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Abstract: In this work, we focus on the prediction of the influence of CO2 laser parameters on the kerf
properties of cut spruce wood. Laser kerf cutting is mainly characterized by the width of kerf and the
width of the heat-affected zone, which depend on the laser power, cutting speed, and structure of
the cut wood, represented by the number of cut annual rings. According to the measurement results
and ANN prediction results, for lower values of the laser power (P) and cutting speed (v), the effect
of annual rings (ARs) is non-negligible. The results of the sensitivity analysis show that the effect
of v increases at higher energy density (E) values. With P in the range between 100 and 500 W, v
values between 3 and 50 mm·s−1, and AR numbers between 3 and 11, the combination of P = 200 W
and v = 50 mm·s−1, regardless of the AR value, leads to the best cut quality for spruce wood. In this
paper, the main goal is to show how changes in the input parameters affect the characteristics of the
cutting kerf and heat-affected zones for all possible input parameter values.

Keywords: CO2 laser; artificial neural networks; spruce wood; cutting kerf; heat-affected zone;
sensitivity analysis

1. Introduction

Laser wood cutting is a standard method for processing wood, and powerful CO2
lasers are used for this purpose. CO2 lasers have been used for decades and achieve a
high-quality cut with a wide range of material thicknesses. In a wide range of cases, CO2
laser cutting is preferred over water-jet cutting. A good-quality cut surface is crucial for the
subsequent processing steps. Another advantage of laser cutting lies in the fact that the
laser affects only a limited area via thermal stress, and, in contrast to water jets, it does not
affect the sample’s moisture content [1–6].

The properties of the cut are important for the usage of the sample because they signifi-
cantly affect the wood’s surface properties, such as roughness, and the ability to prepare glued
composites is mainly controlled by the strength of the glue joint. Therefore, it is important to
optimize the cut quality according to the changes in the cut parameters vs. the laser power (P),
cutting speed (v), density profiles, and many more. One of the main criteria of a good-quality
cut is that the cutting kerf width and thickness profile do not significantly change. This can be
characterized by the ratios of the cutting kerf widths on the primary cut side on the sample and
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on the opposite side. To optimize the cut quality, Eltawahni et al. [7] defined a methodology
for the evaluation of the characteristic WKR, defined as the ratio of the cutting kerf width
on the lower surface (WKL) divided by the cutting kerf width on the upper surface (WKU)
(WKR = WKL/WKU) (Figure 1), which is mainly affected by P, v, and the position of the focal
point. In another study, Eltawahni et al. [8] studied the effects of the laser characteristics on
the cutting parameters of plywood materials.
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Kubovský et al. studied the effects of parameters v, the number of cut ARs, and P on
the cut characteristics of spruce wood for measured values [9]. The study also included
an ANOVA to show the combined effect of all three input parameters on each output
parameter, but only for low P (max.: 150 W) and v (max.: 9 mm·s−1) values.

When cutting spruce wood with a CO2 laser, the laser output power is usually up to
about 500 W, and the cutting speed does not exceed 50 mm·s−1. The number of cut ARs for
spruce wood is typically from 3 to 11. In order to determine the influence of the P and AR
parameters, Ružiak et al. [10] used artificial neural networks (ANNs), keeping the cutting
speed constant (v = 12 mm·s−1), to predict the WKU, WKL, WKR, WHAZU, and WHAZL
parameters (Figure 1).

Many other authors have conducted similar research using other wood-based mate-
rials. Nukman et al. [11] studied the effect of these technological parameters on the cut
quality for Malaysian-based wood and plywood. They presented the dependence of the
material removal rate (MRR) vs. P and v. The MRR parameter increases with P in the
exponential stabilizing form for various atmospheres.

The effects of the CO2 laser parameters on the width of the heat-affected zone in wood
and wood composites was studied in [12].

There are many articles that deal with the laser processing of metallic or polymer
materials via CO2 laser. However, only a few authors have studied the effect of the laser
characteristics on the cut quality for wood materials.

The following paragraph is mainly focused on the influence of the v and P values on
the width and the resulting cut quality.

Martinez-Conde et al. [4] are some of the few authors who have studied the effects of CO2
laser parameters on the cut quality of wooden materials. They compared the results of the
cut characteristics via CO2 laser vs. other conventional lumber-cutting techniques. They also
studied the effects of laser characteristics on the cutting kerf width of wood. Similarly to other
authors, they found that P increased the cutting kerf width and that v decreased it nonlinearly.

Lum et al. found the same effect of v on the cutting kerf width for medium-density
fiberboard (MDF) [13]. However, there have been few studies dealing with the effects of
laser characteristics on the cutting kerf width of the final product compared to the cutting
of metals and plastics. Authors dealing with the effects of v on cutting kerf widths have
determined that there is a nonlinear decrease in the cutting kerf width with v, as shown
in [14,15].

The authors of [16] studied how UV laser characteristics affect the cutting parameters
of Japanese larch, cedar, and beech wood. In another study [17], the authors compared
UV–VIS–NIR lasers for their abilities to cut selected species of wood.
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Artificial neural networks (ANNs) have often been applied in material science and in
the optimization of technologies for materials. Many authors have used ANNs to predict
material properties. The authors of [18] predicted the thermal conductivity of wood. The
surface roughness of wood during machining was predicted in [19], and an ANN was applied
for the prediction of the surface roughness and energy consumption of the wood in [20]. The
ANNs in [21] were able to predict the optimal power consumption in wood processing.

ANNs have also been successfully applied for the optimization of technologies. The
authors of [22] predicted the formaldehyde emissions of particleboard from the manufac-
turing conditions. The authors of [23] also determined the effect of the manufacturing
process characteristics on the modulus of rupture (MOR) and modulus of elasticity (MOE).

The authors of [24–26] predicted the bonding quality versus the manufacturing condi-
tions using ANNs and multiple regression models.

The optimization of the CNC process for the best wood surface quality using the ANN
approach was published in [27]. In [28], the authors studied the effect of CNC processing
characteristics on the surface properties of MDF using the ANN approach.

The main goal of this study was to predict the parameters of the kerf region (WKU,
WKL, WKR) and heat-affected zone region (WHAZU, WHAZL) depending on the laser
power (P) and cutting speed (v) at any number of cut annual rings (ARs) by means of
ANNs for all possible values of all three input parameters. Another goal was to determine
how each input parameter influences the cut characteristic change with increased P and
v values, which was obtained from a sensitivity analysis. The results of the analysis will
help us find the optimal values of P and v to achieve the best possible cut quality when
using different CO2 laser parameters. The obtained cut characteristic trends vs. the input
parameters are fully applicable for any spruce wood cut by a CO2 laser and quantitatively
for the same thickness of spruce wood cut in a direction parallel to the wood fibers. The
results of the sensitivity analysis, together with the input parameter optimization, can be
used as a tool for improving the spruce wood CO2 laser cutting process from the first phase
of P and v determination up to the final best-quality spruce wood cut.

2. Materials and Methods

The experiments were carried out on spruce wood (Picea abies (L) H. Karst). Exper-
imental laser equipment LCS 400 (VEB Feinmechanische Werke, Halle, Germany) with
maximum power output 400 W at wavelength 10.6 µm was used for cutting. The cutting
kerf was obtained in the tangential direction on a sample with dimensions T × R × L
(8 × 100 × 1000) mm with a density of ρ = 428.4 ± 27.9 kg·m−3. The samples were cut
continuously using laser powers of 100 and 150 W and three cutting speeds of 3, 6, and
9 mm·s−1, which were selected according to the sample thickness and the limits of the
laser. The focal length was 127 mm (5′′), the prefocus beam diameter was 10 mm, and the
spot diameter (d) (in Equation (1)) was 0.3 mm. The focal-point position of the laser beam
was at one-half of the sample thickness. The process gas was supplied via a Laval contour
nozzle with an air pressure of 0.25 MPa. The cut spruce wood samples were climatized at a
temperature (t) of 20 ◦C and a relative humidity (RH) of 65%, which corresponded to an
equilibrium moisture content (w) of 12 ± 1%.

The abbreviations used in the text are as follows: WKU: cutting kerf width on the
upper surface; WKL: cutting kerf width on the lower surface; WKR: ratio of WKU and
WKL; WHAZU: width of the heat-affected zone on the upper surface; WHAZL: width of
the heat-affected zone on the lower surface; P: laser power; v: cutting speed; AR: number
of cut annual rings.

The number of cut ARs was used as an input parameter because it is not possible to
define the number of cut ARs per meter, as this parameter varies for each annual ring. All
the research was performed only in the direction parallel to the wood fibers because it is
not possible to track the number of cut ARs in the cutting kerf, as it changes on each ring.

Based on preliminary experiments, we found that if the wood sample as a cut material
is placed on a standard base (steel grid), a structure that copies the base grid is created on
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the underside of the sample. Therefore, in the following experiments, the samples were
supported during the cutting so that the lower surface was not in contact with the grid.
Under the sample, a 20 mm thick space formed by air was created to minimize the influence
of the lower edge of the cut due to the dispersion of hot air on the underlying grid.

All the studied cut parameters of the sample were determined from a microscope
picture using K-cluster analysis, described in detail in [9,10]. The heat-affected zone in the
microscope picture is the area in the darker color (with no material removal) symmetrically
surrounding the cutting kerf (with material removal), as shown in Figure 1, which includes
the definitions of the investigated parameters.

In our experiment, the laser beam focal length, beam diameter, spot diameter, focal-
point position, and pressure were constant for all the measurements; thus, the parameters
of the cut region and heat-affected zone could not be predicted.

The applied laser device uses a commercially produced CO2 laser fully closed tube
with a 10.6 µm wavelength as the radiation source, for which the manufacturer declares
the TEM00 mode and a Gaussian distribution of the radiation intensity in the beam cross-
section. We used a CO2 laser with an output power (P) of 400 W with the cutting mode of
the measurement with a resolution of approximately 300 dpi.

The energy density (E) (J·m−2) with the applied P, v, and spot diameter (d) values
given to the sample section is defined by Equation (1):

E =
P

v.d
(1)

The energy density parameter describes the dosage given to the sample and directly
affects all the studied cut characteristics. According to this definition, with a constant v,
there is a linear increase in the energy given to the material with a change in P. In contrast,
if P is constant, the change in the energy density vs. v is hyperbolic and it decreases with
increasing cutting speed.

Based on the measured values of the cut characteristics shown in Figure 1 vs. the P, v,
and AR values used in the measurements (listed in the first paragraph of this section), we
used an ANN to predict the change in the cut characteristics at higher values of P and v.
The validity of such an approach is typically controlled by the coefficient of determination
(R2) and root-mean-square error (RMSE).

The processing of the measured data using the ANN method was completely per-
formed in the Statistica 12.0 program (StatSoft (Europe) GmbH, Hamburg, Germany).
Based on the input conditions and taking into account the error minimization between the
measured and predicted data, the software found the optimal neural network. The MLP
3-3-5 multilayer perceptron neural network with error backpropagation was found to be
the best neural network for the prediction of all the output parameters. The network input
consisted of three neurons (one for the laser power (P), one for the cutting speed (v), and
one for the number of cut ARs), the output consisted of five neurons (for the WKU, WKL,
WKR, WHAZU, and WHAZL), and the number of hidden neurons was equal to three at
level one. Statistica 12.0 software was also used to analyze the sensitivity of the neural
network and calculate the determination coefficient (R2) and the relative root mean square
error (Rel_RMSE).

The R2 (computed as the square of the correlation coefficient) should be as close as
possible to 1. The second statistical parameter, the RMSE, is the average value of the sum of
squares between the measured and predicted values. This parameter should be as minimal
as possible, but this depends on the average value of the given parameter. Therefore, it
is standard practice to replace this parameter with the relative root mean square error
(Rel_RMSE) value, which is a universal statistical parameter defined as the ratio of the
RMSE to the average parameter value obtained via the measurement. This value should be
close to 0.
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The ideal combination of these two parameters is R2 = 1 and Rel_RMSE = 0, but these
values can only be obtained if all the predicted values are the same as the measured ones,
which is not possible in praxis.

Therefore, the standard method is to compare the Rel_RMSE parameter with the
property measurement error vs. the 95% confidence interval error (equal to 0.05). If
a prediction model has a Rel_RMSE value lower than the measurement or statistical
error, then the model is valid and can be successfully applied for the prediction of new
nonmeasured input parameter values.

The R2 parameter is sensitive to measurement error. The measurement uncertainty is
low for homogenous materials; thus, R2 values higher than 0.99 are considered valid. This
applies for metallic materials and some polymeric materials.

As material is less homogenous or anisotropic as the measurement uncertainty increases,
lower R2 values are obtained; thus, R2 values above 0.9 are also considered very good.

The R2 and Rel_RMSE parameters are used the same for the ANN prediction and
mathematical regression models. The standard fitting procedures take all the input data as
one group to look for mathematical equations between the output and input parameters.

The difference in ANNs vs. standard fitting procedures lies in the fact that ANNs divide
the measured data into three independent groups: training, testing, and validation. These
three groups are each based on different data; thus, all the studied input parameters change for
one group vs. another. The neural network used these three groups to compute the network
performance and error. If the network error does not significantly change between groups,
then the change in the input parameters does not affect the neural network statistics.

Another difference between these two methods is that the ANN prediction output is
not a mathematical equation but rather the output values vs. the input values with new
input parameter combinations.

3. Results

We divided the results and discussion into two basic sections. The first section il-
lustrates the results of the cut characteristics vs. AR at P values of 100 and 150 W and v
values of 3, 6, and 9 mm·s−1. The second section deals with the optimization of the cutting
characteristics at P values between 100 W and 500 W, v values between 3 and 50 mm·s−1,
and numbers of cut ARs between 3 and 11. All the results are discussed in the context of
references, were statistically processed, and are discussed again according to the energy
density values because these have a direct effect on the creation of the cutting kerf width
and the width of the heat-affected zone.

As mentioned above, the energy density is defined by Equation (1), where the param-
eters P and v were changed for each measurement and prediction. The energy density
values vs. the laser power (P) and cutting speed (v) are shown in Table 1. The E values
marked in red are measurements, and the values marked in black are predictions.

Table 1. Energy density (E) values vs. laser power (P) and cutting speed (v).

Power (P)
[W] 100 150 200 300 400 500

Energy Density (E) [J·mm−2]

C
ut

ti
ng

sp
ee

d
(v

)[
m

m
·s
−

1 ]

3 111 167 222 333 444 556

6 56 83 111 167 222 278

9 37 56 74 111 148 185

12 28 42 56 83 111 139

25 13 20 27 40 53 67

50 7 10 13 20 27 33
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3.1. Measured Values

The effect of ARs on all the studied cut characteristics for low P values was statistically
significant according to 95% confidence intervals. However, in comparison with the P and v
effects, the effect of ARs was very small, as only P and v affect the energy density, according
to Equation (1) [10].

The following notation is used in this section. The acronyms (e.g., WKU) refer to the
output parameters in the figure, and the subsequent numbers specify the P or v value. For
example, WKU100 denotes the cutting kerf on the upper board for P equal to 100 W, and
WKR9 corresponds to the cutting kerf ratio (WKR) at a v of 9 mm·s−1.

In this section, we present box–whisker plots not only to show the trends of the
selected cut characteristics vs. P and v but also to show whether the change in the output
parameters was statistically significant. In this setup, the distance from the middle point to
the top of the bar is equal to the standard deviation of the measurement. If the trend change
is significantly lower than this distance, then this change cannot be considered significant.
Thus, it is not possible to conclude that the input parameter affects the output parameter.
Figures 2–5 present the effect of P or v on the cutting parameters obtained via measurement
(red E values in Table 1).
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Figure 2 presents the effect of P on the measured WKU, WKL, and WKR values. The
letter nomenclature is the same as in Section 2, and the numbers 100 and 150 correspond to
the values at P = 100 W and 150 W, respectively.

The graph shows that P increased the WKU and WKL values and that the WKR
increased considerably with the change in P from 100 to 150 W (light-blue bar at 100 W and
yellow bar at 150 W). For lower P values (maximum to 150 W), the slope of WKR vs. P is
by far the highest; thus, P had the most significant effect on WKR among all the parameters
of the cutting kerf region. The maximum average kerf width value is approx. 0.75, which is
still a low value for a good cut quality. Therefore, to achieve a better cut quality, a higher P
value must be used.

Increasing P by maintaining the v and d values leads to an increase in the energy
density (E) given to the sample, which increases the heat given to the material and, thus,
also the cutting kerf width.

Figure 3 presents the effect of P on the measured widths of the heat-affected zones
(WHAZU, WHAZL).

The graph shows that the P increases the width values of the heat-affected zones. This
is due to the fact that, at higher P values, the total heat given to the sample is higher, which
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increases both the heat needed for the evaporation of the material (creation of cutting kerf)
and that needed for the creation of the heat-affected zone.

In addition, it also shows that the WHAZL values are higher than the WHAZU values
because, when the laser cuts the lower board, the hot air generated by cutting flows out of
the cutting kerf region and, thus, mainly affects the heat-affected zone at the expense of
decreasing the cutting kerf width at the lower surface.

Figures 2 and 3 also show that the P had a more significant effect on the WHAZL than
on the WKL, which can be attributed to the fact that, after cutting through the sample, hot
air is generated by the cutting flows outside of the cutting kerf, decreasing the WKL. A
higher P value increases the density of the energy that is used on the lower board mainly
in the heat transfer to the heat-affected zone, because the hot air does not remain in the
cutting kerf region.

Figure 4 presents the effect of v on the measured WKU, WKL, and WKR values. The
letter nomenclature is the same as in Section 2, and the numbers 3, 6, and 9 correspond to
v = 3, 6, and 9 mm·s−1, respectively.

The graph shows that the v increase resulted in a significant decrease in the cutting
kerf widths on the upper and lower boards but did not have a significant effect on their
ratios, which is because, with the increase in the v, the E values linearly decreased, and
thus, the heat given to the material decreased, as well as the cutting kerf values.

The graph also shows that the WKU is higher than the WKL. During wood cutting,
air in the cutting kerf occurs. As the laser beam continues to the lower surface, more air
is generated in the cutting kerf. This air is heated by the heat transferred to the material
through the energy density and that flows out of the cutting kerf, which causes higher heat
losses in the cutting kerf region, thereby decreasing the WKL vs. WKU. This effect is more
significant for lower v values because, at higher v values, the heat losses that result from
hot air flowing out are higher.

Figure 5 presents the effect of v on the measured widths of the WHAZU and WHAZL
of the heat-affected zones.

The graph illustrates that, within a v range lower than 6 mm·s−1, the WHAZU and
WHAZL values increased, although the differences in the WHAZU and WHAZL at v = 6
and 9 mm·s−1 are not statistically significant.

As the laser beam cuts through the material, the heat transfer via the flow of hot air to
the heat-affected zone increases, resulting in an increase in the width of the heat-affected
zone at the expense of a decrease in the cutting kerf width. The heat transfer from the
cutting kerf region to the heat-affected zone is significant mainly for low energy density
(E) values. This increase is reduced only to a certain v value because, at high v values, the
density of the energy (E) given to the sample is low, which also decreases the effect of the
heat transfer losses to the heat-affected zone. Nevertheless, versus the standard deviation of
the measurement (one-half of the bar height), this increase cannot be considered statistically
significant for v values between 6 and 9 mm·s−1.

3.2. Comparison of ANN Approach and Mathematical Regression Models

The data obtained from the measurements were statistically processed via the ANN
and nonlinear mathematical regression. We needed to choose the best approach from these
different points of view, which was performed mainly via a comparison of the statistical
parameters between the predicted and real measured data considering both points of view.
The R2 values are valid for laser power (P) values of 100 and 150 W, cutting-speed (v) values
of 3, 6, and 9 mm·s−1, and for all possible values of the number of ARs, because it is only at
these input values that the cut parameters could be measured and compared.

The authors of [9] present the results of the predicted cut characteristics vs. all the
studied input parameters, the determination coefficients (R2) of which are listed in Table 2.
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Table 2. Nonlinear mathematical regression statistical parameters.

Property WKU
(10−3 m)

WKL
(10−3 m)

WKR
(-)

WHAZU
(10−3 m)

WHAZL
(10−3 m)

R2 (-) 0.86 0.88 0.63 0.57 0.51

The authors of [10] present the results of the predicted cut characteristics vs. all the
studied input parameters, the determination coefficients (R2) of which are listed in Table 3.

Table 3. ANN statistical parameters.

Property WKU
(10−3 m)

WKL
(10−3 m)

WKR
(-)

WHAZU
(10−3 m)

WHAZL
(10−3 m)

R2 (-) 0.95 0.98 0.93 0.96 0.97

According to a comparison of both tables, the ANN approach was significantly better
at predicting the measured data. The MLP 3-3-5 multilayer perceptron network with the
backpropagation error algorithm proved to be the best neural network for the prediction of
all the studied cut characteristics, the results of which are presented in the next sections.

The statistical parameter results show that the correlation coefficient was minimal at
0.966 and the relative root mean square error was maximal at 3.5% for the WKR (which
is higher because it is bound to the WKU and WKL values). These values for the wood-
based material are almost at the upper bound mainly because of the material’s anisotropy,
inhomogeneity, and nonuniform moisture content distribution, which cannot be measured,
and therefore, their effects on the studied cut characteristics cannot be predicted. In
general, it can be said that the coefficient of correlation and root-mean-square error can
be improved only by taking into consideration the other laser parameters mentioned in
Section 2. However, these parameters, according to the references, do not have as strong an
effect on the cut characteristics as the P and v.

3.3. ANN Prediction

In the experimental design, the input values used to train the ANN were P values of
100 and 150 W, a number-of-cut-AR range from 3 to 11, and v values of 3, 6, and 9 mm·s−1;
thus, the training group had 54 lines. The validity of the model is dependent only on the
number of input data combinations and is not affected by the number of values for each
input parameter (the P, v, and AR). According to the very high R2 parameter values for the
ANN prediction model versus the variability in the wooden-material properties, the ANN
prediction model is valid. We obtained five artificial neural networks for the prediction
of the WKU, WHAZU, WKL, WHAZL, and WKR with the best statistical parameters. In
the prediction, we used the MLP and RBF networks. The activation functions used for the
hidden-layer neurons were identity, logistic, atanh, exponential, and sinus. The activation
functions used for the output neurons were the same as those used for the hidden layer.
The numbers of hidden neurons for both the MLP and RBF networks were of the maximum
possible intervals, meaning that the number of hidden neurons for the MLP network was
between 1 and 54 and the number of those for the RBF network was between 1 and 38.

The measurement data were divided into a training group, testing group, and vali-
dation group at a ratio of 70%:15%:15%. The validity of the ANN prediction model was
controlled by the determination coefficients (R2) between the prediction and measurement
values, relative root mean square error (Rel_RMSE), and error propagation, which were
published in [10]. The coefficient of correlation between the predicted and measured values
was minimal at 0.966 for the ratio of the cutting kerf widths (which is not an independent
parameter) and increased to the maximum value of 0.99. In addition, the relative root mean
square error was between 1 and 2% for the widths of the cutting kerf and the widths of
the heat-affected zones (those that were measured). Therefore, in general, these statistical
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parameters are at their upper bounds for wood-based materials, which, even in a steady
state, are not homogeneous, are anisotropic, and even show nonuniform moisture content
distribution. The thermal degradation caused by the CO2 laser can even increase the
uncertainty of the measurement or prediction.

If the overall statistics are at high levels, then neural networks can predict the output
values even with changed input values. According to the neural network statistics pub-
lished in [10], the network error is very low and does not show any strong changes between
groups (a 1% error in training, a 1.3% error for testing, and a 1.1% error for validation) vs.
the measurement error, which is from approximately 15% to 20% of the variance coefficient
level. Furthermore, the R2 and Rel_RMSE values are at a very high level for wood-based
materials; thus, the MLP 3-3-5 neural network with the backpropagation error can predict
all the studied cut characteristics vs. the P, v, and number of ARs.

The WKR parameter can be defined for any P, v, and number-of-AR values with the
equation WKR = WKL/WKU. Values for the measuring subset were computed from the
measured WKU and WKL values with the same combination of all three input parameters.
The theoretical predictions of the WKR values can be obtained in two ways: (1) by finding
the predicted WKU and WKL values, and (2) by computing the WKR from the definition of
the WKR and by using the WKR values with the measuring subset and predicting them vs.
the P, v, and AR values.

In the data-processing phase, we applied both methods. The correlation between both
approaches in terms of the predicted values for the best network is 0.93 with a root mean
square error of 0.01 (which corresponds to a percentage difference of 1.43%). In this study,
we used the approach for the prediction of new WKR values from the former WKR values
(which were predicted, not computed) via the ANN. Even small differences between the
two approaches suggest that they are both applicable.

In this article, we present the effects of P, AR, and v on the cut characteristics of spruce
wood for all the possible CO2 laser parameters, from which it is possible to predict the cut
properties of sawn spruce wood at any P between 100 and 500 W, any AR between 3 and 11,
and any v between 3 and 50 mm.s−1 with the goal of optimizing the cutting process covering
all possible technological parameter combinations at which spruce wood can be cut.

The next three subsections address the prediction of the (WKU, WHAZU), (WKL,
WHAZL), and WKR vs. the P, AR, and v and discuss the effects of P and AR on all the
predicted parameters. Figures 6–10 show the predicted values of the cut characteristics at
nonmeasured P and v values by maintaining the same AR values. Predictions were made
for laser power (P) values of 200, 300, . . ., 500 W and cutting-speed (v) values of 12, 25, and
50 mm·s−1; thus, they were higher than the values used in the measurement. Thus, it is
not possible to combine the results in Figures 2–5 with those presented in Figures 6–10.
Figures 2–5 show the trends of the measured values, and Figures 6–10 show the trends of the
predicted values. According to the abovementioned ANN network statistical parameters,
MLP 3-3-5 is the best neural network, as it is possible to predict the cutting parameter
values with the prediction subset.

3.4. Prediction of WKU and WHAZU versus AR, P, and v Parameters

In this section, we present the predicted WKU and WHAZU vs. the AR, P, and v,
which provide information on the quality of the spruce wood cut on the upper board. The
results are presented as a graph of the output characteristics vs. the number of ARs and the
P at three different v values (12, 25, and 50 mm·s−1).

In Figure 6, the dependence of the WKU on the AR and P is shown at the selected v
values.

From Figure 6, it is clear that the number of cut ARs does not have any significant
effect on the WKU for all v values between 12 and 50 mm·s−1, which is in accordance with
the findings in [6].
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It can be observed that WKU vs. P is an exponentially stabilizing function of the
P, which is consistent with the fact that the material removal rate (MRR) also increases
exponentially with an increase in the P, which was also found by the authors of [5,10,11].
The same trend was acknowledged for all the selected v values. This is consistent with
the fact that an increase in the P causes an increase in the energy density (E) and thereby
increases the WKU.

The third studied input parameter was the v. According to Figure 6, an increase in the
v decreases the WKU values nonlinearly (this can be seen from the vertical gap between the
results at different v values); thus, the highest values are obtained for the lowest v value.
This is in accordance with other research studies [4,13–15] and can be explained by the fact
that, at higher v values, the E value decreases, which decreases the WKU. Figure 7 presents
the dependence of the WHAZU on the AR and P at the selected v values.

Figure 7 shows the effects of P, v, and number of cut AR on the WHAZU.
Figure 7 clearly shows that, with an increase in the P (from left to right), the WHAZU

increased, and the increase was approx. 0.3%. This increase is not statistically significant.
Figure 7 also clearly shows that, with an increase in the v from 12 to 50 mm·s−1, the increase
is approx. 0.05%, which is also not statistically significant. This is caused by the fact that,
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at higher v values, the energy density is very low and, thus, a very low amount of heat is
transferred to the heat-affected zone, which leads to higher increases in the WHAZU and
WHAZL, as mentioned.

The values of the heat-affected zone width are also not influenced by the P because
increasing it directly increases the energy density of the laser, which causes an increase in
the cutting kerf width, as shown in Figure 6. These findings are consistent with those of
other research studies [6,9,10,12,13].

3.5. Prediction of WKL and WHAZL versus P, v, and Number of Cut ARs

This subchapter presents the predicted values of the WKL and WHAZL vs. the AR, P,
and v, which provide information about the quality of sawn spruce wood cut on the lower
board. The results are illustrated in graphs of the output properties vs. the AR and P at
three different values of v (12, 25, and 50 mm·s−1).

Figure 8 presents the dependence of the WKL on the AR and P at the selected v values.
The results in Figure 8 indicate that the number of cut ARs for v values between 12

and 50 mm·s−1 does not have any significant effect on the WKL due to the fact that this
parameter mainly affects the WHAZL.

The results show that WKL vs. P is an exponentially stabilizing function of the P, which
is consistent with the fact that the material removal rate (MRR) also increases exponentially
with the P, which was recorded by the authors of [5,8,10,11,13]. The increase in the WKL
vs. P is consistent with the fact that the P increases the E values (Table 1); thus, heat is also
transferred to the material, which results in a WKL increase.

The third studied input parameter was the v. Figure 8 shows that increasing the v
lowered the values of the WKL nonlinearly; thus, the highest values were obtained at the
lowest v value, which is because the increase in the v decreases the E (Table 1), thereby
reducing the WKL.

Figure 9 presents the dependence of the WHAZL on the AR and P at the selected v values.
Figure 9 shows that the number of cut ARs (for v values between 12 and 50 mm·s−1)

did not significantly affect the WHAZL values, which is because, at high cutting speeds (v),
the density of the energy (E) transferred to the sample is low and thus the heat transferred
to the heat-affected zone is also lower.

Values of heat-affected zone width are slightly affected by the P and v because, at
higher P and v values, the thermal energy transferred to the sample is higher and thus so is
the heat transfer from the cut region. This results in an increase in the WHAZL vs. the P
and v. However, the effects of v and P are not statistically significant.

3.6. Comparison of P, AR, and v Effects on WKU (WHAZU) vs. WKL (WHAZL)

From Figures 6–9, the following can be concluded:
The values of the WKU are higher than the values of the WKL due to the fact that, on

the lower board, the heat transfer to the heat-affected zone was more significant.
For this reason, the WHAZL values are higher than those of the WHAZU. Changes in

the WHAZL are bound to changes in the WKL. More heat flowing out of the cutting kerf at
a lower surface causes more heat transfer to the heat-affected zone and thus increases the
WHAZL. A similar effect is also visible for the upper board, as it is only at the upper board
that the creation of WKU dominates over the creation of the WHAZU.

The smallest difference in the WKU and WKL values was at v = 50 mm·s−1, and thus,
a higher v value contributes to a better-quality cut. This is crucial for the other surface
properties studied in sawn spruce wood. The number of ARs and the P and v do not play
significant roles in either the WHAZU or the WHAZL.

3.7. Prediction of WKR vs. AR, P, and v

This subchapter presents the predicted cutting kerf width ratio vs. the number of cut
ARs, laser power (P), and cutting speed (v) at input parameter values higher than those
applied at the measurement, which provides information about the cut quality of the sawn
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spruce wood in the whole sample. The results are presented as a graph of the WKR vs. the
AR and P with three different v values: 12, 25, and 50 mm·s−1.

Figure 10 depicts the dependence of the WKR on the AR and P at the selected v values.
Figure 10 shows that the number of cut ARs does not have a significant effect on the

WKR because, at higher energy density (E) values (black values vs. red values in Table 1),
the AR effect decreases. Moreover, the laser power (P) has a significant effect on the WKR
because changes the values of WKU and WKL. The effect of P on the WKR decreases with
an increase in the P values, which is because, at laser powers higher than 200 W, both the
WKU and WKL stabilize at constant values and thus their ratio limits are also constant
values. The same effect can also be seen for the cutting speed (v), which is because an
increased cutting speed (v) value decreases the change in the energy density (E), thus also
reducing the effect of v on the cutting kerf width ratio (WKR). Figure 10 shows that the
WKR values increase with an increase in the cutting-speed (v) values.

3.8. Full-Scale Optimization of Cut Characteristics of Spruce Wood Cut by CO2 Laser

The final experimental part focused on exploring the optimization of the v and P
technological parameters, which have the most significant effects on all the studied cut
characteristics. This part is important because the optimization of the cut region is the main
purpose of cutting wood with a laser, and the quality of the cut surface impacts all the
studied surface properties, which were the goals of this research, to the greatest extent. This
analysis was not the main aim of the paper and represents only additional information.

The cut quality was optimized according to the following conditions:

- The width of the cut on the bottom and top boards should be minimized;
- The ratio of the cutting kerf widths on both surfaces should be as close as possible to 1.

3.8.1. Cutting Kerf Width Conditions

The cutting kerf widths are presented in Figures 6 and 8. The graphs show that
minimal WKU values were obtained with a maximal v of 50 mm·s−1 and at a P of 200 W.
Similar results were obtained for the cutting kerf width on the lower board.

3.8.2. Cutting Kerf Width Ratio Conditions

The cutting kerf width ratios are presented in Figure 10. This graph shows that the
WKR was closest to 1 at a maximal v of 50 mm·s−1 and at a P of 200 W.

Both criteria led to the same result: the highest v value resulted in the best cut quality.
According to the WKR results, the v decreased the effect of P on the WKR. Considering
these aspects, the manufacturing technological process should be focused on changes in v,
which were proven to have the highest impact on the quality of the cut region.

3.9. Sensitivity Analysis of Output Cut Characteristics vs. Input Parameters

Sensitivity analysis is a tool that offers insights into how every single independent
input parameter affects the value of the studied output parameter when more than one
input parameter affects the results of the output parameter. In general, if a function (y) is a
function of the x1, x2, . . ., xN parameters, then the sensitivity coefficient for the input (xi)
can be computed using Equation (2):

β(xi) = xi.∂y/∂xi (2)

The total deviation of the output parameter (y) can then be computed using Equation (3):

∆y =
√

∑N
i=1 β(xi)2 (3)

Furthermore, the effect of the parameter (xi) on the output (y) can be computed using
Equation (4):

xi e f f ect = 100%.β(xi)/∆y (4)
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Statistica 12 computes the sensitivity coefficients of all the input parameters for the
best five neural networks for each output property according to the neural network error.
In our study, we assessed the effects of P, v, and AR on the studied cut characteristic; thus,
we obtained a sensitivity coefficient for each input parameter according to Equation (1).
The effect of each input parameter on the studied output parameter shown in Figures 6–10
was then computed using Equation (3) based on the computation of the total deviation of
the output using Equation (2).

The first row is based on data obtained from the measurement, and the second row is
based on the prediction data. This routine can be applied if all the statistical parameters
of the neural networks for the selected material are very good. Therefore, correlations
between 97% and 99% and relative root mean square errors between 1% and 2% for the
independent values of the cutting kerf widths and widths of the heat-affected zone are
almost at the upper bounds of the possible values for wood, which is inhomogeneous and
anisotropic and has an unequal moisture distribution.

We performed a sensitivity analysis of the output cut characteristics versus the input
parameters, which provided information on how much changing the input parameters
changes the cut characteristics. We performed a sensitivity analysis for every single cut
characteristic in two steps. The first step was for data obtained from measurements for v = 3,
6, and 9 mm·s−1 and P = 100 and 150 W, tagged as the measurement subset. The second
step was for the P and v, which were not measured but predicted by neural networks and
were thus higher (v = 12, 25, and 50 mm·s−1 and P = 200, 300, 400, and 500 W), tagged as
the prediction subset. This analysis also allowed us to assess the effect of a change in the
laser parameters on any cut parameter.

According to Table 1, the E values for the measurement subset are lower than those
for the prediction subset. Thus, the presented graphs show how the effects of the input
parameters change with an increase in the energy density (E). The average E value for the
prediction subset is 43% higher than that for the measurement subset.

3.9.1. Sensitivity Analysis of WKU vs. Input Parameters

A sensitivity analysis was performed in Statistica 12.0 software under neural network
categorization. In the next paragraphs, we will show the effects of all three input parameters
(P, v, and number of cut ARs) on the measurement and prediction subsets for the WKU
parameter, presented in Figure 11 in the form of a column chart.
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Figure 11 shows the following:

- The P had the strongest effect on the cutting kerf width on the upper board for the
measurement subset;

- The effect of v on the WKU at v values lower than 12 mm·s−1 is like that of the number
of cut ARs (the second and third blue columns);

- However, increasing the v increases the effect of v on the WKU by decreasing the effect
of P and the number of cut ARs (a decrease in the effects for orange columns versus
blue columns for both parameters at the same increase as that of the orange column
for the v effect);

- The effect of the number of ARs on the prediction subset was very low.

The measurement subset is based on the measurement values when the P was between
100 and 150 W and the v was between 3 and 9 mm·s−1 at all AR values from 3 to 11.

The prediction subset is based mainly on P values between 200 W and 500 W and v
values between 9 and 50 mm·s−1 at AR values from 3 to 11. These values lead to higher
energy densities and, thus, also to a higher amount of heat transfer to the material in the
cutting kerf region.

The WKU parameter, according to Figures 2 and 4 (with the measurement subset),
increased linearly for the P and approx. quadratically for the v; thus, both had a strong effect
on the WKU. The AR effect on the WKU, according to [10], is linear for the measurement
subset; therefore, in the measurement subset, the effects of all three input parameters are
statistically significant. The higher P effect on the WKU versus the v effect is because the
cutting speed (v) plays a significant role mainly at the lower surface.

The WKU parameter, according to Figure 6 (the prediction subset), increased with the
P until it reached the stabilization trend from 300 W. Therefore, for P values higher than
300 W, the effect of this parameter on the WKU decreases. According to the same graph,
the number of ARs had almost no effect on the WKU, but the increase in the v effect on this
parameter was the same. Therefore, in the prediction subset, the v had a constant effect on
the WKU, the P had a decreasing effect from P values higher than 300 W, and the number
of cut ARs had the smallest effect; therefore, in the prediction subset, the effect of v on the
WKU must be increased at the expense of the P and AR effects.

3.9.2. Sensitivity Analysis of WHAZU vs. Input Parameters

The next paragraphs describe the effects of all three input parameters (P, v, and number
of cut ARs) in the measurement and prediction subsets for the WHAZU parameter, shown
in Figure 12 in the form of a column chart.
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According to the dependencies shown in Figure 12, the following conclusions can
be drawn:

- For the measurement subset, the effects of all three input parameters are approximately
the same;

- In the prediction subset, the P effect increases at the expense of decreasing v and
AR effects;

- At higher P and v values, the number of cut ARs does not play a significant role.

The WHAZU parameter, according to Figures 3 and 5 (with the measurement subset),
increased linearly for the P and approx. exponentially for the v; thus, both had a strong
effect on the WHAZU. For the measurement subset, the energy density (E) values are lower
(Table 1); thus, the AR effect on the studied cut characteristics was non-negligible.

For the prediction subset with higher E values, the AR effect on the studied cut
characteristics was reduced at the expense of the P and v effects, leading to a significant
decrease in the AR effect on the WHAZU. This is consistent with Figure 7, which shows that
the AR effect at higher v and P values was almost zero; therefore, the AR effect decreased
rapidly, as shown in the orange column in Figure 12. Figure 7 also shows that the change
in the WHAZU vs. the v is approx. 2×–3× lower than the change in the WHAZU vs. the
P; therefore, at higher v and P values, the P effect increases at the expense of decreasing v
and AR effects. However, according to the results in Figure 7, none of the changes in the
WHAZU in the prediction subset are statistically significant.

3.9.3. Sensitivity Analysis of WKL vs. Input Parameters

The next paragraphs discuss the effects of all three input parameters (P, v, and number
of cut ARs) with the measurement and prediction subsets on the WKL parameter, presented
in Figure 13 in the form of a column chart.
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Figure 13. WKL sensitivity analysis.

Figure 13 shows the following:

- The v parameter played the most significant role in the cutting kerf width on the
lower board;

- For the measurement subset, the AR and P effects are approximately the same;
- For the prediction subset, the v effect on the WKL increases at the expense of decreasing

P and AR effects.

The WKL parameter, according to Figures 2 and 4 (with the measurement subset),
increased linearly for the P and decreased exponentially for the v; thus, both had strong
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effects on the WKL. According to (10), the WKL changes significantly with the AR; therefore,
this parameter has approximately the same effect on the WKL as the laser power (P).
According to these two figures, the decrease in the WKL vs. the v was more rapid and
intense than the increase with the increasing P value; thus, the v had the strongest effect on
the WKL with the measurement subset (blue columns).

However, according to Figure 8, the AR effect at higher v and P values was almost
zero; therefore, the AR effect decreased rapidly, as shown in the orange column in Figure 12.
Figure 8 also shows that the P effect on the WKL became less visible after the laser reached
a power of 300 W and became higher by increasing the v effect on the WKL. Therefore, the
v effect on the WKL increased for the prediction subset vs. the measurement subset at the
expense of reducing the effects of the two other studied parameters (the P and AR).

3.9.4. Sensitivity Analysis of WHAZL vs. Input Parameters

The next paragraphs describe the effects of all three input parameters (P, v, and number
of cut AR) with the training and prediction subsets for the WHAZL parameter, presented
in Figure 14 in the form of a column chart.
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Figure 14 shows the following:

- For the measurement subset, the effect of P on the WHAZL values is greater than the
v and AR effects;

- The effects of all three input parameters on the measurement subset are significant;
- For the prediction subset, the P effect decreases at the expense of an increase in the

v effect;
- For the prediction subset, the effects of all three parameters are significant.

For the measurement subset, the v values are lower, and thus, the creation of the WHAZL
is via the heat transfer from the cutting kerf to the heat-affected zone. Figures 3 and 5 show
that the effect of P on the WHAZL is linear, but the effect of v on the WHAZL is stabilizing.
The effect of AR is non-negligible because the ARs, through their higher thermal conductivity,
increase the WHAZL at the expense of reducing the WKL. However, the creation of the
WHAZL is mainly due to the density of the energy transferred to the sample.

As the cutting speed (v) increased in the prediction subset, it caused two phenomena:
(1) The density of the energy transferred to the sample and, thus, the heat transferred
to the sample were lower, and thus, the heat transferred to the WHAZL was also lower.
(2) High cutting speeds (v) cut the lower surface quicker, which led to the flow of hot air
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from the cutting kerf to the heat-affected zone, where it increased the smaller WHAZL
values. This effect is more significant for higher cutting-speed (v) values. These effects
then lead to a lower effect of P on the WHAZL at the expense of an increase in the effect of
v on the WHAZL. The effect of AR is not decreased because, when hot air is transferred
to the WHAZL, the AR value has a direct effect on the creation of the WHAZL through
changes in the thermal conductivity of the wood. This is also consistent with Figure 9,
which shows that the effect of v on the WHAZL is approximately 2× higher than the effect
of P. However, the effect of AR is 2× lower, mainly because only P and v affect the energy
density (E) values. However, the changes in the WHAZL vs. all three input parameters,
according to Figure 9, cannot be considered statistically significant.

3.9.5. Sensitivity Analysis of WKR vs. Input Parameters

The next paragraphs discuss the effects of all three input parameters (P, v, and number
of cut ARs) on the measurement and prediction subsets for the WKR parameter, shown in
Figure 15 in the form of a column chart.
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Figure 15 shows the following:

- For the measurement subset, only the P had a significant effect on the WKR value;
- For the prediction subset, the effect of v on the WKR increased at the expense of a

decrease in the effect of P;
- For both the prediction and measurement subsets, the AR on WKR effects are negligible.

The WKR parameter, according to Figures 2 and 4 (with the measurement subset),
increased linearly for P and did not significantly change with v. The AR parameter was
mainly affected via changes in the thermal conductivity values of the widths of the heat-
affected zones, but the low cutting-speed (v) values had no significant effect on the WKU
and WKL values, which means that, for the measuring subset, the effect of P was very high
because neither v nor the number of cut ARs had significant effects on the WKR.

However, according to Figure 10, the change in the WKR vs. P is negligible after the
P reaches 300 W, and the change in the WKR vs. v is constant (rapidly higher than with
the measurement subset), which means that the effect of P rapidly decreased compared to
the effect of v, as shown in Figure 15. In general, the changes in the WKR vs. v and P are
approx. the same, which means that they both had the same effect on the WKR. The small
increase in the effect of AR on the WKR (Figure 15) is not statistically significant; therefore,
at higher v and P values, only these two parameters affect the WKR (at an approx. 1:1 ratio).
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4. Discussion

In this paper, we discuss the effects of all three main technological parameters on the
cutting kerf properties of spruce wood. Former studies dealt with the prediction of these
parameters with constant v values, which is applicable only for certain cutting speeds.

The other laser parameters were not changed because their effects on the studied final
cut characteristics are, according to the references, not as strong as the effects of P and v. The
parameters that significantly affect the cut characteristics are based on the microstructure
of the material. These parameters can be recorded only before cutting and then only the
final cut results are recorded, and they cannot be inspected during the cutting process; thus,
their effects cannot be measured or quantified.

When predicting the cut parameters vs. all the changing technological properties,
these predictions cover all possibilities. Therefore, this process can be successfully applied
to any spruce wood cut with a CO2 laser with P values between 100 and 500 W, all possible
combinations of the number of cut ARs (i.e., any structure of spruce wood), and all possible
used v values between 3 and 50 mm·s−1, based on just on two combinations of P, three
combinations of v, and nine combinations of the number of cut ARs, which reduces the
material and energy consumption. The presented results should be taken into consideration
as qualitative trends; thus, the values of the cutting kerf parameters can change, but the best
combination of technological parameters is the same for all types of spruce wood cut with
a CO2 laser with P values between 100 and 500 W and v values between 3 and 50 mm·s−1.

The sensitivity analysis added to this study offered a quantitative look at the trends of
all the studied cut characteristics vs. the input values, which added numerical information
to the trends, providing qualitative results. The sensitivity coefficients can be regarded
as constant for selected types of wood in the regions of the input values, which were
measured or predicted. Moreover, the analysis also allowed us to focus the research on the
optimal v and P values for the best possible cut quality by lowering the amount of input
parameter combination testing. This analysis helps to determine which input parameters
at which energy density values have the most significant effect on each one of the studied
cut parameters.

5. Conclusions

In the presented research, we focused on the effects of laser power (P), cutting speed
(v), and number-of-cut-AR on the studied cut characteristics of spruce wood performed
with a CO2 laser for all possible values at which this material can be cut by a CO2 laser. The
main conclusions are as follows:

- Based on the measured values of the cut characteristics versus the input values, it is
possible to predict the cut characteristics vs. the input values for all possible values at
which spruce wood can be cut by a CO2 laser;

- The effects of the chosen input parameters on the studied cut characteristics were
mainly dependent on the density of the energy (E) transferred to the sample and the
cutting speed (v);

- The effect of AR is significant only for low E values;
- With higher E values, the effect of AR is negligible;
- The cutting speed (v) has a significant effect mainly on the cut characteristics of the

lower board;
- The laser power (P) has a more significant effect on the cut characteristics of the upper

surface (the side on which the laser beam is initially applied);
- The WHAZU (WHAZL) values increase at the expense of reduced the WKU (WKL)

values, mainly because of the heat transfer from the cutting kerf to the heat-affected zone;
- The WHAZL values are significantly higher than the WHAZU values, which is because

of the reduction in the WKL values because of the heat transfer from the cutting kerf
to the heat-affected zone;
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- The effect of P on the WKU (WKL) stabilizes after reaching a laser power (P) equal to
300 W, which then leads to an increase in the effect of v on both the WKU and WKL
and, thus, also the WKR.

From the presented results, the following can also be concluded:

- The best cut quality of spruce wood can be obtained with a maximal cutting speed
(v) value of 50 mm·s−1, where the WKU and WKL values are almost the same for the
laser power (P) and approximately 250 W for any number-of-cut-AR value;

- The sensitivity analysis showed the effects of P, v, AR on the cut characteristic change
versus the value of the density of the energy (E) applied to the upper surface;

- The AR effect decreased at higher energy densities (E) because this parameter does
not affect the amount of energy transferred to the material;

- For the majority of the studied cut characteristics (except the WHAZU), the effect of v
increased with an increase in the energy density (E) value.
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