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Abstract: Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are
primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties,
which stem from their wide bandgap characteristics, offer significant advantages for early cancer
detection and treatment. Metal QDs have already demonstrated therapeutic potential in early
tumor imaging and therapy. However, biological toxicity has led to the development of various
non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus
QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer
treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic)
have been further developed. These advancements combine the unique material properties of QDs
with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic
therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the
fluorescence quantum yield of QDs has gradually increased with technological progress, enabling
their significant application in both in vivo and in vitro imaging. This review delves into the role of
QDs in the development and improvement of clinical cancer treatments, emphasizing their wide
bandgap semiconductor properties.

Keywords: quantum dots; tumor diagnosis; tumor-targeted therapy; non-functionalized modified
QDs; functionalized QDs

1. Introduction

Cancer has become a significant threat to human health, with a rising incidence and
rising mortality rates. The intricate nature of the tumor microenvironment (TME) and the
limitations of conventional treatment methods have highlighted the need for the develop-
ment of new cancer therapies and enhancements to existing approaches. Quantum dots
(QDs), nanoscale semiconductor crystals with unique optical and targeting properties, have
demonstrated great potential in cancer diagnoses and treatments. This article commences
by presenting the physical properties and cellular uptake pathways of various QDs, such
as metal QDs, CQDs, GQDs, BPQDs and PQDs. It then outlines the uses of QDs in cell
imaging and in vivo tissue imaging for tumor diagnoses, along with the advancements in
functionally modified QDs for tumor treatment. Lastly, the article delves into the challenges
and promising future directions of QDs, particularly in terms of their biological toxicity,
with the aim of further broadening their applications in the realm of cancer diagnoses
and treatments.
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2. Properties of QDs
2.1. Physical Properties of QDs

QDs are commonly semiconductor materials made up of binary and ternary alloys
from groups II-VI, III-V, and IV-VI of the periodic table, with dimensions typically ranging
from 2 to 20 nm. Their key advantages include (i) their good optical stability and generally
long fluorescence lifetimes [1], (ii) the simultaneous excitation of multiple QDs by a single
light source [2], and (iii) narrower and tunable emission spectra with broader absorption
spectra [3]. The first colloidal QDs, which were made of CdSe, exhibited photoluminescent
(PL) properties. In practice, smaller QD particle sizes result in a higher energy, a higher
frequency, and bluer emitted light. The low quantum yield (QY) of early CdSe QDs, which
was less than 10%, limited their practical applications. Subsequent research efforts have
focused on enhancing the QY by coating QD cores with inorganic materials to achieve
core-shell structures. This significantly enhances the PL and further increases the QY,
as demonstrated by CdSe/ZnS [4], CdSe/CdS [5], and ZnSe/ZnS [6] QDs. Currently,
CdSe/CdZnS QDs can achieve a QY of 100%. The continuous optimization of QD properties
over the past two decades has greatly advanced their biomedical applications.

Carbon QDs (CQDs), also known as carbon dots or carbon nanodots, are generally
smaller than 10 nm and exhibit superior biological properties compared to conventional
semiconductor QDs [7]. These properties include a high-water solubility, a strong chemical
inertness, easy processing, and excellent photobleaching resistance. The term ‘carbon
dots’ was first used in 2006 by Sun et al. when they chemically synthesized fluorescent
carbon nanoparticles through the laser ablation of carbon targets and surface passivation [8].
Semiconductor QDs often contain heavy metals, raising concerns about toxicity and limiting
their clinical safety. CQDs, on the other hand, overcome this drawback and can be produced
at a lower cost, making them a potential replacement for semiconductor QDs.

Graphene QDs (GQDs) differ from CQDs by having an internal graphene lattice,
typically less than 100 nm in size and fewer than ten layers thick [9]. GQDs are crystalline
zero-dimensional discs derived from two-dimensional graphene. The reduction in the
crystal size to a nanoscale size significantly alters the electron distribution, giving rise to
quantum confinement GQDs smaller than the exciton Bohr radius [10] and edge effects
(energy level shift between intrinsic and edge states, which determines the optical proper-
ties [11]). The described effects are a result of significant changes in the electron distribution
caused by alterations in the crystal boundaries at the nanoscale level. The photolumines-
cence mechanism of GQDs is primarily influenced by edge states, quantum confinement,
and surface states. In contrast to semi-metallic graphene, GQDs have a non-zero bandgap,
making them function as semiconductors or insulators. The opening of the bandgap in
GQDs enhances light absorption and elevates the energy spectrum. Similar to CQDs,
GQDs contain carboxyl groups that allow for functionalization and surface passivation
using a variety of organic, inorganic, and biological materials. Furthermore, GQDs can be
functionalized with other heteroatoms or hybridized with different substances to modify
their physical structure and chemical properties.

Black phosphorus QDs (BPQDs) have gained significant attention alongside advance-
ments in other two-dimensional materials. Phosphorus is a vital element found in the
human body, and exists in three allotropes—red phosphorus, white phosphorus, and black
phosphorus. While white phosphorus is chemically unstable and red phosphorus possesses
an amorphous structure, black phosphorus stands out as the most stable allotrope, and is
known for its non-flammable nature and insolubility in most organic solvents [12]. Black
phosphorus is similar to graphene in that it is a layered material consisting of individual
stacked atomic layers interacting through van der Waals forces [13]. However, its asym-
metric crystal structure, caused by the corrugated pattern of phosphorus atoms, leads to
distinct properties compared to graphene: (i) a high mobility and fast carrier relaxation
kinetics; (ii) a direct and tunable bandgap in the monolayer and multilayer forms, making
it an ideal semiconductor for photoemission and efficient photovoltaic conversion [14];
(iii) a highly anisotropic carrier mobility [15]; and (iv) a photoluminescence burst prop-
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erty [16]. These advantages allow for the development of BPQDs with superior optical
properties, showing great potential for applications in bioimaging, cancer therapy, and
fluorescence sensing [17].

Metal halide perovskite quantum dots (PQDs), such as CsPbX3 (X = Br, I, and Cl),
possess several advantages, including a strong X-ray absorption capability, a high RL
intensity, rapid light decay, and a cost-effective solution synthesis, making them a focal
point in the field of photocatalytic applications. Examples include light-emitting diodes [18],
solar cells [19], fluorescence signal detection, etc. [20]. In addition, compared to classical
Cd-based chalcogenide QDs and other QDs, perovskite QDs are of interest because of their
significant optical properties, such as their blinking behavior, non-linear absorption, and
stimulated emission [21]. X-ray microscopy imaging technology is extensively utilized in
the life sciences and other disciplines to accurately visualize the internal microstructure
of objects without causing damage. In particular, PQDs play a crucial role in biological
imaging due to their exceptional X-ray absorption capabilities.

2.2. Common Synthesis Methods of QDs

QDs can be synthesized through physical, chemical, and biological processes. Different
synthesis methods will produce QDs with different luminescent properties and biocom-
patibilities [22]. The synthesis methods of QDs can be categorized into two main types:
top-down and bottom-up. Top-down synthesis involves reducing the volume of large bulk
semiconductors to create QDs, while bottom-up synthesis typically involves self-assembly.
Each of these methods has its own set of advantages and disadvantages (Table 1).

Table 1. Common synthesis methods of QDs.

Method Advantages Disadvantages References

Top-down

Laser ablation Controllable shape and size Complex operation and
high cost [8,23]

Electrochemical
oxidation

High purity, high yield,
controllable size, and
good reproducibility

Complex operation [24–26]

Chemical oxidation
Easy to operate, large-scale

production, no need for
sophisticated equipment

Uneven size distribution [27]

Ultrasonic treatment Easy to operate Instrument waste and high
energy costs [28–30]

Microwave Shortened reaction time,
increased yield and purity High energy costs [31–33]

Hydrothermal synthesis Relatively simple,
quick response Low yield [34–36]

Bottom-up

Cage opening Strong luminescent properties Complex operation [37]

Thermal decomposition
Simple operation, solvent-free,

low cost, and
large-scale production

Uneven size distribution [38]

Precursor pyrolysis
Stable and strong

excitation-dependent
photoluminescence

Complex operation and
high cost [39–41]

Ultraviolet irradiation Mild, clean, and efficient High energy costs [42]

2.3. Cellular Uptake Modes of QDs

Efficient cellular uptake is a prerequisite for QDs to exert biological effects. The uptake
can be broadly categorized into three types, including passive delivery, facilitated delivery,
and active delivery (Figures 1 and 2).
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Passive delivery depends on the inherent physicochemical properties of the QDs to fa-
cilitate endocytosis. In a study by Jaiswal et al., CdSe/ZnS QDs with DHLA were designed
and incubated with Hela cells at a concentration of 400–600 nm for 2–3 h. Their findings
suggest that the cells took up the QDs through non-specific endocytosis and retained them
for several days [43]. Nabiev et al. observed the uptake of CdTe QDs modified with mercap-
toacetic acid of different sizes by macrophages, epithelial cells, endothelial cells, etc., and
found that 2 nm QDs preferentially appeared on the nucleus and 6 nm QDs preferentially
appeared in the cytoplasm of the cells [44]. Kundrotas et al. found in human mesenchymal
stem cells that carboxylation-modified QDs were already distributed in the cytoplasm at
1 h, saturated at 6 h, and localized in the perinuclear region at 24 h under conditions of
low-density mesenchymal stem cells (Figure 1A) [45]. The uptake of QDs via endocytosis
offers a simple method that does not necessitate intricate modifications for cellular uptake.
By introducing QDs into the cell system at the correct concentration and incubating for the
appropriate duration, cells can uptake QDs through non-specific endocytosis. This allows
for the delivery of multiple QDs to cells simultaneously. Nevertheless, the drawbacks
of this include the inability to target specific cell types and the heightened cytotoxicity
associated with a prolonged exposure to high QD concentrations [46].

The second method involves modifying the surface of QDs with biomolecules or
specific chemicals to facilitate the uptake by cells through endocytosis. For example,
(i) TAT peptides derived from HIV-1 viruses can be used to modify the surface of QDs,
allowing interactions with cell surface receptors. These arginine/lysine-rich TAT peptides,
which have a high positive charge, bind to negatively charged receptors on the cell surface
(such as acetylheparin sulfate proteoglycans). The TAT peptide can become attached to
the dihydrolipoic acid (DHLA)-covered CdSe/ZnS QDs surface by forming coordination
bonds between the polyhistidine at the peptide terminus and the Zn atoms on the QD sur-
face. [47,48]. In addition, TAT peptides can become conjugated to SDots to form SDots-TAT.
SDots are a novel nanoparticle delivery system that exhibits a strong interaction force with
the hydrophobic part of biofilms. They enter the cell mainly through endocytosis (includ-
ing clathrin-mediated endocytosis and caveolae-mediated endocytosis) (Figure 1B) [49].
(ii) Pep-1 (KETWWWETWWTEWSQPKKKRKV-cysteamine) is an amphiphilic peptide
belonging to the cell-penetrating peptide (CPP) family. The QD surface is usually modified
with a protein that acts as an intermediate junction, to which Pep-1 binds with a hydropho-
bic segment, thus promoting cellular uptake. Labeling QDs with Pep-1 would result in
a higher labeling efficiency and promote the lysosomal/endosomal escape of QDs [50].
(iii) The modification of QDs by RGD sequences (tripeptide sequences, arginine–glycine–
aspartic acid) can facilitate QD delivery. RGD has a specific targeting effect and plays an
important role in tumor angiogenesis, proliferation, and metastasis. Thus, RGD-QD can
play an important role as a contrast agent in bioimaging [51,52].

The third type is active delivery, i.e., the delivery of QDs by electroporation and
microinjection techniques. Bhatia et al. used electroporation to deliver monothiolated
PEG-modified CdSe/ZnS QDs into Hela cells [53]. Chen et al. conjugated electroporation
with peptide targeting to deliver QDs carrying nuclear-localized peptides into Hela cells
via electroporation [54]. Lu et al. further transformed L-particles (nano-oncolytic virus pho-
toparticles) into near-infrared (NIR) fluorescent Ag2Se QDs-labeled active tumor-targeting
nanocarriers (QDs&DOX@L-particles). Then, they utilized electroporation to instantly
form a 1 to 10 nm gap in the cell membrane to successfully deliver the QDs&DOX@L-
particles. Through electroporation, Ag2Se QDs with DOX were instantly encapsulated into
particles with excellent anti-tumor properties. In in vivo experiments, the tumor volume
of hormonal mice injected with QDs&DOX@L-particles also showed a significant reduc-
tion [55]. Electroporation techniques are suitable for the delivery of large QDs, whereas
microinjection techniques allow for the injection of very small volumes of fluid into the
cytoplasm. It has been shown that the microinjection of QDs encapsulated in phospholipid
block copolymer micelles and microimaging at various stages of embryonic development
during the blastomeres stage allows for the distribution of QDs between daughter cells
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to be observed [56]. Slotkin, J.R et al. injected a mixture of 620 nm QD and farnesylated
enhanced green fluorescent protein (EGFP-F) plasmids into the lateral ventricles of mouse
embryos using electroporation [57].
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3. The Application of QDs in Tumor Diagnoses

Non-invasive cancer imaging methods have the potential to reduce unnecessary
biopsies and improve imaging technology, benefiting clinical treatment. Fluorescence
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imaging is commonly used for tumor diagnoses, but its clinical applicability is limited due
to low visible light transmission in biological tissues. QDs have a higher molar extinction
coefficient and absorption rate compared to organic fluorescent dyes, making QD imaging
a promising alternative that overcomes the limitations of traditional methods. Additionally,
QDs emit light at a faster rate, appearing brighter than organic dyes [58–60]. For the optical
imaging of deeper tissues, QDs can be utilized within the NIR (700 to 1700 nm) optical
range. The field of bioimaging research has seen growth with the incorporation of various
types of QDs, such as metal QDs, CQDs, GQDs, BPQDs and PQDs etc., following the initial
use of cadmium sulfide QDs in bioimaging applications.

3.1. In Vitro Imaging

The application areas of QDs have been substantially expanded by their QY enhance-
ment, particularly in the biomedical disciplines of cell imaging and bioprobes. To create
a targeted cancer imaging and sensing system, Lin et al. created unique daunorubicin
(DNR)-loaded MUC1 aptamer-NIR CuInS2 QD (DNR-MUC1-QD) conjugates. DNR-MUC1-
QDs were effectively implemented for prostate cancer cell line imaging [61]. Mona et al.
modified CdTe QDs with mercaptosuccinic acid and functionalized CdTe QDs with AS1411
aptamers by the classical EDC-NHS method, and then successfully performed the highly
fluorescent and specific molecular imaging of human glioblastoma U87MG cells [62]. In ad-
dition, Xu et al. synthesized two types of CdTe/CdS core-shell QDs with different emission
wavelengths (545 nm and 600 nm) and obtained the distribution of the fluorescent probes
of different QDs according to the different probe colors in the cells to achieve the effect
of imaging cancer cells [63]. In addition to the most basic form of imaging, multimodal
imaging can provide more than one-dimensional biological information. Multimodal opti-
cal imaging refers to the combination of optical imaging with other imaging modalities to
obtain multiple parameters at the same time. For example, the combination of magnetic
resonance imaging (MRI) technology and optical imaging modalities is a kind of multi-
modal imaging [64]. Bai et al. constructed MnO2/BSA/CdTe QDs that could effectively
identify H2O2 signals in circulating tumors (H2O2 is a common second messenger in vivo,
playing an important regulatory role in cell proliferation, differentiation, and migration)
and perform MRI and fluorescence imaging (Figure 3A) [65]. In addition, Rajendra et al.
prepared an activatable multimodal/multifunctional composite nanoprobe for direct intra-
cellular imaging and drug delivery using fluorescence-doped Mn-CdS@ZnS QDs modified
with superparamagnetic iron oxide nanoparticle (INOP) cores [66]. In addition to QDs,
cadmium selenide nanosheets (NPls) compounded with nanorods also contributed to cell
imaging. Glioma C6 cells can take up NPls, which exhibit approximately two-orders-of-
magnitude-higher 1P and 2P excitation efficiencies in photoluminescence compared to
CdSe QDs. This enables detection at significantly lower intracellular NPl concentrations
for visualization purposes [67].

Due to their exceptional resistance to photobleaching and biocompatibility, CQDs are
particularly well-suited for bioimaging applications, allowing for the precise identification
and differentiation of cancer cells. The incorporation of triphenylphosphine salts (TPPs)
with CQDs can serve as a targeting ligand for mitochondria. Furthermore, the covalent
bonding of borate-protected fluorescein (PFl) to CQDs, acting as an H2O2 recognition
element, enables the monitoring of exogenous H2O2 levels in L929 cells, and also facili-
tates the visualization of endogenously produced H2O2 in pristine 264.7 macrophages [68].
Mn-doped carbon QDs constructed through the coupling of folic acid (FA) and Ce6 are
a versatile platform for selectively targeting and detecting cancer cells and exerting PDT
effects. In vitro studies have shown that Mn-CQDs@FA/Ce6 can be used as FL/MRI probes
for cellular imaging and as photosensitizers for PDT, with laser (671 nm, 1 W cm−2) irradia-
tion for 5 min, effectively killing >90% of the cells [69]. Boric acid-functionalized modified
CQDs (BNSCQDs) provide better intracellular imaging due to the synergistic effect of
nitrogen and sulfur together with boric acid to produce better luminescence properties
and due to boric acid binding to the sialyl Lewis receptor, which is over-expressed in the
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hepatocellular carcinoma cell line HepG2 [70]. Thus, BNSCQD can also specifically target
hepatocellular carcinoma imaging [71]. Hyaluronic acid (HA), a natural biopolymer, is
known to be a natural ligand for the CD44 receptor, which is known to be commonly
overexpressed in many cancer cells. Based on the characteristics of HA, Gao et al. synthe-
sized a therapeutic diagnostic fluorescent nanoprobe, P-CDs/HA-DOX, for self-targeted
imaging. P-CDs/HA-DOX enables targeting and penetration into cancer cells. Inside the
cell, HAase enzymatically cleaves HA-DOX to release DOX and restore the fluorescence
of P-CDs [72]. Nasrin et al. synthesized CQD-FA-HA by further modifying folic acid and
HA based on Mg/N-doped CQDs, and CQD-FA-HA was efficiently imaged in both 4T1
and MCF7 cells (Figure 3B) [73]. Zheng et al. synthesized a novel CQD (CD-Asp) using
D-glucose and L-aspartic acid as raw materials, demonstrating its ability to target gliomas.
In vivo imaging data revealed a high-contrast biodistribution of CD-Asp in a mouse model
15 min post-tail-vein injection. The fluorescence signal in neurogliomas was significantly
higher than in normal brain tissues, suggesting the CD-Asp’s capability to traverse the
blood–brain barrier and accurately target brain gliomas for effective imaging [74].

GQDs also possess excellent optical properties suitable for bioimaging. At a certain
excitation light, GQDs exhibit tunable PL characteristics, which are essential for their
bioimaging applications [75]. GQDs have been extensively demonstrated for cellular
imaging in Hela cells [76,77]. They have also proven to be effective for cellular imaging
in breast cancer cell lines [78–80]. Like CQDs, GQDs can be modified by FA and HA for
targeted imaging. For instance, Wang et al. utilized FA coupled to GQDs to achieve the
highly selective and specific imaging of tumor cells [81]. Notably, GQDs can be utilized for
multiphoton fluorescence bioimaging as well. Luo et al. developed adenine-modified GQDs
with a high fluorescence, a high QY, and two-photon green fluorescence for two-photon
fluorescence cell imaging [82]. Additionally, N-GQD polymer conjugates synthesized by
Wu et al. exhibited a high QY, two-photon properties, and a high photoluminescence under
acidic pH conditions [83].

BPQDs exhibit good biocompatibility, optical properties, and nonlinear optical prop-
erties. However, BP’s high reactivity to water and oxygen can significantly impact the
biological properties of BPQDs. Therefore, the stability of BPQDs in an aqueous dispersion
can be enhanced for cellular imaging through surface coordination, such as TiL4@BPQDs.
Research has demonstrated that TiL4@BPQDs effectively improve the stability of BPQDs
in an aqueous dispersion. In MCF7 breast cancer cell line studies, TiL4@BPQDs showed a
higher signal sensitivity compared to the commonly used photoacoustic imaging agents
(AuNRs), indicating their potential in detecting minute amounts of diseased tissue [84].
Zn-liganded BPQDs were also utilized in this study. Jiang et al. demonstrated that zinc ions
can engage in cation–π interactions due to their cationic properties, leading to adsorption
on BPs. This suggests that the passivation of the lone pair of electrons of phosphorus can
enhance the stability of BPs in both air and water. Zn@BPQDs were found to exert minimal
cytotoxicity on 4T1 and Hela cells. Specifically, the 4T1 cells exhibited a strong fluorescence
post-endocytosis of Zn@BPQDs, with the fluorescence intensity being dependent on the
quantity of Zn@BPQDs internalized by the cells (Figure 3D) [85]. Zhang et al. synthesized
BPQDs@DOX@ss-Fe3O4@C-EGFR NPs using BPQDs as a capping agent, in addition to
being a material for combined cancer treatment [86].

PQDs hold significant potential for advancements in biological imaging as a result
of their exceptional X-ray absorption capabilities. Nevertheless, the enduring stability
of PQDs remains a primary concern. Various studies have indicated that calcium tita-
nium QDs exhibit a high susceptibility to water degradation owing to their intrinsic ionic
characteristics [87]. Overcoming the degradation issue of PQDs in polar solvents is a key
development priority [88]. Researchers have coated the surface of CsPbBr3PQD with dense
layers of PS-PEB-PS and PEG-PPG-PEG, resulting in a notable enhancement of the water
stability of CsPbBr3PQDs without compromising their optical properties. By additionally
attaching anti-CD63 antibodies, CsPbBr3PQD can be utilized for tracking and imaging
exosomes originating from triple-negative MDA-MB-231 breast tumors [89]. Getachew
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et al. synthesized CsMgxPb1-xI3 QDs and encapsulated them in PF127 Gd (PQD@Gd),
enabling dual-mode imaging for fluorescence and MRI. Their experiments demonstrated
the internalization of PQD@Gd in HeLa cells via small fossa-mediated endocytosis, leading
to successful cellular imaging [90].
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3.2. In Vivo Imaging

In vivo imaging plays a crucial role in gaining a comprehensive understanding of the
mechanisms underlying cancer development and progression in the body. The current
methods, such as single-cell labeling using immunohistochemistry or genetics in mice,
do not always accurately represent the natural environment. QDs possess unique optical
properties that make them ideal for imaging and labeling live animals. As a result, there is
growing interest in modifying QDs for in vivo imaging purposes.

A study utilized norbornene-coated QDs (NBPILs) combined with tetrazine-modified
antibodies to create QD–norbornene–tetrazine–antibody conjugates (QDNB-TzAb). These
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conjugates were administered to mice via a tail vein injection, leading to their dispersion
throughout the bone marrow and successful labeling the hematopoietic stem and progeni-
tor (Sca1c-kit) cell populations. This research contributed to the exploration of interactions
between cells and their microenvironment (Figure 4A) [91]. Han et al. developed an
antibody-based, QD-AD, in vivo, single-cell labeling probe that provides a reliable method
for studying single-cell interactions and reactions and the microenvironment in living ani-
mals [91]. QD-HER2-Ab can be used as an accurate tool for Her2 detection in vivo and can
be used for targeted imaging of breast cancer in vivo. [92]. A CdS/chitosan-pAbCD20 QDs
is an innovative fluorescent nano-immunocomplex template in non-Hodgkin lymphoma
with future potential for tumor detection and imaging [93]. In addition, biocompatible
PbS/CdS QDs can be used for non-invasive and high-speed (60 FPS) in vivo imaging
by emitting ~1600 nm under an 808 nm excitation light [94]. Wang et al. developed
NIR-emitting CdTe/CdS/ZnS core-shell (CSS) QDs. Female nude mice with KB human
epidermoid carcinoma tumors were intratumorally injected with CSS780 (λmax: 780 nm)
and then imaged using the Maestro in vivo imaging system (CRi Inc.). Remarkably, the
tumor tissues treated with CSS780 exhibited strong spectrally resolved signals, highlighting
the high sensitivity of in vivo imaging with the synthesized NIR QDs [95]. In addition, PE-
Gylated NIR-IIb QDs allow for the effective penetration of excitation and emission light up
to 1.2 mm, which facilitates the effective imaging of the blood flow and tumor vasculature
in mice [94]. Similarly, RGD-peptide-functionalized NIR QDs can effectively target αvβ3 in-
tegrins in U87MG (human glioblastoma)-loaded mice, allowing for the in vivo and in vitro
visualization of the tumor vascular system [96]. Bedia et al. prepared an HA-conjugated
nitrogen-doped CQD (HA-CQD) that utilized the HA to achieve tumor-specific targeting
along with in vivo imaging capabilities in breast-cancer-loaded mice (Figure 4B) [97].
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In addition to common QD materials, Bi2O2Se QDs have shown some application
prospects in biomedical fields in recent years due to the low toxicity and tolerance of their
raw materials [98]. Bi2O2Se QDs were administered intravenously to mice with MCF7
tumors, resulting in the detection of robust photoacoustic imaging signals within the tumors
after a specific time. These signals peaked at 8 h post-injection and remained effective



Nanomaterials 2024, 14, 1088 10 of 26

for up to 24 h before gradually degrading in vivo. In addition to producing satisfactory
imaging signals, the application of 808 nm NIR light irradiation also demonstrated a highly
effective tumor-killing capability [99]. The in vivo imaging capability of GQDs has been
demonstrated in a variety of model organisms (mouse, zebrafish) [100]. Liu et al. used a
simple solvothermal method to prepare N-GQDs as highly efficient two-photon fluorescent
probes for imaging cells and deep tissues. The two-photon absorption cross-section of the
N-GQDs reaches 48,000 GM, which is higher than that of organic dyes and represents a high
value for carbon-based nanomaterials [101]. Additionally, by using the GQD-europium
complex (GQD/DBM), it was possible to continue the in vivo fluorescence imaging of
Hela-loaded mice, and after 2 h, significant PL signals were observed in the tumor area,
with tumor accumulation compared to other organs. This is passive targeting achieved
through the EPR (enhanced permeability and retention) effect [102].

4. The Potential Application of QDs in Tumor-Targeted Therapy
4.1. Non-Functionalized Modified QDs

Non-functionalized QDs serve as the foundation for the creation of different types
of QDs. Typically, non-functionalized QDs comprise two key components: QD carrier
materials and payloads, which may include drugs or biologically active molecules. These
QDs are primarily employed in the chemical drug treatment of tumors, photodynamic ther-
apy, photothermal therapy, immunotherapy, gene therapy, and other related applications
(Figure 5 and Table 2).
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4.1.1. Chemotherapy

QDs, due to their small particle size, good dispersibility, and excellent biocompatibility,
are widely used as drug carrier materials in tumor treatment. It has been reported that
QDs can promote the release of various drugs, such as doxorubicin (Figure 6) [103–108],
paclitaxel [109,110], pemetrexed [111], 5-fluorouracil [112], etc. The use of a single QD
carrier in vivo is desirable, as carriers of a moderate size (approximately 10 to 20 nm in
diameter) can reduce the reticuloendothelial system uptake and renal clearance rate of
drugs, thereby increasing the circulation time in the blood and improving the delivery
efficiency [113]. However, to further improve the biocompatibility and reduce long-term
toxicity, surface-modified QDs are a good choice for applications in drug delivery systems.
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4.1.2. Photothermal and Photodynamic Therapy from Single-Mode to Dual-Mode

Photodynamic therapy (PDT) is an attractive method that involves irradiating the
tumor site with an appropriate wavelength, activating photosensitizing drugs that selec-
tively accumulate in the tumor tissue, triggering a photochemical reaction, generating
cytotoxic reactive oxygen species (ROS), and thereby killing tumor cells [114]. Compared to
traditional anti-cancer therapies, PDT has several advantages. For example, (i) it selectively
causes tumor necrosis without harming the surrounding normal tissue. (ii) Photosensitive
substances have no special toxicity to the human body, and there is no interaction with
other drugs, so they can be used in combination with other therapies. (iii) There is little
damage to normal tissues; PDT has a low invasiveness and causes less scarring. It is
suitable for superficial lesions and lesions that can be reached by optical fibers. (iv) There is
no cumulative toxicity of the drug, and it can be applied repeatedly. It does not require any
surgical interventions and it has been clinically used as early as the 1990s, using hematopor-
phyrin derivatives and photoproteins as photosensitizers for treatment [115]. The practical
application of classical photosensitizers is severely limited due to the disadvantages of
complex synthesis processes, a poor water solubility, and a short blood circulation time. The
rise of nanotechnology has provided new materials for PDT that can be used to overcome
the limitations of the first- and second-generation photosensitizers and to develop a third
generation of more effective and safer photosensitizers [116]. Good photosensitizers exhibit
several key characteristics. Firstly, they maintain stability in compositions. Secondly, they
are readily synthesized. Thirdly, they demonstrate non-toxicity in the absence of light expo-
sure. Fourthly, they possess target specificity and can effectively localize to specific tissues,
such as tumors. Fifthly, they have a high Φt, with a ∆Et exceeding 94 kJ mol−1 = 0.97 eV
(the energy of singlet oxygen), and their energy transfer efficiency is adequate for singlet-
oxygen formation. Sixthly, they can be efficiently metabolized in the body to minimize
noticeable side effects. Seventhly, they prevent or minimize self-aggregation in the body,
as aggregation decreases Φt. Lastly, they exhibit an insensitivity to degradation processes,
such as photobleaching, to ensure long-term stability [117]. QDs meet the first five stan-
dards of good photosensitizers, making them very promising for use as photosensitizers.
Only cells or tissues near the QD will be affected by PDT, and QDs have almost no cell
toxicity before being activated by PDT, after which any excess unbound QD reagents can
be removed from the organism by certain means [118].

In recent years, QDs have been extensively researched as highly promising photo-
sensitizers in the field of PDT. The pioneering use of QDs as photosensitizers was demon-
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strated in a study by Samia et al., where CdSe QDs acted as the primary energy donor
connected to a silicon phthalocyanine photosensitizer through alkyl groups, resulting
in emissions at 680 nm. By utilizing Förster resonance energy transfer (FRET) from the
QDs to the silicon phthalocyanine photosensitizer, ROS were generated for the purpose
of photodynamic cancer therapy [119]. The in vitro treatment of pancreatic cancer cells
with CdSe/ZnS QDs under 785 nm NIR laser irradiation notably resulted in observed cell
apoptosis (Figure 7A) [120]. Additionally, under 785 nm NIR laser irradiation, MoSe2 NDs
effectively killed HeLa cells (human cervical cancer cells) at relatively low concentrations
(40 µg mL−1) [121]. Zhang et al. synthesized copper selenocysteine QDs (Cu-Sec QD)
that produced selenocysteine (Sec) radicals, which served not only as reducing agents, but
also as capping and stabilizing agents. This effectively addressed the challenges of the
poor water solubility and stability observed in conventional nanomaterials, showcasing a
favorable biocompatibility. The strong absorption of Cu-Sec QD in the NIR II region (1000
to 1300 nm) facilitated tumor therapy by enhancing the photothermal effects through a
Fenton-like reaction, leading to significant cytotoxicity against various cancer cell lines,
including human liver, breast, pancreatic, lung, and gastric cancers [122]. Jin-Xuan Fan
et al. developed a novel hybrid metal–semiconductor nanocomposite (HNC) using CdSe-
seeded/CdS nanorods (NRs). When exposed to visible light in vitro, the HNC produces
a higher amount of ROS compared to pure nanorods. Furthermore, by incorporating an
RGD modification, the HNC gained targeting capabilities in vivo, leading to its significant
accumulation in tumors [123].

CQDs have been widely used in PDT. Novel CQDs synthesized from Diketopyrrolopy-
rrole (DPP) and CTS have demonstrated an excellent hydrophilicity and biocompatibility.
Under 540 nm laser irradiation, they significantly inhibited the growth of tumors in H22
(hepatocellular carcinoma)-tumor-bearing mice [124]. Furthermore, CNQD-CN assem-
bled from g-C3N4-embedded carbon nanosheets [125,126] served as a new type of carbon
QD with NIR fluorescence-labeling properties and pH-responsive carrier characteristics,
enabling cancer imaging and DOX delivery for cancer cell destruction and providing a mul-
tifunctional therapeutic platform for phototherapy and chemotherapy [127]. GQDs under
blue light (470 nm) irradiation generate ROS and singlet oxygen, inducing death in U251
human glioma cells through oxidative stress and autophagy [128]. Additionally, innovative
methods utilizing oxidative stress have been applied with GQDs to generate excessive ROS,
causing G2-/M-phase arrest, cell proliferation inhibition, and apoptosis enhancement to
damage colon cancer cells through γ-irradiation beyond NIR radiation [129].

Photothermal therapy (PTT) is a highly effective technique for destroying cancer cells
by utilizing PTT agents to induce localized hyperthermia upon exposure to laser light.
Unlike traditional cancer treatments such as surgery, chemotherapy, and radiotherapy, PTT
reduces harm to surrounding healthy tissues and shows potential as a viable approach
for tumor treatment [130,131]. Several photothermal agents have been developed, such as
nano-gold, graphene and its derivatives, polydopamine (PDA), indocyanine green, and
IR780, which demonstrate a high absorption and efficient photothermal conversion in the
NIR region. Nonetheless, these nanomaterials show limited biocompatibility, photostability,
and degradability [132–134]. MXene is a new type of two-dimensional transition material
combining conductivity and hydrophilicity perfectly [135–137]. When the two-dimensional
size of MXene is less than 100 nm, MXene QDs (MQDs) are formed. The photothermal
conversion efficiency of titanium carbide MQDs prepared using a non-fluorination method
is significantly higher than that of most previously reported PTT reagents. Additionally,
the photostability of MQDs is also excellent. Even after five cycles, the photothermal effect
of MQDs does not deteriorate, indicating that they are a potent photothermal agent for
inducing apoptosis in cancer cells with promising application prospects [138]. Wang et al.
developed nitrogen and boron-doped GQDs (N-B-GQDs) that can effectively convert light
energy into heat under external NIR irradiation, achieving PTT and successfully killing
cancer cells and inhibiting tumor growth in glioma tumor-bearing mice [139]. Research has
shown that biomimetic BPQDs, under NIR irradiation, can effectively kill tumors through
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photothermal effects. Additionally, they have the ability to promote DC maturation, induce
T cell activation, and trigger anti-tumor immune responses. Combining PTT with αPD-L1
immunotherapy not only reprograms the immunosuppressive TME, but also enhances
local and systemic anti-tumor immune responses. This combination treatment has been
shown to effectively treat distant tumors and inhibit triple-negative breast cancer metastasis
through immunologic memory effects (Figure 7B) [140].
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4.1.3. Other Treatments

Gene therapy is a biological treatment approach that involves transferring normal
genes into target cells using gene transfer technology to correct or compensate for diseases
caused by gene defects or abnormalities. In the realm of tumor gene therapy, altering the
gene expression intensity, inducing tumor necrosis, promoting tumor regression, enhancing
anti-cancer responsiveness by modifying genes, repairing target genes to prevent malignant
tumor-related thrombosis, and other methods can be employed to treat tumors [141]. While
there have been advancements in delivering specific genes through methods such as
liposomes and viral vectors, many of these methods have constraints on vector production,
leading to increased drug expenses. Moreover, there is a risk that the genetic material
transported by viral vectors could integrate close to genes related to cell proliferation,
potentially triggering oncogenes [142–144]. Therefore, the development of safe and effective
non-viral gene vectors is a major challenge in the field of gene therapy.

QDs can target and bind with DNA or mRNA through conjugated oligonucleotide
sequences, making them potential non-viral delivery vectors for gene therapy. Current
research indicates that QDs are better at inhibiting oncogene activity compared to other
methods [145]. For example, GQDs, as gene carriers, can enhance the therapeutic effects of
solid tumors by inserting microRNA into the hydrophobic region inside the therapeutic
mononuclear cell membrane through the hydrophobic end of the metalloproteinase reaction
peptide C18p (Figure 8A) [146]. Cao et al. synthesized a class of porphyrin derivatives
(P) known for their high singlet-oxygen-generation capability, along with GQDs that
exhibit good fluorescence properties. These were combined with polyethylene glycol
(PEG)-functionalized GQDs to create a multifunctional therapeutic diagnostic agent named
GQD-PEG-P. GQD-PEG-P is capable of delivering cancer-related miRNA intracellularly,
while also demonstrating a high photothermal conversion efficiency of 28.58% and a high
QY of 1.08 for singlet-oxygen generation. This dual functionality allows GQD-PEG-P to
perform both PDT and PTT, resulting in promising therapeutic efficiency for the combined
cancer treatment [147].

In the field of immunotherapy, research has shown that CQDs derived from chloro-
genic acid (ChA), a prominent bioactive compound found in coffee, demonstrate notable
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glutathione peroxidase-like activity. This activity is linked to inducing iron-induced cell
death in cancer cells. Furthermore, studies have revealed that ChA CQDs have the ability
to attract a significant number of tumor-infiltrating immune cells, such as T cells, NK cells,
and macrophages, in mice with liver cancer. This process effectively converts ‘cold’ tumors
into ‘hot’ tumors and triggers systemic anti-tumor immune responses [148].

In comparison to other tumor treatments, such as gene therapy and immunotherapy,
unmodified QDs still have notable limitations. However, QDs that have been functionalized
and assembled with specific ligands demonstrate an improved potential for practical
applications.

Table 2. The application of non-functionalized QDs in tumor-targeted therapy.

Modification of QDs Modalities of Treatment QDs Types of Cancer

Non-functionalized
modified QDs

Chemotherapy

QDs carry doxorubicin [103–108]

Breast cancer
Lung cancer

Cervical cancer
Hepatocarcinoma

Glioblastoma

QDs carry paclitaxel [109,110] Hepatocarcinoma
Prostate cancer

QDs carry pemetrexed [111] Breast cancer
QDs carry 5-fluorouracil [112] Lung cancer

PTT/PDT

CdSe/ZnS QDs [120] Pancreatic cancer
MoSe2 NDs [121] Cervical cancer
Cu-Sec QDs [122] Hepatocarcinoma

DPP-CTS-CQDs [124] Hepatocarcinoma
CNQD-CN [127] Cervical cancer

GQDs [129] Glioblastoma
Colon cancer

MXene-MOD [138] Cervical cancer
N-B-GQDs [139] Glioblastoma

BBPQDs [140] Breast cancer

Other treatments
C18p-GQDs [146] Breast cancer
GQD-PEG-P [147] Lung cancer
ChA CQDs [148] Hepatocarcinoma
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4.2. Functionalized QDs
4.2.1. Lipid and Polysaccharide Modification

Lipids, including fats (triglycerides) and lipids (phospholipids, sterols), are com-
pounds formed from the interaction of fatty acids and alcohols. These components are
crucial for cell membranes, cellular recognition, and signal transduction. Exosomes (EXOs)
are lipid membrane vesicles (50 to 150 nm) secreted by multivesicular bodies through
endocytosis, and they offer advantages such as easy accessibility, an excellent immunoeva-
sive ability, and extended circulation time in the blood. Notably, EXOs can be efficiently
taken up by cells and directed towards specific tissues or cells based on biological mod-
ifications on their membrane. These characteristics make EXOs a promising carrier for
modifying QDs. Research has used electroporation to package BPQDs into EXOs, creating
BPQDs@EXO nanospheres (BEs) to evaluate their penetration and cytotoxic capabilities
in bladder-cancer-like tissues. The results showed that the optimal concentrations of BEs
demonstrated significant penetration into tumor tissues, with the corresponding photother-
mal effect effectively inhibiting tumor growth and angiogenesis. In vivo studies on mice
with subcutaneous bladder cancer showed similar outcomes [149]. Polysaccharides, also
known as glycans, are high-molecular-weight compounds formed by numerous monosac-
charides through glycosidic bonds. Similar to lipids, they are crucial components of cell
membranes and play vital roles in cellular recognition and signal transduction. Among
polysaccharides, HA stands out due to its specific binding to CD44, making it suitable for
targeting tumor cells. Consequently, HA has been employed in cancer-targeted therapy. In
a study by Nafiujjaman et al., a PDT system was developed by combining Ce6 with HA
and loading it onto GQDs. This system demonstrated outstanding biocompatibility and
PDT effects when exposed to light irradiation [150]. I have summarized in Table 3.

4.2.2. Protein Modification

The functionalized modification of QDs by proteins was documented as early as
2003. In one study, semiconductor CdSe QDs were linked to Pc4 (a human positive
coactivator known as a PDT drug), leading to a significant expansion of the excitation
light wavelengths for Pc4 through fluorescence resonance energy transfer (FRET). It can
be estimated that the FRET efficiency can reach 77%. This innovative pairing of QDs
with Pc4 offers the advantage of being able to activate photosensitizer molecules with
varying excitation light wavelengths. Additionally, the spectral properties of the QDs can
be fine-tuned to match those of any PDT photosensitizer simply by adjusting the size of
the QDs [119]. Peptide E5-modified CdSe/ZnS QDs significantly enhanced the binding
affinity to CXCL4-overexpressing cancer cells and inhibited the CXCL12-induced migration
of cancer cells [151]. L-cysteine-capped CdSe QDs coupled with methotrexate (MTX)
efficiently circumvented the efflux of drug-resistant cancer (KB) cells through the cellular
endocytosis of QDs on KB cells (MTX-resistant cells), with a significant killing effect [152].
IL-13-modified CdSe QDs can detect tumor exosomes and serve as ex vivo markers of
glioma stem cells and exosomes, providing information for the diagnosis and prognosis
of patients with malignant diseases [153]. According to the specific antigen–antibody
recognition mechanism, QDs can also be modified by antibodies to achieve specific targeting
for cancer cells. Several studies have demonstrated that the GP73 protein is upregulated in
hepatocellular carcinoma and can be used as a prognostic marker [154]. Liu et al. covalently
linked Mn-modified CdTe/CdS QDs with GP73 antibodies using EDC as a cross-linking
agent. Subsequently, they specifically attached protein A/G agarose beads to the antibody
bound to the QDs. These QD–Ab–bead bioconjugates can selectively capture GP73 in
the samples through the immunoreactivity between GP73 and the GP73 antibody. The
immune complexes can be easily separated by centrifugation. The fluorescence intensity of
the QD–Ab–microbead biosensor is reduced upon binding with GP73, enabling the direct
detection of GP73 by monitoring the fluorescence intensity change in the QD–Ab beads
when they bind to specific target analytes [155].
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The use of PDT/PTT with QDs for killing cancer cells is highly effective, especially
when combined with chemotherapeutic agents. BPQDs are particularly promising due to
their large NIR extinction coefficient, high photothermal conversion efficiency, and low
cytotoxicity, making them ideal photosensitizers for tumor treatments. Zhang et al. utilized
EGFR for tumor targeting in the synthesis of BPQDs@DOX@ss-Fe3O4@C-EGFR NPs, where
BPQDs and Fe3O4@C NPs served as photothermal agents. Upon the NIR irradiation of
A549 and MCF7 tumor-bearing mice, a significant PTT effect was observed due to a rapid
increase in the tumor temperature, thus enhancing the efficacy of tumor killing through
a combination of chemotherapy and PTT with DOX release [86]. I have summarized
in Table 3.

4.2.3. Organic Polymer Modification

The folate receptor, which is overexpressed on the surface of cancer cells, is a very
attractive therapeutic diagnostic target [156]. CdSe-aza-BODIPY QDs coated with folic acid
and polyethylene glycol induced ROS upon irradiation at 653 nm in Hela cells. The QDs
were found to be preferentially localized in cancer cells, with negligible localization of the
QDs in normal cells. This demonstrated the specificity, efficacy, and limited side effects
of the QDs [157]. Li et al. developed folate-conjugated CdTe/CdS chiral QDs (FA-Cys-
CdTe/CdS) by combining two chiral ligands, folate and cysteine. The chiral nature of the
FA-Cys-CdTe/CdS was evidenced by the CD signals below 250 nm for folate and at 270 nm
for cysteine-CdTe/CdS. This study revealed that FA-Cys-CdTe/CdS exhibited a notable
inhibitory effect on cancer cell growth while showing minimal impact on normal cells.
Additionally, the QDs were observed to target cancer cells and induce apoptosis, suggesting
their potential as anti-tumor agents [158]. Rajendra et al. functionalized superparamagnetic
iron oxide nanoparticle cores (INOPs) with fluorescent-doped Mn CdS@ZnS QDs. The
resulting INOP-Mn CdS@ZnS can effectively target and eliminate cancer cells. Their
study incorporated STAT3 inhibitors, folic acid for cancer cell targeting, and mPEG for
hydrophilicity to enhance the QDs. This led to the fluorescence recovery of the QDs upon
their uptake by breast cancer cells in glutathione-rich environments, reducing the viability
of MDA-MB-231 and Panc-1 cell lines. Notably, the viability of mouse thymus basal cells
(TE-71 cells) remained unaffected. Overall, this study significantly enhanced the delivery
efficiency of anti-cancer drugs, improving the therapeutic efficacy while minimizing the
side effects from excess drug presence [66].

In addition to the core-shell QDs, pH-responsive D-biotin/DOX-loaded mPEG-OAL/N-
CQDs possess the ability to remain stable at a physiological pH and release DOX in acidic
environments. This enables DOX to be effectively absorbed by cancer cells through D-
biotin-mediated cellular endocytosis, allowing it to act in the nuclear region and exert
pharmacological effects [159]. UCNP nanoparticles modified with GQDs (UCNP-GQDs)
can be activated by NIR light to emit energy from the UCNP, subsequently exciting the
GQDs and generating singlet oxygen (O−1). Researchers have also covalently attached
TRITC to UCNP-GQDs, imparting the material with precise targeting capabilities towards
mitochondria. This targeted approach can induce irreversible apoptosis in tumor cells
within mitochondria, leading to a notable enhancement in the effectiveness of PDT [160].

Tumor-specific targeting can be achieved through passive targeting by utilizing Poly
PLGA loaded with 3 nm BPQDs processed via the solvent evaporation of oil-in-water emul-
sions to create BPQD/PLGA nanospheres of approximately 100 nm in size. Nanomaterials
ranging from 20 to 200 nm can effectively evade renal filtration, resulting in the passive
accumulation of BPQD/PLGA nanospheres at the tumor site through the enhanced perme-
ability and retention (EPR) effect. Following the injection of Cy5.5-labeled BPQD/PLGA
nanospheres in MCF7-loaded mice, strong fluorescence was still detectable after 48 h. A sub-
sequent fluorescence analysis of tumor tissue sections revealed a widespread distribution
of nanospheres throughout the entire tumor section, indicating the successful penetration
of the BPQD/PLGA nanospheres. Furthermore, by harnessing the photothermal properties
of the BPQD/PLGA nanospheres for PTT with 808 nm NIR irradiation, the tumor site was
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rapidly heated to a peak temperature of 58.8 ◦C, effectively inducing tumor ablation. In
glioma C6 and breast cancer MCF7 cells, NIR irradiation successfully enhanced the PDT
effect of BPQDs, resulting in significant cell death. Therefore, BPQD/PLGA nanospheres ex-
hibit excellent passive targeting capabilities and serve as effective photothermal agents [161].
Further PEG modifications significantly enhanced the biostability of the BPQDs [17]. Li et al.
selected three organic polymers to modify BPQDs, resulting in BPQD@PAA/PEG/PPS.
The self-assembly of BPQD@PAA/PEG/PPS led to the embedding of Ag in the PPS shell
layer, leveraging the hydrophobicity of the PPS shell for the effective protection of Ag ions
and the acquisition of BP Ve-Ag. Upon an intravenous injection of BP Ve-Ag in 4T1-bearing
mice, the BP Ve-Ag QDs exhibited specific accumulation at the tumor site over time. A
subsequent 660 nm irradiation induced significant tumor cell apoptosis and necrosis. The
TME showed elevated levels of pro-inflammatory factors, which could potentially enhance
anti-cancer immunotherapy [162]. In addition to cancer-killing through PDT and PTT,
BPQDs have also shown promise as a gene delivery system. When functionalized with
polyelectrolyte polymers, BPQDs can effectively deliver lysine-specific demethylase and
siRNA to PA-1 cells (human ovarian teratocarcinoma). When combined with NIR light,
this delivery system can inhibit cancer growth by more than 80%. These findings highlight
the potential of BPQDs for siRNA delivery and their synergistic anti-tumor effects when
combined with photothermal PDT [163]. I have summarized in Table 3.

4.2.4. Other Modifications

Guo et al. conducted a study where they performed amino-functionalized modifica-
tions to GQDs to create amino-N-GQDs. These modified GQDs were found to serve as
effective two-photon probes that showed a strong PDT effect by producing a significant
amount of ROS and effectively targeting multidrug-resistant substances [139]. Most BPQD-
mediated photothermal diagnostics are typically constrained by limited tissue penetration,
resulting in minimal competition in the NIR-II and X-ray-induced phototherapy domains.
However, Li et al. successfully synthesized Nd3+-coordinated BPQDs, thus forming ion-
coordinated BPQDs (BPNd), which significantly enhanced their competitiveness in the
realms of NIR-II and X-ray-induced phototherapy. This enhancement was attributed to the
presence of recyclable NIR/X-ray photoelectric switching effect ions between the BPQDs
and Nd3+. Furthermore, BPNd exhibits the ability to effectively traverse the blood–brain
barrier for intracranial fluorescence imaging, enabling the detection of glioblastoma growth
and the inhibition of its progression through X-ray-induced synergistic photodynamic
chemotherapy [164]. I have summarized in Table 3.

Table 3. The application of functionalized QDs in tumor-targeted therapy.

Modification
of QDs Type of Modification QDs Types of Cancer Treatment

Functionalized
QDs

Lipid and polysaccharide
modification

BPQDs@EXO [149] Bladder cancer PTT
Ce6-HA-GQDs [150] Non-small-cell carcinoma PDT

Protein modification

Peptide E5-modified CdSe/ZnS QDs [151] Cervical cancer Ligand-receptor-specific binding
L-cysteine-capped CdSe QDs coupled with

methotrexate (MTX) [152] Oral epidermal carcinoma Chemotherapy

IL-13-modified CdSe QDs [153] Glioma Ligand-receptor-specific binding

CdTe/CdS QDs with GP73 [155] Hepatocarcinoma Specific binding of
antigen to antibody

BPQDs@DOX@ss-Fe3O4@C-EGFR NPs [86] Breast cancer PDT

Organic polymer
modification

CdSe-aza-BODIPY QDs [157] Cervical cancer PDT
FA-Cys-CdTe/CdS [158] Breast cancer Ligand-receptor-specific binding
INOP-Mn CdS@ZnS [66] Breast cancer Chemotherapy

mPEG-OAL/N-CQDs [159] Cervical cancer Chemotherapy
TRITC-UCNP-GQDs [160] Breast cancer PDT

BPQDs/PLGA NS [161] Breast cancer
glioma PTT

BP Ve-Ag QDs [162] Breast cancer PDT
siRNA-BPQDs [163] Ovarian teratocarcinoma PDT

Other modification
amino-N-GQDs [139] Oral epidermal carcinoma PDT

BPNd [164] Glioblastoma PDT
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5. Challenges and Summary

QDs represent a new generation of nanomaterials that have garnered significant
interest in the biomedical field due to their customizable optical properties and high
tissue compatibility. Since their introduction, a variety of QDs with distinct advantages
have been developed to meet various clinical needs in biomedicine. Starting from the
initial CdSe QDs, this field has seen the gradual emergence of CQDs, GQDs, BPQDs and
PQDs. These advancements have the potential to revolutionize cancer treatment and early
detection imaging. The anti-tumor effects of QDs primarily involve PDT and PTT, with
many QDs capable of inducing ROS through the generation of singlet oxygen via triplet
energy transfer (TET) and enhancing the PL of conventional photosensitizers through
FRET. Furthermore, QDs can be further functionalized with common modifications such
as polysaccharides, lipids, proteins, organic polymers, and other modifications to achieve
specific tumor targeting for effective killing and cellular imaging applications, thereby
minimizing undesired side effects.

Fewer studies have focused on exploring the long-term toxicity of different QDs on
living organisms. The toxicity of QDs is primarily determined by factors that include the
chemical composition, particle size, surface modifications, exposure pathways, duration of
exposure, and dosage [165]. (i) The toxicity caused by their chemical composition is mainly
due to the heavy metal core of metal QDs. Such QDs may be ingested into the cytoplasm
through cellular endocytosis, and their prolonged presence in the cellular environment
may damage the outer coating of the QDs, thus releasing the heavy metal core of the
QDs [166]. (ii) The surface reactivity of nanoscale QDs raises toxicological concerns, which
are often addressed through surface passivation techniques such as the use of polyethylene
glycol. QDs are semiconductor materials and are typically smaller than 20 nm, making
them easily absorbed by the human body and distributed in various organs. Research
indicates that larger QDs tend to exhibit higher toxicity levels [167] (accumulation in spleen).
(iii) Surface modifications are typically implemented to enhance biocompatibility; however,
improper modification techniques can introduce unknown toxicity. Rashi et al. studied the
toxicity of CdSe QDs with various surface modifications on human bronchial epithelial
cells. Their research revealed that the charge of the QDs has a more significant effect on
toxicity compared to the size of functionalization [168]. (iv) Normally, QDs are injected
intravenously into the body, which can potentially harm blood vessels [169]. But there
are also studies indicating that, due to the small size of QDs, they can also enter the
body through the skin and respiratory tract [170]. (v) The toxicity of QDs is intricately
linked to the dosage and duration of exposure. Higher concentrations and longer exposure
times of QDs tend to increase their biological toxicity. In a study by Wang et al., it was
observed that exposing mouse livers and kidneys to CdTe QDs led to a dose-dependent
elevation in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx) [171]. In addition to considering the biological toxicity of QDs, it is crucial
to assess their potential accumulation in the body over time and how the human body
eliminates these nanoparticles. Some studies suggest that QDs with a diameter below
5.5 nm can be excreted through urine, while those larger than 8 nm tend to persist in
the bloodstream [172]. Ge et al. also found that AgSe QDs (<3 nm) could be removed
from mouse kidneys after 168 h without long-term accumulation [173]. In addition to
renal clearance, QDs can bind to serum proteins and be excreted through the liver [174].
The biological toxicity of QDs is influenced by various factors, making it necessary for
the biological safety assessment of QDs to consider multiple aspects rather than simply
labeling them as ‘toxic’ or ‘non-toxic’. More clinical data are required to understand the
metabolism and excretion of QDs in humans. The introduction of new inorganic QDs such
as CQDs, GQDs, BPQDs, and PQDs is expected to reduce the biological toxicity associated
with older QDs. For instance, studies have demonstrated that GQDs exhibit a low toxicity,
and further surface modifications can enhance their therapeutic effects while ensuring
long-term stability during biological therapy. Novel nanomaterials such as BPQDs show
promise in lowering the biotoxicity risks due to phosphorus being a natural element in the
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human body. These advancements aim to enhance the targeting efficiency of QDs, minimize
off-target effects, improve QD accumulation in tumor tissues, and diminish the impacts
on normal tissues. The ongoing advancement of QDs holds promise for creating materials
with superior optical properties, a reduced toxicity, and enhanced biocompatibility. These
advancements have the potential to enhance the efficacy of various QD-based therapies in
cancer treatment, including loading chemotherapy drugs onto QDs, utilizing QDs for PTT
and PDT, and exploring gene therapies. Furthermore, the continued development of QDs is
expected to lead to the creation of improved imaging agents, bolster bioimaging technology,
and enable the precise in vivo imaging of cancer cells with deep tissue penetration and
minimal background fluorescence.
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