placed atop the Cu target. This setup yielded a
Ni versus Cu exposed surfaces ratio of 14%.

Throughout the deposition process, the working pressure remained at 7.4 × 10–1 Pa,
with a working gas mixture of Ar (20.0 sccm) and O2 (2.00 sccm). To evaluate the effect of
nitrogen flow rate on the structural, morphological, and optical properties of NiCuOxNy
coatings, the nitrogen flux was varied from 4.00 to 18.0 sccm. The power applied to the
target and the deposition temperature were set at 250 W and 433 K, respectively. The
distance between the target and the substrate was maintained at 5.0 cm. Depending on
the deposition conditions, film thickness ranged from 2.43 to 4.30 µm, measured using
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a Veeco–Dektak 150 surface profilometer (Veeco Instruments Inc., Plainview, NY, USA).
Table 1 summarizes the deposition conditions employed in this study.

Table 1. Deposition conditions of NiCuOxNy coatings.

Sample
Sputtering Deposition Parameters

ϕN2 (sccm) Power (W) T (K) Cu/Ni Ratio in Target

NiCuOxNy N4 4.00

250 433 6.14
NiCuOxNy N8 8.00

NiCuOxNy N12 12.00
NiCuOxNy N18 18.00

2.2. Characterization Techniques

Structural analysis of the films was conducted using X-ray diffraction (XRD) on a
Philips PANalytical X’PERT Pro diffractometer (PANalytical, Almelo, The Netherlands)
with Cu-Kα radiation (λ = 0.1542 nm) in Bragg–Brentano configuration. X-ray patterns
were obtained using a diffraction angle between 10◦ to 90◦, with a step size of 0.02 degrees,
at an accelerating voltage of 45 kV and an emission current of 40 mA. Phases were identified
based on the Joint Committee on Powder Diffraction Standards (JCPDS) cards. Morpho-
logical analysis was carried out using an FEI Quanta scanning electron microscope (FEI
Company, Hillsboro, OR, USA) equipped with an energy-dispersive X-ray (SEM-EDX)
microprobe operating at 30 kV. Micrographs were captured at 2000× magnification.

Atomic force microscopy (AFM) was employed to determine the roughness parameters
of deposited NiCuOxNy coatings. AFM measurements were performed using a Park
Scientific Instruments AutoProbe CP (Park Systems, Suwon, Republic of Korea) instrument
in non-contact mode with a 10 nm radius, a study area of 25 µm2, and a transmission
frequency of 10 Hz. Surface chemical composition was analyzed using X-ray photoelectron
spectroscopy (XPS) on a Specs spectrometer using a PHOIBOS 150 1D-DLD hemispherical
energy analyzer (SPECS Surface Nano Analysis GmbH, Berlin, Germany) coupled with a
differentially pumped electrostatic pre-lens system. The spectrometer is equipped with an
XR-50 MF Al X-ray source and a µ-FOCUS 600 monochromator with an energy resolution
better than 0.5 eV, operating under a vacuum greater than 3.0 × 10–7 Pa. Al Kα radiation
(1486.6 eV) was used, with a constant pass energy of 100 eV for wide-scan spectra and 20 eV
for narrow-scan spectra, yielding a calculated energy resolution of 0.50 eV. A full width at
half maximum (FWHM) of 0.51 eV for the Ag 3d5/2 core level was measured. In the spectra
measured as received in the laboratory, without any special pre-treatment, no evidence of
N1s was found, and therefore, it was necessary to clean the surface with Ar+ ions. Prior to
analysis, the specimen was sputtered with 3 keV Ar+ ions for 3.0 min, and depth profile
spectra were registered. A 100 µm diameter analysis spot was used. The relative elemental
compositions were calculated based on the area under the curve for each element’s XPS
signal: Cu2p3/2, Cu2p1/2, Ni2p3/2, Ni2p1/2, N1s, and O1s peaks. Although some authors
consider that using adventitious carbon C1s for charge correction is not advisable because
it does not necessarily make electrical contact with the sample, uncertainty could be
generated with the reported results [19–21], adventitious C1s presents sp2 hybridization,
and the presence of π electrons generate charge δ that favors the interaction with the sample
surface -C=C- [22]. The spectra were calibrated based on the C 1s sp2 hybridized electrons
at 284.6 eV, with a ±0.2 eV accuracy in the binding energy (BE) measurements [23,24].
Background subtraction was performed using the Shirley algorithm binding energy. Peak
fitting was performed using the χ2 minimization and optimization by Newton’s method,
as implemented in the XPS-peak software XPSPEAK 4.1 (developer Raymund Kwow).
The optical response was assessed through transmittance measurements spanning 200
to 2500 nm on a UV-Vis-NIR spectrophotometer Varian Cary 5000 (Agilent Technologies,
Santa Clara, CA, USA) at room temperature (RT). The refractive index (η) as a function of
wavelength was determined using the Swanepoel method [25,26].
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3. Results and Discussion
3.1. Chemical Composition

Transition metal oxynitrides are characterized by the partial replacement of oxygen
within the crystalline structure of the oxide by nitrogen through a solid-phase diffusion
reaction. They can also form through the diffusion of oxygen into the nitride structure.
This results in the properties of an ionic–covalent material with anion vacancies [27,28].
Depending on the degree of oxygen substitution by nitrogen, X-ray photoelectron spec-
troscopy will record the binding energies for the oxide/oxynitride or nitride/oxynitride
mixture [29].

Transition metal oxynitrides are characterized by the substitution of part of the oxygen
within the crystalline structure of the oxide with nitrogen through a solid-phase diffusion
reaction. They also form through the diffusion of oxygen into the nitride structure. This
gives them the characteristics of an ionic–covalent material with anion vacancies. Depend-
ing on the degree of oxygen substitution by nitrogen, X-ray photoelectron spectroscopy will
record the binding energies for the oxide/oxynitride (Me-O, Me-O-N) or nitride/oxynitride
(Me-N, Me-O-N) mixture.

An analysis of the chemical composition of the coatings using X-ray photoelectron
spectroscopy (XPS) was conducted to gather information regarding changes in surface
chemical composition with varying nitrogen flux. During the analysis, the oxygen flow
was maintained at a constant rate of 2.00 sccm, while the nitrogen flow was incrementally
increased from 4.00 to 18.0 sccm. Under the different deposition conditions and directly on
the surface, the only components of the film are the oxides NiO and CuO. After 3.0 min
of etching in Ar+ atmosphere beam energy of 3 keV, the coatings, deposited at different
nitrogen fluxes, exhibited varying compositions of Cu1+, Ni2+, O2−, and N3−. Figure 1
presents the survey spectrum for NiCuOxNy films deposited with different nitrogen fluxes.
The spectra show evidence of C, N2, O2, Cu, and Ni. Figure 2 shows high-resolution
spectra corresponding to N1s and O1s core levels for the sample after sputtering in an
argon atmosphere for 3.0 min. The deconvolution process applied to all peaks involved
subtracting a Shirley-type baseline. Peak fitting was performed using the χ2 minimization
and optimization by Newton’s method, as implemented in the XPS-peak software.
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In Figure 2a–d, the N1s of the XPS spectra reveal two distinct bonding environments
for nitrogen, which were deconvoluted into two oxynitride phases with differing de-
grees of nitrogen substitution. The predominantly oxygenated chemical species located at
400–399 eV, associated with MeOxNy, where Me = Cu or Ni [30], with a decreasing com-
position according to the nitrogen flow used during the film deposition: ϕN2(4) = 61.8%,
ϕN2(8) = 50.1%, ϕN2(12) = 34.5%, and ϕN2(18) = 13.7% (Figure 3). The second peak, located
at 398.4–397.5 eV, was associated with fewer oxygen species of oxynitride, MeON, with a
composition that is a direct function of the nitrogen flow: ϕN2(4) = 38.2%, ϕN2(8) = 49.8%,
and ϕN2(12) = 65.5%, to transform into the corresponding nitride (MeN) when the nitrogen
flow reaches 18.0 sccm (Figure 3). It is observed that as the nitrogen flow increases, there is
a shift toward lower binding energies (indicative of a greater reducing zone), suggesting a
higher degree of oxygen substitution by nitrogen. The film deposited with a nitrogen flow
of 18.0 sccm exhibited a different phase composition (Figure 2d). The N1s spectra signals
displayed two peaks with different relative intensities, the first located at 398.0 eV with
a chemical composition of 13.7% associated with the NiCuON species and the second at
396.6 eV with 86.3% potentially associated with the Ni–N and Cu–N bonds, as suggested
by the literature data. These signals have been previously attributed by various authors
to MexNy [26–30], possibly related to the corresponding nitride of NiCuNy, where copper
would have a valence of 1+ and nickel 2+. However, assigning the binding energy for
each metal is challenging, as both metals have similar electronegativities (Cu = 1.90 and
Ni = 1.91) [31,32]. In this film, the nitrogen flow favored greater substitution of oxygen by
nitrogen, facilitating nitride formation.

In general, it is observed in Figure 3 that the formation of the NiCuOxNy species is
a direct function of the nitrogen flow and that the concentration of NiCuOxNy decreases
with its increase, favoring the substitution of oxygen for nitrogen. For oxygen, a specific
trend is not observed since it is associated with the formation of oxide and oxynitride.
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For O1s, as shown in Figure 2e–h for the four studied nitrogen fluxes, two distinct
chemical environments with varying relative compositions were confirmed. O1s at a bind-
ing energy of 529.9 eV, with a variable composition according to the deposit conditions,
according to various authors, may be attributed to MeO [31,33]. O1s at a binding energy
of 531.3 eV, with a relative composition of ϕN2(4) = 45.5% of O2, ϕN2(8) = 28.1% of O2,
ϕN2(12) = 46.1% of O2, and ϕN2(18) = 35.1% of O2, may be associated with
NiCuOxNy [30–32]. O1s located at 532.0 eV are often assigned to chemisorbed oxygen
or surface water oxygen by various authors [34]. However, the spectrum was taken after
a three-minute Ar+ cleaning, and physisorbed H2O was removed from the surface, and
therefore, it corresponds to a different type of Me–O–N interaction, possibly indicating
a form of oxynitride with higher oxygen content. Similar binding energies have been
reported for zirconium oxynitrides [31,33], niobium oxynitride [34], and cerium oxynitride,
among others [35,36].

Considering the Gibbs energies of copper oxide (−147.8 kJ·mol−1) and nickel oxide
(−211 kJ·mol−1), the most likely outcome is the formation of NiO on the coatings’ surface
under atmospheric pressure. However, chemical reactivity changes under low pressures.
Results indicate that nitrogen and oxygen at 10−2 Pa exhibit similar chemical reactivity,
suggesting the formation of copper oxide, nickel oxide, and copper–nickel oxynitrides. The
oxygen composition of the coatings at different nitrogen fluxes is presented in Figure 4a. No
significant changes in phase composition were observed for coatings deposited at varying
nitrogen flows, suggesting that Gibbs’s energy for the growth of nickel–copper oxynitrides
is independent of nitrogen flux.

In Figure 4b, spectra have been superimposed to assess changes in the chemical
composition from the increase in the nitrogen flow. The results showed that the increase in
the nitrogen produced on the surface predominates the NiCuN phase. This result can be
explained by the fact that the nitrogen substitutes an oxygen in the crystalline structure.
For copper (Figure 4c), the only consistently identified phase across all four N2/O2 flow
ratios was Cu1+. The observed binding energy values could be attributed to Cu (I) bonded
to O as Cu2O. These binding energy values have been reported for Cu2O nanoparticles
synthesized using various methods [37–42], including Cu2O nanoparticles utilized for
adsorption and CO2 photoreduction (Cu2O/TiO2) [37,40,41], Cu2O nanoparticles deposited
on ZnO nanorods, and in thin films of cuprous oxide [40].
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The Ni spectrum (Figure 4d) displays a spin-orbital doublet with multiple peaks,
making interpretation challenging. However, the splitting observed between 853 and
856 eV is characteristic of Ni2+, as confirmed by the binding energies for Ni 2p3/2 and Ni
2p1/2, located at 853.1 eV and 870.5 eV, respectively, with a separation of 17.4 eV. In this
region (856 eV), the sample deposited with a nitrogen flow of 8.00 sccm exhibits a 1.0 eV
shift in binding energy compared to films deposited at N4, N12, and N18 sccm, while the
binding energy at 870 eV remains unchanged, indicating the same oxidation state [42–47].
These results are consistent with those found via XRD, which indicate the presence of NiO
and Cu2Om phases in the same sample, suggesting that the last 10 nm of the coatings
consist of copper and nickel oxides and oxynitrides.

An approximation of the chemical formula is presented in Table 2. However, an
unequivocal assignment of the chemical formula is often difficult and controversial based
solely on XPS data, considering the scarcity of literature data for the chemical species
NiCuOxNy. The N/O ratio indicates a decrease in the degree of oxygen replacement by
nitrogen with increasing nitrogen concentration in the medium. This phenomenon could
be attributed to surface saturation, as oxynitride formation occurs through a solid-phase
diffusion process. Similar observations have been made during the synthesis of oxynitride
phosphate glasses [36].

Table 2. Composition of NiCuOxNy coatings.

Coating Sample ϕN2 (sccm) BE N1s (eV) Chemical Formula

NiCuOxNy N4 4.00
400 CuNi0.2O0.93N0.09

397 CuNi0.2O0.93N0.12

NiCuOxNy N8 8.00
400 CuNi0.4O0.8N0.8

397 CuNi0.4O0.9N0.7
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Table 2. Cont.

Coating Sample ϕN2 (sccm) BE N1s (eV) Chemical Formula

NiCuOxNy N12 12.0
400 CuNi0.2O0.5N0.03

397 CuNi0.2O0.4N0.03

NiCuOxNy N18 18.0
400 CuNi0.2O0.7N0.04

397 CuNi0.2O0.7N0.04

3.2. Crystal Structure

Figure 5a presents XRD patterns of Cu- and Ni-based coatings grown under varying
nitrogen fluxes (with fixed oxygen flux) at a power of 250 W and 433 K. An additional
diffractogram of a sample named “Standard” is included as a reference, containing some
oxide phases identified in the samples but not oxynitrides, as it was not exposed to nitrogen
during preparation. Figure 5b shows an enlargement of the diffractogram obtained for the
samples deposited with a nitrogen flow of 8.00 sccm, and Figure 5c–f show the triplicate
obtained for each nitrogen flow. For the coating deposited with a 4.00 sccm nitrogen
flow, a single peak is observed at 2θ = 41.3◦. At 8.00 sccm nitrogen flow, peaks appear
at 2θ = 32.0, 35.3, 39.2, 61.9, and 68.4 degrees. Notably, the peaks at 35.3◦ and 39.2◦ are
0.1 degrees lower than expected for Cu2O, suggesting an increase in interplanar distance.
Coatings deposited with nitrogen flows of 4.00 and 8.00 sccm do not correspond to standard
copper or nickel oxides or nitrides; hence, these crystallographic phases are denoted as
NiCuOxNy, supported by XPS confirmation of nitrogen presence. For nitrogen flows of
12.0 and 18.0 sccm, the monoclinic copper oxide (Cu2O) phase is present, identified with
the JCPDS 00–001–1142 pattern card. Additionally, planes (111) at 2θ = 43.5◦ and (200) at
2θ = 50.6◦ characteristic of metallic Cu (JCPDS 00–001–1241) are observed. In XRD, planes
of nickel oxides are not evident, suggesting an amorphous growth. These results suggest
that increased nitrogen flux induces collisions among nitrogen and oxygen molecules,
reducing the half-free path and favoring oxygen to reach the substrate, leading to the
predominance of copper oxide (Cu2O) formation, while some metal remains unreacted.
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Figure 5. (a) XRD patterns of NiCuOxNy deposited under different nitrogen flow conditions.
(b) Zoom-in for the XRD NiCuOxNy N = 8.00 sccm coating. Triplicate for nitrogen flow: (c) 4.00 sccm,
(d) 8.00 sccm, (e) 12.0 sccm, and (f) 18.0 sccm.

3.3. Morphology

AFM and SEM studies support this hypothesis, as depicted in Figures 6 and 7, illus-
trating the morphology of the coatings under various nitrogen fluxes. Figure 6 reveals
that the coating surface appears dense, comprising grains of varied dimensions dependent
on the nitrogen flow during growth. Table 3 provides a quantification of grain size and
roughness. Results indicate that coatings grown with higher nitrogen flux exhibit smaller
grain sizes and lower arithmetic roughness values. Additionally, SEM images (see Figure 7)
demonstrate that films deposited at nitrogen flow of 18.0 sccm show equiaxial growth,
while those deposited at lower fluxes exhibit columnar growth. These results suggest
that the chamber atmosphere’s chemical composition significantly influences film growth
mechanisms, thus determining morphology. While a comprehensive investigation into the
influence of nitrogen–oxygen mixture and residual gas presence in the chamber exceeds
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this paper’s scope, the work by Liu et al. (2024) [35] explained the residual oxygen’s effect
on metallic film morphology.
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Table 3. Roughness and thickness of NiCuOxNy coatings.

Coating Sample

Average Roughness Parameters
(Mean ± SD) Thickness

RMS (nm) Gran Size (nm) µm

NiCuOxNy N4 38.20 ± 0.86 131.00 ± 9 2.43

NiCuOxNy N8 64.70 ± 0.95 252.00 ± 14 2.50

NiCuOxNy N12 1.93 ± 0.07 9.00 ± 1 4.30

NiCuOxNy N18 3.55 ± 0.03 14.00 ± 1 2.86

The chemical compositions of the coatings in cross-section were determined via
SEM/EDX. Figure 7(e1–e3) include representative elemental maps, with results sum-
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marized in Table 4. Chemical analysis indicates that nitrogen content falls below the
microprobe’s detection limit of EDX, except for coatings deposited at high nitrogen flux.
However, XPS results confirm nitrogen presence on the surface of all four coatings. In
Figure 7(f1,f2), the morphology shows that the films deposited with nitrogen fluxes
of 4.00 sccm and 18.0 sccm present equiaxed growth, while in those deposited with ϕ

8.00 sccm and 12.0 sccm, the growth is columnar.

Table 4. Composition of NiCuOxNy coatings in cross-section via EDX.

Coating Sample
Element wt (%)

Ni Cu O2 N2

NiCuOxNy N4 6.27 90.3 3.45 ND
NiCuOxNy N8 5.42 92.3 2.26 ND

NiCuOxNy N12 5.35 85.3 4.13 5.18
NiCuOxNy N18 6.51 81.0 3.93 8.53

3.4. Optical Properties

Copper- and nickel-based coatings were characterized by having a thickness of
2.43–4.30 µm, with crystallographic phases identified as Cu2O and Ni for coatings de-
posited at higher nitrogen fluxes (18.0 and 12.0 sccm), and an unreported phase, NiCuOxNy,
observed at lower flows (4.00, 8.00, and 18.00 sccm). This investigation evaluated optical
properties—refractive index, absorption coefficient, Urbach energy, and optical bandgap
energy of NiCuOxNy coatings as a function of nitrogen flux and Ni-Cu composition. The
results could be used to evaluate the optical functionality, such as the filter of visible
wavelengths of the electromagnetic spectrum.

Analysis of the transmittance spectra (refer to Figure 8a) confirms that the NiCuOxNy
coatings effectively block wavelengths below 700 nm. Additionally, coatings produced
with a high nitrogen flux exhibit interference patterns indicative of increased thickness
(measured in nanometers). Specifically, coatings grown with a nitrogen flux of 18 sccm
demonstrate maximum transmittance values ranging between 30% at 700 nm and 60% at
2500 nm. These transmittance values vary with the nitrogen flux; coatings grown at 4 and
8 sccm nitrogen flux exhibit reduced transmittance to 30% at infrared wavelengths. This
behavior can be attributed to the surface roughness of the coatings, as films with higher
roughness tend to display more pronounced dispersion phenomena at longer wavelengths.

In Figure 8b, starting from approximately 750 nm, the refractive index of all coatings
does not exhibit dispersive behavior, as the refractive indices remain constant. These results
indicate that the coating with the greatest thickness (N18), characterized by its porous
topography and lowest mass density, exhibits the lowest refractive index value, whereas
the N8 coating, with lower mass density and low porosity, demonstrates a higher refractive
index. This behavior aligns with classical linear optics principles, which predict that the
refractive index relies on the porosity and mass density of coatings. Additionally, N12
exhibits a high refractive index, likely due to its dense morphology, motivated by the
increased mass density resulting from the presence of unknown crystalline phases within
the coating.

On another note, employing well-established expressions A + T + R = 1 and
α = (2.303 × A)/t [24,25], where A represents absorbance, T transmittance, R reflectance, α
absorption coefficient, and coating thickness, the absorption coefficient was determined as
a function of wavelength (refer to Figure 8c). The highest absorption coefficient value was
observed for the N12 coating (7.6 × 104 cm−1), characterized by a well-defined absorption
edge at 980 nm. The remaining coatings exhibited high absorption coefficients ranging
from 400 to 1000 nm, after which the absorption coefficient began to decrease. In [48], it
was established that absorption coefficient values on the order of 104 cm−1 are indicative of
increased probabilities of direct transitions between the valence band and the conduction
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band of semiconductor materials, a prerequisite for considering a material as a viable
candidate for photovoltaic applications.
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The extinction coefficient (k), calculated as a function of incident radiation wavelength
using the expression k = αλ/4π, where λ represents the incident wavelength [24], is shown
in Figure 8d. The k value of the N18 coating approaches zero within the wavelength range
of 1000–2500 nm, suggesting nearly complete transparency of the coating in this spectral
region [40]. Conversely, the N8 coating, possessing the least thickness, exhibits a decrease
in its k value from 0.2 at 1000 nm to 0.15 at 1500 nm. The other two coatings demonstrate
k-values of approximately 0.1. The transparency of the N18 coating can be attributed to its
microstructure, primarily composed of copper oxide, as observed in previous studies [41],
while the absorption tails observed in the other films likely result from the presence of
crystalline copper nitrides and amorphous oxynitrides of copper.

On the other hand, for an accurate determination of the transition mode (m) of
the NiCuOxNy coatings, the derivative method of the Tauc model was employed, i.e.,
d[ln(αhυ)]/d[hυ] vs. hυ [49–51], which exhibits a maximum referred to as Eg’ (Figure 9a).
Based on the Eg’ values obtained, the value of m was determined from the slope of the
plot ln(αhυ) vs. ln(hυ − Eg’) (Figure 9b). A value of m = 0.5 was found for the NiCuOxNy
coatings, indicative of an allowed direct transition mode.

Considering the optical absorption results, the Urbach energy (Eu) and optical band
gap (Eg) values were determined. Urbach energy, also known as the Urbach tail, charac-
terizes materials with low crystallinity and amorphous nature, representing the degree of
localized states between the valence and conduction bands, causing significant changes in
the band gap [52,53]. Using the expression ln(α)= 1/Eu × (hυ) + ln(αo) [51], where α is the
absorption coefficient, hυ is the photon energy, and αo is a constant, the value of Eu can be
determined by plotting ln(α) vs. hυ. The inverse of the slope corresponds to the value of
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Eu (Figure 10a–d). Figure 10 shows Urbach energy values at different nitrogen flow rates.
A proportional relationship is observed between Eu and the roughness parameters (Ra
and RMS), consistent with prior studies [53,54]. For instance, the NiCuOxNy N8 coatings
exhibit higher Eu values, indicating an increase in disorder and defect states in the film
texture, correlating with greater roughness.
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Figure 10. Determination of the Urbach energy (Eu) of the NiCuOxNy coatings deposited under
different nitrogen flows: N4 (a), N8 (b), N12 (c), and N18 (d). Use of the Tauc method for the
determination of the optical band gap (Eg) values of the NiCuOxNy coatings (e).

Tauc plots were generated to calculate the direct gap, i.e., αhυ vs. β(hυ− Egap)2, where
α is the absorption coefficient, hυ is the incident photon energy, h is Planck’s constant,
υ is the frequency of incident light, β is an energy-independent constant, Egap is the
optical band gap, and m = 2 represents the previously determined allowed direct transition
mode [55]. The results are presented in Figure 10e, where the interception on the energy
axis determined that the N18 coating, with the lowest density, has an energy gap of 1.05 eV,
while the N4 coating, with the highest density, has an energy gap of 0.87 eV. These results
align with classical optics, indicating a decrease in the energy gap with an increase in the
mass density of the coatings. Figure 11 summarizes the dependence of the RMS roughness
parameter and the optical parameters (Urbach energy, Eu, and optical band gap, Eg) on the
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nitrogen flux during the deposition of NiCuOxNy coatings. In Figure 11, the relationship
among RMS roughness, Urbach energy (Eu), and the energy gap of NiCuOxNy coatings
deposited at different nitrogen fluxes (4, 8, 12, and 18 sccm) is shown. The results indicate
that the roughness decreases from 67.4 nm (8 sccm) to 3.55 nm (18 sccm). These results could
be explained by considering a better incorporation of nitrogen into the crystallographic
structure of the coatings. In general, the Urbach energy values indicate that the coatings
do not have impurities in their electronic structure. Finally, the energy gap of the coatings
indicates that the nitrogen flux does not strongly affect this gap.
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4. Conclusions

In this comprehensive investigation, we explored the deposition and characterization
of NiCuOxNy coatings prepared via RF-magnetron sputtering on common glass substrates.
Through XPS analysis, we examined the surface chemistry of the coatings, revealing the
presence of copper oxide, copper nitride, and copper oxynitride species. The XRD analysis
further unveiled crystalline phases not previously documented in existing databases or the
scientific literature, underscoring the novelty of the synthesized materials.

Our optical studies provided valuable insights into the coatings’ behavior across the
UV-VIS electromagnetic spectrum. By systematically varying the nitrogen flux during
deposition, we observed notable changes in the density of states between the valence and
conduction bands, elucidating the observed increase in absorption coefficient with higher
nitrogen flux. This phenomenon highlights the tunability of the coatings’ optical properties,
offering potential applications in optical filtering and light absorption technologies.

Furthermore, our investigation into the energy band gap of the coatings revealed
semiconductor-like behavior, with energy gaps ranging from 1.21 to 1.86 eV. This finding
underscores the potential of NiCuOxNy coatings in photovoltaic applications, where semi-
conductor materials with suitable band gaps are crucial for efficient solar energy conversion
and optical filters. Future research efforts could delve deeper into optimizing deposition
parameters to tailor the properties of these coatings for specific application requirements.
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