
Citation: Novikova, D.; Sagaidak, A.;

Vorona, S.; Tribulovich, V. A Visual

Compendium of Principal

Modifications within the Nucleic Acid

Sugar Phosphate Backbone. Molecules

2024, 29, 3025. https://doi.org/

10.3390/molecules29133025

Academic Editors: Stefano D’Errico,

Nicola Borbone and Andrea Patrizia

Falanga

Received: 22 April 2024

Revised: 21 June 2024

Accepted: 24 June 2024

Published: 26 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

A Visual Compendium of Principal Modifications within
the Nucleic Acid Sugar Phosphate Backbone
Daria Novikova * , Aleksandra Sagaidak , Svetlana Vorona and Vyacheslav Tribulovich *

Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia;
aleksandrasagaidak@yandex.ru (A.S.); s.vorona@bk.ru (S.V.)
* Correspondence: dc.novikova@gmail.com (D.N.); tribulovich@gmail.com (V.T.)

Abstract: Nucleic acid chemistry is a huge research area that has received new impetus due to
the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become
clinically effective, its monomeric parts are subjected to modifications. Although a large number of
redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are
combinations of simple modifications proposed over the past 50 years. This review is devoted to the
main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here,
we propose a systematization of existing knowledge about modifications of nucleic acid monomers
and an acceptable classification from the point of view of chemical logic. The visual representation is
intended to inspire researchers to create a new type of modification or an original combination of
known modifications that will produce unique oligonucleotides with valuable characteristics.
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1. Introduction

Natural nucleic acids, DNA and RNA, form the basis of all living beings. These
molecules are not only involved in the storage, transmission, and reproduction of infor-
mation but also perform various, sometimes quite complex, functions from the catalysis
of chemical reactions to the control of gene expression [1]. The formation of complex
three-dimensional structures due to complementary interactions of nitrogenous bases is a
fundamental property of these natural polymers. The prospect of influencing processes
determined by this property gave impetus to the development of oligonucleotide chemistry,
from its methodological aspects, synthetic schemes, and automated protocols to its wide
range of applications.

The study on the structure and properties of nucleic acids allowed one to decode the
human genome and understand the nature of many hereditary diseases. Oligonucleotide
sequences capable of interacting with natural nucleic acids have enormous potential as
means for studying biological systems and processes, diagnostic tools, and new biomedical
products. However, the use of oligonucleotides based on natural nucleic acids has its own
limitations, including insufficient resistance to enzymatic degradation in biological media
caused by the action of nucleases that cleave phosphodiester bonds, low bioavailability,
and the joint use of specific delivery systems [2]. To solve these problems and impart the
required properties to polymers, the structural unit of natural nucleic acids is subjected to
modification, and this subsequently led to the formation of a new direction of research [3].

Modified oligonucleotides, or artificial genetic polymers, have become an essential
instrument in such therapeutic approaches as RNA interference [4], aptamer binding [5],
and CpG oligonucleotide immunostimulation [6]. CRISPR/Cas9 genome editing has
gained enormous popularity with the application of modified guide RNAs [7,8]. However,
the most fruitful approach, which resulted in the first FDA-approved oligonucleotide drug,
is the antisense oligonucleotide (ASO) principle [9]. While the therapeutic effect of ASOs
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is primarily associated with the cleavage of target mRNA by the RNase H enzyme, these
short-strand nucleotide analogs can block mRNA processing or translation upon binding,
form triple helices with DNA, prevent splicing or destabilize pre-mRNA, and attach to
miRNAs, thus inhibiting transcription and affecting gene expression. The ASO strategy
extensively recruits nucleic acid modifications to increase efficacy, enzymatic stability, and
decrease the immune response and off-target toxicity of the developed oligoes [10].

This review is aimed at systematizing information about the currently known principal
structural modifications of the sugar phosphate backbone of natural nucleic acids. These
modifications, either alone or in combination, can impart artificial polymers with the
desired properties and level out the drawbacks of oligonucleotide chains to provide wider
experimental and medical applications.

2. Natural Nucleic Acids and Modification Directions

Nucleic acids (NAs) are biological polymers whose monomer units are nucleotides
(Figure 1). Nucleotides have a similar structure in both DNA (1) and RNA (2): a nitrogenous
base, a pentose sugar, and a phosphate group. While the RNA monomer is based on β-D-
ribose, the DNA chain is built on β-D-deoxyribose units linked by phosphodiester bonds.
The pentose ring, through a glycosidic bond, carries one of five possible nitrogenous
bases, with three (adenine, guanine, and cytosine) being common to DNA and RNA and
the other two found only in a specific NA (thymine in DNA; uracil in RNA). These five
nitrogenous bases are usually called major nucleobases since many naturally occurring
modified ribonucleosides can be found in tRNA, rRNA, mRNA, and lncRNA molecules [11].
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Figure 1. The structure of DNA (1) and RNA (2) monomer units.

The finite set of nitrogenous bases, the instability under the action of nucleases, and
specific physicochemical characteristics of natural nucleic acids have inspired researchers
to search and develop analogs with certain properties that allow one to more fully utilize
the inexhaustible potential of these unique biomolecules for both biomedical and research
purposes. Over 50 years of intensive research in the field of oligonucleotide chemistry has
made it possible not only to artificially synthesize natural nucleic acid oligomers but also to
develop synthetic approaches for modifying their main structural elements. The proposed
review is an attempt to systematize knowledge about the nucleotide analogs synthesized
to date and identify and classify the basic modifications affecting the sugar and phosphate
moieties in oligomers. This review does not discuss modified nitrogenous bases and their
artificial analogues; achievements in this area of research can be found in the following
papers [12,13].

3. Phosphate Modifications

The anionic nature and poor metabolic stability of the natural phosphodiester group
are two main problems when using oligonucleotides as therapeutic agents. In this regard,
modification of the phosphodiester group has historically become the first modification
aimed at both increasing resistance to nucleases and overcoming biological barriers such
as cell membranes. The types of modifications given below are used specifically for con-
structing oligomeric chains; however, there are also modifications that allow crosslinking
oligomers to each other. Such modified NAs, such as borono-analogs [14], can formally be
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considered carrying a substitution for the phosphodiester bond, but the functional purpose
of this modification is different.

3.1. Phosphotriesters

The main purpose of esterification (Figure 2) is to remove the negative charge from the
nucleic acid backbone. It is believed that such derivatives (3) can hybridize with natural
NAs, forming more stable duplexes due to the elimination of electrostatic repulsion [15].
To date, not only ethers, such as methyl, ethyl, isopropyl, and others [16,17], but ether
modifications carrying functional groups [18], polyethylene glycol chains [19], fluorescent
labels [20], and hydrophobic and cationic substituents [21] have been obtained. However,
such a modification acquired its main practical significance in the context of delivering
oligonucleotides into the cell: prodrug-type modifications (4) that impart not only resistance
to the action of enzymes but also increase uptake by the cell were developed [22–24].
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Interestingly, the phosphotriester modification can be obtained by reducing borane
phosphonate oligonucleotides with metal ions [25]. In addition, the elementary units
themselves can be used as esterification agents; thus, branched oligonucleotides could be
obtained [26].

3.2. Substitution of Non-Bridging Oxygen Atoms

The non-bridging oxygen atom can be replaced with sulfur or selenium to obtain
phosphorothioate [27] and selenoate [28] monomers (5), which allows oligonucleotides
with such modifications to impart resistance to nucleases (Figure 3). Despite the frequent
representation as =S, it was shown that sulfur does not form a double bond [29], so cationic
oligonucleotides could be obtained [30]. Due to the retention of a negative charge on
each internucleotide function, phosphorothioate derivatives are the closest analogues of
natural oligonucleotides. However, such a substitution leads to chirality on phosphorus,
and, therefore, approaches to the stereoselective synthesis of such derivatives have been
developed [31,32].

If both non-bridging oxygens are replaced by sulfur, phosphorodithioate monomers (6)
are obtained [33]. Such compounds are not chiral and are absolutely resistant to the action
of all known nucleases. However, they are not widely used in the development of potential
drugs since such a substitution results in the nonspecific binding to partially complementary
DNA as well as to proteins. Most often, phosphorodithioate oligonucleotides are used in
the design of aptamer libraries [34].

Another significant modification is the substitution of oxygen with carbon (7), pri-
marily the methyl group (R = H) [35]. Oligonucleotides containing such nonionic bonds
are resistant to degradation by cellular nucleases and are consumed by cells unchanged.
At the same time, alkylphosphonates can be obtained enzymatically [36]. Alkyl can be
used to attach some functional groups to phosphorus. So, to reduce the total negative
charge, cationic units, such as alkylaminophosphonates [37,38], can be introduced into
the oligomer structure. On the other hand, since the loss of the negative charge leads to
poor solubility and the aggregation of oligomers in aqueous solutions, negatively charged
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modifications of non-bridging oxygen that remain resistant to nucleases were developed.
The carboxyl group can be linked to phosphorus through a methylene bridge, such as
in phosphonoacetates [39], or directly attached to the phosphorus atom to obtain phos-
phonoformates (8) [40]. In the form of neutral esters, these modified oligonucleotides are
consumed by cells through passive diffusion.
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In addition, other derivatives, such as phenylphosphonates and pyridylphosphonates
(9) [41,42], as well as triazolylphosphonates (10), were synthesized. The latter are obtained
from alkynylphosphonates via the click reaction [43]. The binding of phosphorus to the
aromatic system makes oligonucleotides even more resistant to nucleases, probably due to
their greater steric hindrance.

However, phosphoramidates (11) are the most widespread modified oligonucleotides.
The non-bridging oxygen atom has been substituted with nitrogen to obtain various deriva-
tives, starting from alkyl phosphoramidates [44], triazinyl phosphoramidates [45], and
phosphoramidates with cationic substituents [46], including those containing guanidine
groups [47]. Although phosphoryl guanidines (12) [48] are structurally close to phospho-
ramidates, the prospects of combining these oligonucleotides with phosphorothioate modi-
fications for different therapeutic applications were repeatedly noted, while at least three
stereo-regular mixed backbone phosphorothioate-phosphoryl guanidine oligonucleotides
entered clinical trials in 2021 [49]. Another practically valuable group of modifications that
should be mentioned here is substituted sulfonyl phosphoramidates (13), among which
mesyl phosphoramidates (R = CH3) turned out to be promising for replacing phospho-
rothioate groups in ASOs [50]. Such modified oligonucleotides have shown significant
advantages over commonly used phosphorothioates in their affinity to RNA, nuclease
stability, and specificity of antisense action [51].

Separately, it is worth mentioning the boranophosphate modification (14) [52], which
can be considered a functional hybrid of phosphate, phosphorothioate, and methylphos-
phonate fragments. In such oligonucleotides, the borane group is isoelectronic to O and S,
and the internucleotide group is negatively charged like the phosphodiester group in native
and phosphorothioate polymers. The boranophosphate group is also isostructural with
the diester moiety of nuclease-resistant methylphosphonates. In addition, oligonucleotides
modified in this way can be used as precursors to introduce other substitutions of one or
both non-bridging oxygen atoms [53].
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3.3. Substitution of Bridging Oxygen Atoms

Another type of phosphate group modification is the replacement of bridging oxygens
at positions 3′ (15) or 5′ (16) with selenium, sulfur, or nitrogen atoms to produce their
corresponding selenophosphates [54], thiophosphates [55], and phosphoramidates [56,57].
The main advantage of such substitutions is an increase in the resistance to nucleases
without the appearance of a chiral center (Figure 4). An interesting fact is that the unnatural
3′N–P bond can be formed naturally by a modified DNA polymerase [58].
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One can also replace the oxygen atom with carbon. In this case, it is also possible to syn-
thesize both 3′-methylenephosphonate (17) [59] and 5′-methylenephosphonate oligomers
(18) [60], while the replacement of both atoms allows one to obtain bismethylenephos-
phinates (19) [61]. Other possible carbon substitutions of the bridging oxygen atom are
represented by vinylphosphonate oligonucleotides (20), for which it is possible to vary the
configuration due to E/Z isomerism [62], as well as alkynylphosphinate oligonucleotides
(21), which allow one to improve the duplex-stabilizing properties due to the leveling
of protons in position 6′ repelling the nitrogenous base [63]. However, formally, these
substitutions already affect the sugar residue.

In practice, it is quite rare to find only one modification; most often, combinations of
bridged and non-bridged substitutions are used. The most common oligonucleotides are
thiophosphoramidate ones [64].

3.4. Phosphate Linkage Extension

The phosphate unit can be elongated by adding the methylene group to the chain
(Figure 5). In this way, it is possible to obtain methylene phosphonate derivatives (22) and
(23), which have significant resistance to nucleases but retain the ability to form duplexes
with natural NAs [65,66]. Another method of extension is to repeat the phosphoester
unit. Such fully modified diphosphodiester oligomers (24) retain the ability to undergo
complementary interactions and exhibit significant stability [67].
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4. Sugar Linking Backbone Modifications

Modifications in this section affect both the phosphate group and the sugar residue.
Oligonucleotides modified in this way most often do not retain their 3′ and 5′ oxygen
atoms, the presence of which is determined by the structure of ribofuranose. However, it is
generally accepted to consider changes of this kind as internucleotide linkage modifications.

A large number of works are devoted to the development and use of deoxyribose and
ribose backbone cross-links that are alternatives to the phosphate group. When making
such substitutions, they are primarily guided by the total length, which should be close to
the native one to preserve the possibility of complementary interactions, as well as by the
useful physicochemical parameters of the proposed crosslinking. All such modifications
can be divided into acyclic and cyclic modifications.

4.1. Acyclic Linkages

Firstly, the introduction of a substituent to the carbon atom at position 5′ should be
considered an alternative linkage (Figure 6). In particular, the introduction of the methyl
substituent (25) allows one to obtain modified oligonucleotides with characteristics more
suitable for use in antisense therapy, although it leads to the appearance of a chiral center on
the carbon atom [68,69]. To date, the introduction of other substituents has been described,
but their use is limited to terminal positions in small interfering RNAs [70]. Minimal modi-
fication of the natural phosphate linkage allows the production of α-hydroxyphosphonate
oligonucleotides (26), which have marked differences in hybridization properties depend-
ing on the configuration of the 5′ carbon atom [71].

The formal replacement of the phosphorus atom and two non-bridging oxygen atoms
with a carbon atom allows the formation of oligonucleotides with formacetal linkage
(27) [72]. Such a minor structural change can be easily introduced into the polymer without
compromising the helical structure and the stability of duplexes and triplexes. The increased
affinity of formacetal oligonucleotides to complementary RNA fragments can be further
increased by substituting the 3′-bridging oxygen with a sulfur atom when forming a
thioacetal linkage (28) [73]. Based on the replacement of the phosphorus atom with a sulfur
atom, a variety of modified oligonucleotides with sulfamate (29, 30) [74,75], sulfamide
(31) [76,77], sulfonamide (32) [78], sulfonic (33), and dimethylene sulfide (34) bridging
groups [79], often having interesting characteristics, have been obtained. However, when
creating modified polymers, amide fragments (35–40) are most often used as alternative
acyclic linkages, allowing the internucleotide crosslinking to be configured in different
ways [80–83].

An interesting non-phosphorus type of linear cross-linking is the methylene(methylimine)
modification (41) [84]. This modification has many advantages, such as an achiral and
neutral backbone, high affinity for RNA, and significant resistance to nucleases. Other
acyclic linkages include carbamate variants (42–43), which can be found in oligonucleotides
with locked units [85] and urea derivatives (44) [86], although these are considered too
short to adopt the preferred oligonucleotide conformation in the duplex.

A complete replacement of the negatively charged phosphodiester bond is also pos-
sible with alternative positively charged structural motifs. The introduction of thiourea
(45) [87] or guanidinium (46) [88] linkages into the structure of oligonucleotides, which
are positively charged at physiological pH, leads to the formation of zwitterionic or even
oligocationic backbone structures, and this significantly improves the absorption of such
polymeric structures. Another positively charged modification of oligomers that touches
on the internucleotide bond is the obtaining of nucleosyl amino acids (47), which can
significantly increase the stability of the final polymers in biological media, such as blood
plasma [89].
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4.2. Cyclic Linkages

To date, there are not many examples of cross-linking nucleoside structures into a
polymer using cyclic fragments (Figure 7). However, the use of such heterocyclic systems,
such as piperazine (48–50) [90], homopiperazine (51) [80], imidazole (52, 53) [91], and
triazole (54, 55) [92], for these purposes can be classified as such modifications. The last
modification is interesting because, with the development of click chemistry, the number
of options and the ease of introducing such internucleoside cross-linking have increased
significantly (56–59) [93,94]. The introduction of a heterocyclic motif into the linkage
structure does not provide any benefit in the stability, binding ability, and resistance of
the final polymers. However, triazole linkages are still being used, in particular, in the
synthesis of oligomers from locked units [95], precisely because of the development of such
a synthetic approach. Moreover, the biocompatibility of 1,5-disubstituted triazole linkages
with DNA polymerases have been revealed recently [96].
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5. Sugar Modifications

A reason for studying artificial NAs is to develop modified oligonucleotides with
improved chemical and biological properties that allow them to function more efficiently
than DNA/RNA in biomedical, biotechnological, and nanotechnological applications.
The stability of natural oligonucleotide duplexes, as well as the formation of stable and
functional protein–oligonucleotide complexes, is determined primarily by the conformation
and dynamics of the sugar moiety. Thus, the ribofuranose modification in NAs is a widely
used method for manipulating the activity of natural polymers.

5.1. Esterification of Free Hydroxy Groups in RNA

Currently, RNA-based drugs are being actively developed. However, RNA is inher-
ently unstable, potentially immunogenic, and requires the use of special targeted delivery
systems. The sensitivity of RNA to RNases is determined by the presence of the 2′-hydroxy
group in the sugar ring, and therefore, modifications of the ribose fragment were primarily
aimed at replacing this position.

The simplest modification of RNA is methylation at the oxygen atom of the 2′-hydroxy
group (60), while a similar modification occurs in nature [97]. Oligonucleotides with the
2′-O-methyl modification have increased resistance to nucleases and affinity to target RNA,
as well as a reduced immune response (Figure 8). Many ether modifications of the 2′-
hydroxy group have also been proposed, including alkyl modifications (61) [98], those
containing functional groups such as 2′-O-allylic (62) [99], 2′-O-cyanoethyl (63) [100], and
2′-O-acetalester (64) [101], positively charged groups that could compensate for the nega-
tive charge of the phosphate residue, for example, amine (65–68) [102–105] and guanidine
(69) [106], as well as clickable modifications (70, 71) [107]. In this case, the most success-
ful turned out to be the 2′-O-methoxyethyl modification (72), which allows improving
therapeutically significant properties, namely increasing the affinity to RNA, resistance to
nucleases, and thermal stability of the complexes [108]. This modification can be found in a
number of FDA-approved oligonucleotide drugs [109].



Molecules 2024, 29, 3025 9 of 21

Molecules 2024, 29, x FOR PEER REVIEW 9 of 22 
 

 

turned out to be the 2′-O-methoxyethyl modification (72), which allows improving thera-
peutically significant properties, namely increasing the affinity to RNA, resistance to nu-
cleases, and thermal stability of the complexes [108]. This modification can be found in a 
number of FDA-approved oligonucleotide drugs [109]. 

 
Figure 8. Structures of 2′-O-esterified RNA monomer units (60–72). 

5.2. The Introduction of Substituents into the Ribose Ring 
Although the natural DNA molecule is more stable than RNA due to the absence of 

the 2′-hydroxy group in the ribose ring, its stability is still not sufficient for clinical use. In 
this regard, it was proposed to introduce substituents, primarily those with high electro-
negativity, into this position (Figure 9) to increase not only stability but also affinity to 
RNA due to conformational factors [110]. 

Halogen atoms, in particular, fluorine (73) [111] or chlorine (74) [112], can be intro-
duced into the ribose ring. Such halogen-modified oligonucleotides allow one to increase 
resistance to nucleases while also suppressing immune stimulation. The 2′-F modification 
is also often used to finetune the RNA-cleaving activity of modified ASOs [113]. Electron-
donating substituents, namely the amino group and its derivatives (75, 76) [114], can also 
be introduced into the 2′ position of the ribose ring, which stimulates a more DNA-pre-
ferred configuration of ribose. In this case, the introduction of azide (77) [115] is the 2′ 
modification with the widest range of applications. Such modified oligonucleotides can 
be further functionalized with dyes or biotin and, like other 2′-substituted ones, be syn-
thesized by modified DNA polymerases [112]. 

A number of 4′ modifications of the ribose ring have also been described in the liter-
ature; these include the introduction of fluorine (78) [116], methyl (79), alkoxy groups (80, 
81) [117], and amino alkyl substitutions (82–84) [118]. Oligonucleotides modified in this 
way represent DNA constructs that mimic the behavior of RNA. However, such 

Figure 8. Structures of 2′-O-esterified RNA monomer units (60–72).

5.2. The Introduction of Substituents into the Ribose Ring

Although the natural DNA molecule is more stable than RNA due to the absence
of the 2′-hydroxy group in the ribose ring, its stability is still not sufficient for clinical
use. In this regard, it was proposed to introduce substituents, primarily those with high
electronegativity, into this position (Figure 9) to increase not only stability but also affinity
to RNA due to conformational factors [110].
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Halogen atoms, in particular, fluorine (73) [111] or chlorine (74) [112], can be intro-
duced into the ribose ring. Such halogen-modified oligonucleotides allow one to increase
resistance to nucleases while also suppressing immune stimulation. The 2′-F modification
is also often used to finetune the RNA-cleaving activity of modified ASOs [113]. Electron-
donating substituents, namely the amino group and its derivatives (75, 76) [114], can also be
introduced into the 2′ position of the ribose ring, which stimulates a more DNA-preferred
configuration of ribose. In this case, the introduction of azide (77) [115] is the 2′ modifica-
tion with the widest range of applications. Such modified oligonucleotides can be further
functionalized with dyes or biotin and, like other 2′-substituted ones, be synthesized by
modified DNA polymerases [112].

A number of 4′ modifications of the ribose ring have also been described in the
literature; these include the introduction of fluorine (78) [116], methyl (79), alkoxy groups
(80, 81) [117], and amino alkyl substitutions (82–84) [118]. Oligonucleotides modified
in this way represent DNA constructs that mimic the behavior of RNA. However, such
modifications are most often used in combination with 2′ modifications for more precise
conformational adjustments of the ribose ring [119,120].

5.3. Alternative Sugar Moieties

A drastic way to change the geometry and conformational mobility of the sugar moiety
is to replace the ribose ring with alternative cyclic and acyclic fragments. Such modifications
are aimed at modulating specific interactions and properties of oligonucleotides, including
the stability and recognition ability.

5.3.1. Ribose Isomers

The natural structure of RNA is formed by β-D-ribofuranose, a cyclic form of D-ribose.
If the enantiomer is used instead, that is, L-ribose (Figure 10), then the so-called spiegelmers
(85) could be obtained. Such oligomers are non-immunogenic and practically resistant
to enzymatic degradation; they do not interact with natural NAs but are widely used as
aptamers [121]. It is also possible to obtain oligomers based on other isomers of ribose in
the furanose form, including arabinose (86) [122] and xylose (87) [123], while the latter has
an orthogonal pairing system.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 10. Structures of NA monomer units based on ribose isomers (85–96) and other sugars (94–
96). 

5.4. Bridged Ribose Ring Modifications 
To increase the affinity to RNA, a modification of the ribose ring consisting of a meth-

ylene bridge between 2′-oxygen and 4′-carbon (Figure 11) was proposed by two independ-
ent scientific groups [129,130]. This new type of oligonucleotide was called locked nucleic 
acids (97). The main idea of such a modification is to reduce the conformational mobility 
of ribose and increase the local organization of the carbohydrate–phosphate backbone, 
which leads to the formation of stronger duplexes with DNA and RNA [131,132].  

To date, various oligonucleotide modifications that form a 2′,4′-bridge of different 
lengths and compositions have been proposed; these are usually referred to as 2′,4′-
bridged NAs. In comparison with the initially proposed structure, the linking chain of 
which consisted of two atoms, carbon and oxygen, oligonucleotides with an atom of sulfur 
(98) [133], selenium (99) [134], nitrogen [135], including a substituted one (100) [136–140], 
and also simply carbon (101) [141] and methylene substituted carbon (102) [142] instead 
of the original heteroatom were developed. In addition, modifications with a substituent 
(103) [143] and a heterocyclic fragment (104) [144] within the bridge, as well as oligonu-
cleotides with three-atom (105) [145] and four-atom bridged modifications (106) [146], in-
cluding with various heteroatoms (107) [147], have been obtained. The whole variety of 
structures of such modified NAs obtained to date can be found in the review [148]. 

A 1′,2′-bridging modification (108), allowing conformational restriction of the ribose 
ring, has also been described in the literature [149]. Although it does not offer significant 
advantages over unmodified oligonucleotides, further replacement of the 2′-oxygen atom 
with nitrogen (109) allows one to increase the affinity of NAs modified in this way to RNA 
[150]. 

Figure 10. Structures of NA monomer units based on ribose isomers (85–96) and other sugars (94–96).

Oligonucleotide chains can also be constructed using isomeric ketopentoses. Thus,
nucleic acids based on α-L-xylulofuranose (88) and β-L-ribulofuranose (89), although they
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do not exhibit pairing ability, but the point introduction of such elementary units allows
one to enhance the orthogonal base pairing properties of the chimeric oligonucleotide [124].

If we consider the pyranose form, it is possible to obtain oligonucleotides based on
ribose (90), xylose (91), lyxose (92), and arabinose (93), which have pairing abilities [125].

5.3.2. Other Sugars

Other sugars such as threose and glucose can be used to construct the oligonucleotide
chain (Figure 10). The threose NA (94) obtained in the first case is the simplest of all poten-
tial alternatives to natural NAs of the oligonucleotide type, capable of pairing with DNA
and RNA and having greater hydrolytic stability compared with RNA [126]. Homo-DNA
derived from 2′,3′-dideoxy-β-D-glucopyranose (95) does not tend to form helical struc-
tures [127], while α-homo-DNA (96) can interact with RNA to form parallel duplexes [128].

5.4. Bridged Ribose Ring Modifications

To increase the affinity to RNA, a modification of the ribose ring consisting of a
methylene bridge between 2′-oxygen and 4′-carbon (Figure 11) was proposed by two
independent scientific groups [129,130]. This new type of oligonucleotide was called locked
nucleic acids (97). The main idea of such a modification is to reduce the conformational
mobility of ribose and increase the local organization of the carbohydrate–phosphate
backbone, which leads to the formation of stronger duplexes with DNA and RNA [131,132].
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To date, various oligonucleotide modifications that form a 2′,4′-bridge of different
lengths and compositions have been proposed; these are usually referred to as 2′,4′-bridged
NAs. In comparison with the initially proposed structure, the linking chain of which con-
sisted of two atoms, carbon and oxygen, oligonucleotides with an atom of sulfur (98) [133],
selenium (99) [134], nitrogen [135], including a substituted one (100) [136–140], and also
simply carbon (101) [141] and methylene substituted carbon (102) [142] instead of the origi-
nal heteroatom were developed. In addition, modifications with a substituent (103) [143]
and a heterocyclic fragment (104) [144] within the bridge, as well as oligonucleotides with
three-atom (105) [145] and four-atom bridged modifications (106) [146], including with
various heteroatoms (107) [147], have been obtained. The whole variety of structures of
such modified NAs obtained to date can be found in the review [148].
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A 1′,2′-bridging modification (108), allowing conformational restriction of the ribose
ring, has also been described in the literature [149]. Although it does not offer significant
advantages over unmodified oligonucleotides, further replacement of the 2′-oxygen atom
with nitrogen (109) allows one to increase the affinity of NAs modified in this way to
RNA [150].

5.5. Substitution with Non-Sugar Cycles
5.5.1. Monocyclic Substitution

The formal replacement of the ring oxygen atom with sulfur or selenium (Figure 12)
allows one to obtain the so-called thioRNA (110) [151] and selenoRNA (111) [152]. Oligonu-
cleotides built on such artificial heterocyclic fragments have an increased ability to form
duplexes with RNA and high resistance to endonucleases, despite the presence of 2′-OH
groups. Another cyclic system widely used to construct the oligonucleotide chain is 1,5-
anhydrohexitol. Despite the fact that all four isomers have been synthesized to date, the
most studied and practically used are β-D-hexitol nucleic acids (112), which have a pro-
nounced ability to hybridize with natural NAs, especially with RNA [153]. If the ribose
ring is replaced by a morpholine system, then the nucleotides modified in this way are
morpholino nucleic acids (113) [154].
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The transition to a six-membered all-carbon scaffold was carried out in cyclohexanyl
NAs, among which only the D-isomer (114) is capable of hybridizing with natural NAs [155].
An unsaturated modification of such oligonucleotides, called cyclohexenyl NAs (115), has
the ability to undergo conformational adaptation when incorporated into a natural DNA
chain [156]. There are also oligonucleotides based on a seven-membered ring, such as
oxepane NAs (116), which are able to associate with their respective complementary RNA
strands [157].

5.5.2. Bicyclic and Tricyclic Substitutions

Bicyclic artificial NAs include methanocarbacyclic oligonucleotides (117, 118) [158].
The fact that the bicyclo[3.1.0]hexyl scaffold effectively mimics the 3′-endo structure of
the sugar moiety by locking the conformation of the cyclopentane ring with cyclopropyl
fragment allows the modified oligonucleotides to exhibit increased affinity to RNA and
stability to nuclease degradation. Formal ring closure through 3′ and 5′ carbon atoms of
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the ribose ring in natural NAs allows one to obtain the so-called bicyclo-DNA (119) [159],
which has increased affinity to complementary RNA and nuclease resistance. To date, the
modification with a displaced phosphodiester linkage (120) [160], as well as its anomeric
variant (121) [161], has been developed. Using formal ring closure between the 2′ oxygen
atom and the 3′ carbon of the arabinose ring, bicyclic oligonucleotides (122) with functional
groups facing the major groove were proposed [162]. There are also oligomers built
on a tricyclic fragment (123), which show some potential in the treatment of genetic
disorders [163].

5.6. Acyclic Substitutions

The formal “cleavage” of the bond between 2′ and 3′ carbon atoms of the ribose ring
produces an acyclic analog of RNA (Figure 13), unlocked NAs (124) capable of modulating
the stability of NA duplexes and base-pairing specificity [164]. Further “cleavage” of the
2′-CH2OH group results in the so-called flexible NAs (125) that weakly hybridize with
DNA [165].
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If 2-amino-1,3-propanediol is used instead of ribose, it is possible to obtain serinol
NAs (126), which form highly stable heteroduplexes with complementary DNA and RNA
sequences [166]. The chirality of such oligomers depends only on the sequence, since the
enantiomer is an oligomer with the reverse sequence. A nucleic acid based on L-threoninol
(127) instead of ribose can bind to DNA and RNA, while the D-isomer (128) is not capable
of such interactions [167]. Among the glycol NAs (129, 130), only oligonucleotides in the S
configuration are capable of hybridizing with RNA [168].

6. Alternative Scaffolds for Nitrogenous Bases

The synthetic possibilities for the formation of alternative scaffolds bearing nitroge-
nous bases are virtually limitless. The development and study of hybridization properties
of so-called peptide NAs built both on the classic aminoethyl glycine motif [169], as well as
on the basis of dipeptide structures [170] and conformationally constrained analogs [171],
has outgrown into a separate research area. In addition, combinations of the modifications
described above allow one to obtain new types of oligonucleotides. Along with locked
NAs, morpholine-containing oligonucleotides have become mainstream in recent decades,
among which phosphorodiamidate analogs are the most commercially successful and
can be found in four FDA-approved drugs [109]. At the same time, a huge number of
combinations have not yet been translated into reality, and perhaps some of them will lead
to the emergence of unique properties of oligonucleotides that could manage diseases and
pathologies for which classical drugs are ineffective.

7. Conclusions

Artificial NAs are an important tool for realizing the inexhaustible potential of natural
NAs. Modified nucleotides have now achieved such progress that they have become an
important class of therapeutic drugs. Chemical modifications are needed both to impart
stability, resistance, and specificity compared with natural NAs, as well as other properties
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necessary for their use as drugs. This review provides basic information that allows
the unprepared reader to understand the variety of possible modifications of the sugar
phosphate backbone of natural NAs.

The proposed classification is not just a listing of modifications but an attempt to
systematize the existing knowledge in oceanic oligonucleotide chemistry from the point of
view of chemical (structural) logic. It should be noted that, in reality, it is almost impossible
to find oligonucleotides based on a single modification. Most often, combinations of modi-
fications, as well as the point inclusion of modified nucleotide units and their combinations
in the oligonucleotide, are used. When designing new oligonucleotides, it is necessary to
focus on modern achievements but be based on principal modifications, which will intro-
duce a rational grain into the process of obtaining the desired characteristics. We believe
that the classification presented in this review, accompanied by appropriate visualization,
will inspire researchers to create oligonucleotides with new types of modifications or an
original combination of known modifications, which, in the future, can become promising
drugs or diagnostic tools.
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