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Państwa Polskiego 13a, 24-110 Puławy, Poland; barbara.mazurek@ins.lukasiewicz.gov.pl (B.M.);
dorota.kostrzewa@ins.lukasiewicz.gov.pl (D.K.); mariusz.chmiel@ins.lukasiewicz.gov.pl (M.C.)

3 Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 2A Kopisto St.,
35-959 Rzeszów, Poland; tkubrak@ur.edu.pl

* Correspondence: magdalena.wojciak@umlub.pl

Abstract: Tiliroside is a natural polyphenolic compound with a wide range of biological activity,
and defatted strawberry seeds are its rich source. The goal of this study was to optimize accelerated
solvent extraction (ASE) conditions, including temperature, solvent composition, and the number
of extraction cycles, using Box–Behnken design to maximize the yield of tiliroside. UPLC-DAD-MS
was applied to investigate the polyphenolic composition of the extracts, and preparative liquid
chromatography (pLC) was used for isolation. All obtained mathematical models generally showed
an increase in the efficiency of isolating polyphenolic compounds with an increase in temperature,
ethanol content, and the number of extraction cycles. The optimal established ASE conditions for
tiliroside were as follows: a temperature of 65 ◦C, 63% ethanol in water, and four extraction cycles.
This allowed for the obtainment of a tiliroside-rich fraction, and the recovery of isolated tiliroside
from plant material reached 243.2 mg from 100 g. Our study showed that ASE ensures the isolation
of a tiliroside-rich fraction with high effectiveness. Furthermore, defatted strawberry seeds proved to
be a convenient source of tiliroside because the matrix of accompanying components is relatively
poor, which facilitates separation.

Keywords: Fragaria ananassa; polyphenols; tiliroside; ASE; defatted seeds

1. Introduction

Tiliroside is a natural polyphenolic compound belonging to the derivatives of kaempferol,
which contains glucose and a coumaroyl substituent attached to the aglycone ring (Figure 1).

Numerous scientific studies indicate that tiliroside possesses a wide range of biological
activities, including a positive impact on the cardiovascular and nervous systems [1,2],
antiobesity and antidiabetic properties [3–5], as well as anti-inflammatory action [6,7]. It
also inhibits the proliferation of different types of cancer cells [8,9] and shows significant
antioxidant effects observed in both chemical tests and investigations using biological
systems [7,9]. Furthermore, it acts beneficially on skin cells by protecting them from oxida-
tive stress and inflammation, decreasing tyrosinase activity, enhancing the ceramide layer,
and thereby preventing moisture loss [7,10–12]. Taking into account the aforementioned
properties, it can be considered a valuable dietary supplement and cosmetic additive.

Tiliroside was first isolated from Rosa canina, and to date, it has been found in
172 species, mostly from the Rosaceae and Malvaceae families. It is most abundant in
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flowers, followed by leaves, with the lowest concentration in roots and fruits [13]. For
example, a significant amount of tiliroside was detected in the aerial parts of some Potentilla
spp. [14] and in the flowers of Gossypium hirsutum [15], Rosa rugose, Althaea rosea [16], Tilia
cordata, and T. platyphyllos [16–18].
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The initial step in isolating tiliroside from plant material is solid–liquid extraction (SLE)
using organic solvents, mostly ethanol or methanol with varying water content, followed
by a partition through liquid–liquid extraction and preparative chromatography [15,19–21].
The extraction process can be assisted by ultrasound or microwave to enhance extraction
efficiency and decrease processing time [21–23]. In our study, accelerated solvent extraction
(ASE) was used to facilitate the extraction of the polyphenolic fraction, which was then
applied to isolate tiliroside from the plant matrix. This technique offers several advantages,
such as high effectiveness, precise control over extraction parameters, and automatization,
resulting in improved reproducibility [24–26]. Moreover, samples of plant material placed
in reaction cells do not have access to light and oxygen during the extractions, which limits
the degradation processes. Increased temperature and/or pressure reduce the viscosity
of the solvent, facilitating its penetration between the matrix particles and increasing its
capacity to dissolve polyphenols [27].

The goal of this study was to optimize ASE conditions, including temperature, solvent
composition, and the number of extraction cycles using Box–Behnken design to maxi-
mize the yield of tiliroside in a total phenolic fraction, which was further isolated using
preparative liquid chromatography (pLC). BBD is suitable for examining the influence
of any number of selected parameters and for process optimization [28,29]. Moreover, it
facilitates the acquisition of information on possible interactions between the evaluated
parameters. It enables the creation of a mathematical model based on data obtained from
several experiments without the need to perform dozens of them.

Defatted strawberry seeds were used as research material because the reports showed
that they are a quite rich reservoir of tiliroside with a content in the range of 130 to 184.0
mg/100 g [22,30]. Additionally, this is a convenient source for obtaining tiliroside, as the
amount of fatty acids and other lipid components in the matrix is highly reduced, and the
polyphenolic profile is modest, facilitating targeted isolation. Furthermore, the utilization
of fruit and vegetable byproducts generated during the processing for the food industry is
an important trend from the perspective of a “zero waste” strategy.

2. Results and Discussion
2.1. Optimization of Conditions for Accelerated Solvent Extraction (ASE)

Accelerated solvent extraction (ASE) was used to isolate polyphenolic fractions from
plant material. In this technique, it is possible to use a wide range of solvents. However,
taking into account current trends in environmental protection and with a view to possible
future applications in cosmetics or pharmaceutical products, two solvents considered
neutral, namely water and ethanol, were used in our work.

The temperature, solvent ratio, and the number of extraction cycles were investigated
as the main factors influencing the composition of the extract and the efficiency of the
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process [31–35]. The ranges of parameters were selected based on a literature review and
previous preliminary research. The indicated independent variables are factors that can be
modified in the ASE system. In turn, the effect of pressure is to maintain the solvents as
liquids even above their atmospheric boiling points [28]. The pressures used in ASE are
well above the thresholds required to maintain the solvents in their liquid states, so pressure
adjustments for changing solvents are not required. Changing the pressure has very little
impact on analyte recovery and is not considered a critical experimental parameter [35].
Therefore, ASE extractions were performed at a constant pressure of 1500 psi. The situation
is different in the case of temperature. Operation at high temperatures may worsen extract
quality if the extraction is too long [36]. Due to the possibility of the thermal degradation of
phenolic compounds, a temperature of 60–70 ◦C is usually not exceeded, as suggested by
Rajha et al. [37]. Some authors, such as Volf et al. [38], suggest a lower temperature range
of 40–50 ◦C, while others recommend much higher temperatures [39–42]. In this study,
the range of variables was carefully chosen to include all parameter spaces and to obtain
well-fitting models.

The complete matrix of the experimental plan and the results of quantitative analysis
of the main metabolites using the UPLC-DAD method in ASE extract obtained during the
implementation of the Box–Behnken design is shown in Table 1. In addition to the target
metabolite (tiliroside), other phenolic components of defatted strawberry seeds were also
monitored to assess the overall effectiveness of the polyphenol extraction process.

Table 1. Experimental matrix and results in the BBD: X1—temperature; X2—solvent ratio;
X3—extraction cycles. Data are given as the mean values in µg/g of plant material ± SD.

Run Order
Independent Variables Response Variables

X1 X2 X3 FAd p-CA 3-gluK EA Tiliroside Yield (%)

1 0 0 0 74.67 ± 1.70 83.10 ± 2.22 134.80 ± 2.71 257.44 ± 1.20 1757.4 ± 32.1 5.41 ± 0.07
2 −1 0 1 62.49 ± 0.75 72.33 ± 1.13 101.88 ± 2.88 280.55 ± 1.52 1196.0 ± 45.6 5.40 ± 0.02
3 1 0 −1 65.70 ± 0.69 77.57 ± 1.50 157.52 ± 3.60 312.61 ± 2.38 1948.1 ± 8.8 5.58 ± 0.05
4 −1 0 −1 55.28 ± 1.68 69.49 ± 1.16 102.84 ± 0.29 260.21 ± 1.75 1085.3 ± 24.6 5.31 ± 0.10
5 0 1 1 50.44 ± 0.79 59.47 ± 0.82 66.67 ± 1.25 41.28 ± 2.26 252.32 ± 4.87 6.22 ± 0.13
6 0 0 0 72.84 ± 1.41 75.65 ± 4.94 128.50 ± 1.69 267.20 ± 3.46 1766.1 ± 14.2 5.48 ± 0.02
7 1 0 1 62.88 ± 2.32 78.84 ± 0.98 151.83 ± 6.94 308.69 ± 3.32 2064.7 ± 36.3 5.65 ± 0.09
8 0 1 −1 51.50 ± 1.69 44.36 ± 1.49 46.35 ± 3.42 34.29 ± 1.26 205.75 ± 17.3 5.71 ± 0.06
9 0 −1 1 64.22 ± 0.51 81.03 ± 0.44 143.84 ± 1.56 381.02 ± 11.7 1840.5 ± 5.4 5.10 ± 0.07

10 0 −1 −1 59.76 ± 0.20 75.81 ± 1.37 121.50 ± 0.14 293.37 ± 2.76 1775.9 ± 32.3 4.85 ± 0.18
11 0 0 0 70.85 ± 2.39 80.09 ± 1.13 122.82 ± 4.01 261.01 ± 1.62 1805.3 ± 14.4 5.53 ± 0.04
12 1 −1 0 65.45 ± 1.08 83.43 ± 1.24 143.37 ± 1.64 367.91 ± 3.20 2230.1 ± 19.3 5.25 ± 0.04
13 1 1 0 48.93 ± 6.07 65.57 ± 1.32 86.48 ± 3.40 42.36 ± 1.26 264.35 ± 6.91 6.10 ± 0.16
14 −1 1 0 43.79 ± 1.81 41.48 ± 1.53 36.64 ± 3.69 31.13 ± 1.16 145.8 ± 5.29 5.75 ± 0.11
15 −1 −1 0 63.53 ± 2.63 76.02 ± 2.49 109.01 ± 11.9 307.05 ± 17.8 1353.4 ± 19.4 4.67 ± 0.13

FAd—ferulic acid derivative; pCA—p-coumaric acid; 3-gluK—kaempferol 3-glucoside; EA—ellagic acid.

2.1.1. Extraction Yield

The yield value of performed ASE extraction processes of defatted strawberry seeds
ranged from 4.67% to 6.22%. Statistical analysis shows that the extraction yield depends
on temperature (X1), solvent ratio (X2), and extraction cycles (X3). In the first modeling
approach, a quadratic equation was selected (yield = 5.4733 + 0.1813X1 + 0.4888X2 +
0.1138X3 − 0.0562X1X2 − 0.0037X1X3 + 0.0637X2X3 − 0.0110X12 − 0.0235X2

2 + 0.0190X3
2),

for which, however, the quadratic terms and interactions between the parameters turned
out to be insignificant (p > 0.10). Moreover, the predicted R2 was only 0.5420. It was found
that quadratic relations and interactions between parameters are not significant. Therefore,
the linear model for extraction yield was used. This model is significant (p < 0.0001), and the
lack of fit of the model is insignificant (p = 0.2700). Values of the coefficient of determination
R2, adjusted coefficient of determination R2, and predicted coefficient of determination R2

are high and are 0.9549, 0.9426, and 0.9065, respectively.
Figure 2 shows the surface plot for extraction yield as a function of variables X1

(temperature), X2 (solvent ratio), and X3 (extraction cycles).
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Figure 2. Response surface plot for the extraction yield as a function of (a) temperature (X1) and
solvent ratio (X2), where X3 = 0; (b) temperature (X1) and extraction cycles (X3), where X2 = 0; and (c)
solvent ratio (X2) and extraction cycles (X3), where X1 = 0.

Analysis of the response surface graphs (Figure 2) and the fitted model equation
indicate that the higher the extraction temperature and the higher the number of extraction
cycles, the more the extraction yield increases. As the temperature increases, the viscosity
of the solvent is reduced, thereby increasing its ability to wet the matrix and solubilize the
target analytes. The added thermal energy also assists in breaking analyte–matrix bonds
and encourages analyte diffusion from the matrix surface. The choice of temperature may
also affect selectivity [28,35,43]. At higher temperatures, the extraction is less selective.
Lowering the temperature will make ASE more selective, but the recovery of analytes
can decrease unless the extraction time is increased. Increasing extraction cycles allows
for the introduction of fresh solvents during the ASE extraction process, which helps
maintain a favorable extraction balance. In addition, static cycles are useful for samples
with varying concentrations of analytes, allowing for their more complete extraction, as
well as for samples with difficult-to-penetrate matrices (e.g., plant seeds). If extraction at
a lower temperature (<75 ◦C) is desired, as is the case with the extraction of compounds
with low thermal stability, such as polyphenolic compounds, several static cycles should
be used instead of one to increase the solubility of the analytes. This helps compensate
for the lower amount of solvent introduced during the heating stage and maintains the
specified pressure level [28]. The yield values are also higher both at a higher process
temperature and at a higher water content in the water/ethanol ratio in the selected solvent
system. This is because the ASE selectivity is decreased when using more polar solvents
and more components are extracted (not necessarily those determined in the study), which
collectively affects the efficiency of the extraction process.

Figure 3 shows the relationship between the predicted extraction yield of defatted
strawberry seeds and the experimental data.
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The final form/equation of the mathematical model for the extraction yield as a
function of coded variables is

yield = 5.47 + 0.18X1 + 0.49X2 + 0.11X3 (1)

2.1.2. Individual Polyphenol Yield of Defatted Strawberry Seeds

Based on the experimental data presented in Table 2, the statistical analyses of the
second-order polynomial equation for the yield of ferulic acid derivative (Fad), p-coumaric
acid (p-CA), 3-glucoside kaempferol (3gluK), ellagic acid (EA), and tiliroside were carried
out. The results of statistical analysis for full quadratic models are presented in Table 2.

Table 2. Regression coefficients of the full quadratic models with their statistical significance and
model parameters for investigated polyphenols.

Source
FAd p-CA 3-gluK EA Tiliroside

β p-Value β p-Value β p-Value β p-Value β p-Value

Model 0.0026 0.0055 0.0018 <0.0001 0.0001
Lack of Fit 0.3003 0.4017 0.2095 0.0876 0.0275

β0 72.79 79.61 128.71 261.88 1776.29
X1 2.23 0.0612 5.76 0.0140 23.60 0.0011 19.08 0.0084 340.85 0.0005
X2 −7.29 0.0005 −13.18 0.0004 −35.20 0.0002 −150.04 <0.0001 −791.46 <0.0001
X3 0.97 0.3425 3.06 0.1067 4.50 0.2566 13.88 0.0281 42.31 0.3606
X1X2 0.80 0.5676 4.17 0.1164 3.87 0.4716 −12.41 0.1110 −189.56 0.0244
X1X3 −2.51 0.1147 −0.39 0.8648 −1.18 0.8215 −6.06 0.3880 1.47 0.9813
X2X3 −1.38 0.3405 2.47 0.3123 −0.50 0.9232 −20.17 0.0256 −4.49 0.9428
X1

2 −6.13 0.0065 −1.80 0.4680 −0.45 0.9335 14.13 0.0880 −111.48 0.1317
X2

2 −11.24 0.0004 −11.19 0.0045 −34.38 0.0012 −88.90 <0.0001 −666.39 0.0001
X3

2 −5.07 0.0138 −3.25 0.2145 0.26 0.9614 14.50 0.0819 −91.28 0.2004

R2 0.9704 0.9598 0.9747 0.9963 0.9910
Adjusted R2 0.9172 0.8874 0.9290 0.9895 0.9747
Predicted R2 0.6131 0.5167 0.6450 0.9432 0.8576

FAd—ferulic acid derivative; pCA—p-coumaric acid; 3-gluK—kaempferol 3-glucoside; EA—ellagic acid; p <
0.0001 very highly significant, p < 0.01 very significant, p < 0.05 significant.

The significance of the equation parameters for the response variable was assessed
by the probability (p) of 0.1. The statistically found non-significant terms (p > 0.1) were
dropped from the initial models (not counting those required to support hierarchy). The
adequacy and predictability of the mathematical models were considered according to the
coefficient of determination R2, adjusted and predicted coefficient of determination R2, and
the lack of fit. Adjusted R2, a modified version of R2, increases precision and reliability by
taking into account the effects of additional independent variables that tend to distort the
results of R2 measurements. The predicted R2, as opposed to the adjusted R-squared, is
used to indicate how well the regression model predicts responses to new observations.

The statistical analysis indicated that the proposed quadratic models for ferulic acid
derivative, p-coumaric acid, kaempferol 3-glucoside, ellagic acid, and tiliroside were sta-
tistically significant with good determination coefficient R2 (0.9704, 0.9598, 0.9747, 0.9963,
and 0.9910). At the same time, it was observed that the models contained some terms that
were statistically not significant. Moreover, some predicted R2 values were low (0.6131,
0.5167, 0.6450), and the lack of fit for tiliroside was significant (p = 0.0275). Therefore, the
proposed models were reduced by removing insignificant coefficients (p > 0.10) using the
step-by-step method (not counting those required to support hierarchy). The results of the
statistical analysis for the reduced mathematical models are presented in Table 3.
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Table 3. Regression coefficients of the reduced models with their statistical significance and model
parameters for investigated polyphenols.

Source
FAd p-CA 3-gluK EA Tiliroside *

β p-Value β p-Value β p-Value β p-Value β p-Value

Model 0.0002 0.0001 <0.0001 <0.0001 <0.0001
Lack of Fit 0.3598 0.4685 0.8357 0.0560 0.0842

β0 72.79 76.72 128.60 278.25 7.46
X1 2.23 0.0411 5.76 0.0046 23.60 <0.0001 19.08 0.0160 0.28 <0.0001
X2 −7.29 0.0001 −13.18 <0.0001 −35.20 <0.0001 −150.04 <0.0001 −1.06 <0.0001
X3 0.97 0.3121 3.06 0.0779 13.88 0.0597 0.05 0.0106

X1X2 4.17 0.0870
X1X3 −2.51 0.0878
X2X3 −20.17 0.0543 0.04 0.0807
X1

2 −6.13 0.0023 −0.13 0.0004
X2

2 −11.24 0.0001 −10.83 0.0010 −34.37 <0.0001 −90.94 <0.0001 −0.98 <0.0001
X3

2 −5.07 0.0052

R2 0.9617 0.9294 0.9629 0.9864 0.9989
Adjusted R2 0.9233 0.8902 0.9528 0.9788 0.9981
Predicted R2 0.8479 0.8044 0.9305 0.9611 0.9943

FAd—ferulic acid derivative; pCA—p-coumaric acid; 3-gluK—kaempferol 3-glucoside; EA—ellagic acid; p < 0.0001
very highly significant, p < 0.01 very significant, p < 0.05 significant; * results after additional transformation (ln
(Y)).

The presented procedure has been used in the literature for model extraction pro-
cesses [29,34,40]. The step-by-step reduction of statistically insignificant factors resulted in
an increase in the predicted R2. The adjusted R2 and predicted R2 should be within 20% to
maintain good agreement, as suggested by Owolabi et al. [44].

In the case of reduced models for ferulic acid derivative, p-coumaric acid, kaempferol
3-glucoside, and ellagic acid, a very low value of the p parameter was obtained (p ≤ 0.0002),
confirming that the developed models are very highly statistically significant. Furthermore,
the results showed that the lack of fit was statistically not significant (p > 0.05). The non-
significant lack of fit for models suggests the adequacy of models to explain data in the
region of experimentation. Also, the reduction of statistically insignificant components
resulted in an improvement of the R2 predicted coefficient for ferulic acid derivative,
p-coumaric acid, kaempferol 3-glucoside, and ellagic acid (0.8479, 0.8451, 0.8044, 0.9305,
0.9611). Therefore, the obtained values indicate that the reduced models can be used
to predict the yield of the selected polyphenolic compounds in the given range of the
independent variables.

In the case of tiliroside yield, despite the reduction of non-significant coefficients,
the lack of fit was still statistically significant (p = 0.045 < 0.05). To obtain a better model,
transformations of the results were used. As a result of the applied transformation (ln
(Y)), a highly statistically significant model was obtained with very high coefficients of
determination R2, adjusted R2, and predicted R2 and an insignificant lack of fit (p = 0.0842)
(Table 3). Statistical analysis of regression coefficients indicates significant model terms for
the yield of individual polyphenols.

For ferulic acid derivative, p-coumaric acid, kaempferol 3-glucoside, and ellagic acid,
the significant model terms are the linear terms of temperature (X1) and the solvent ratio
(X2) and the quadratic term of the solvent ratio (X2

2). The linear expression of the number of
static cycles (X3) is only relevant for p-coumaric and ellagic acids. However, for the ferulic
acid derivative, the main effect of the number of static cycles (X3) was added to support the
hierarchy. For ferulic acid derivative and p-coumaric acid expressions defining interaction
with temperature are important (X1X2 and X1X3, respectively), and for ellagic acid, the
interaction of the solvent ratio and the number of extraction cycles (X2X3) is important.
The linear term of the extraction cycles (X3), all interactions of the studied independent
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variables, quadratic term of temperature (X1
2), and quadratic term of extraction cycles (X3

2)
were regarded as statistically insignificant for the yield of kaempferol 3-glucoside. But, for
the ferulic acid derivative, the quadratic term of temperature (X1

2) and quadratic term of
extraction cycles (X3

2) are statistically significant. In the case of tiliroside, the significant
model terms are the linear terms of temperature (X1), the solvent ratio (X2), and the number
of static cycles (X3). Also, the significant terms of the model are the interaction of the
solvent ratio and the number of extraction cycles (X2X3), the quadratic term of temperature
(X1

2), and the quadratic term of the solvent ratio (X2
2).

The effect of temperature (X1), solvent ratio (X2), and extraction cycles (X3) on the
dependent variables (the yield of ferulic acid derivative, p-coumaric acid, kaempferol
3-glucoside, ellagic acid, and tiliroside) is shown as response surface plots in Figures 4–8,
respectively.

The choice of the appropriate temperature is an important factor in the optimization
of the extraction process since it has a significant impact on the effectiveness of the process
and the overall quality of the extract [36,38]. As is shown in Figures 4a, 5a, 6a, 7a and
8a and Figures 4b, 5b, 6b, 7b and 8b, the yield of selected compounds increases with the
temperature increase from 45 to 65 ◦C. When the temperature increased, the viscosity of the
solvent decreased, and the molecular movement speed in the matrix increased gradually.
The solubility and the extraction rate of polyphenols increased [34]. When the temperature
increased, the viscosity of the solvent decreased, and the molecular movement speed in the
matrix increased gradually. The solubility and the extraction rate of polyphenols increased.
For ferulic acid derivative as the only compound, the graph takes the shape of a dome,
and the maximum values are obtained in the temperature area of 53–60 ◦C. When the
temperature was more than 60 ◦C, the yield of ferulic acid derivative began to reduce. For
the remaining compounds, the graphs are a slightly inclined plane.
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In the case of solvent ratio (Figures 4a, 5a, 6a, 7a and 8a and Figures 4c, 5c, 6c, 7c and 8c),
as the ethanol content in the water/ethanol configuration increases, the polyphenolic yield
increases, in general. The ethanol concentration determines the polarity of the extraction
solvent, which determines the hydrophobic force and the hydrogen bond bonding strength
of the target components in the solvent, which affects the solubility and extraction rate
of the target components. Following the theory of similarity and inter-miscibility, the
more similar the polarity of solvent and solute, the faster the dissolution of solute from
plant cells.

However, in several of the compounds discussed (ferulic acid derivative, p-coumaric
acid, kaempferol 3-glucoside, and tiliroside), the yield began to decrease when the ethanol
content exceeded approximately 60% for the ferulic acid derivative and p-coumaric acid
and 65% for the kaempferol 3-glucoside and tiliroside, respectively.

According to the literature review, this may be due to the fact that water and ethanol
in low concentrations can easily penetrate cell membranes, while ethanol in high con-
centrations can cause protein denaturation, preventing the dissolution of, among others,
polyphenols and influencing the extraction rate [45,46]. Moreover, according to Hu et al.
(2016), the high water content causes much matrix swelling, which facilitates the penetra-
tion of the solvent into the material. However, an increased concentration of ethanol and a
greater water content in the solvent leads to less swelling of the material, which may have
a negative impact on extraction efficiency [33,34].

Examples of other studies also showed that increasing the share of ethanol in the
extraction mixture only to a certain level increased the content of polyphenols in the
obtained product. Cacace and Mazza studied the impact of ethanol concentration on the
optimal extraction of polyphenols from blackcurrants. They found that total phenolics
increased with ethanol concentration up to a maximum of about 60% and then decreased
with a further increase in solvent concentration irrespective of the solvent-to-solid ratio [47].

The number of extraction cycles is also important because multiple extraction cycles
may result in the complete extraction of targeted compounds. In the case of dependence
and the yield of polyphenols regarding the temperature (X1) and the number of cycles
(X3) (Figure 4b, Figure 5b, Figure 6b, Figure 7b, Figure 8b + Figure 4c, Figure 5c, Figure 6c,
Figure 7c, Figure 8c), with an increase in the number of cycles (X3), there was an increase in
the yield of the defined compounds at a constant temperature value (X1). This is related
to the extraction time and, therefore, to the contact time of the solvent with the extracted
material. In the present study, the number of extraction cycles significantly influences the
yield of p-coumaric and ellagic acid, whereas, in the case of ferulic acid derivative, the
interaction effects between temperature and number of cycles have a significant effect on
yield (Table 3). When the temperature was more than 60 ◦C, and the number of extraction
cycles was more than 3, the yield of ferulic acid derivative began to reduce.

Figure 9a–e shows the relationship between the predicted and experimental data for
yield of ferulic acid derivative, p-coumaric acid, kaempferol 3-glucoside, ellagic acid, and
tiliroside, respectively.

As can be seen in Figure 9, the predicted values are well correlated with the experi-
mental values; hence, all data points cluster near the determined curves. No significantly
scattered points are observed, and the graph clearly shows that the obtained experimental
values closely coincide with those developed by the model. The presented regression
curves pass through many evenly distributed test points. Probably, the range of adopted
research parameters is slightly better selected in relation to the other presented compounds
rather than for ellagic acid and tiliroside, hence the concentration of points in the presented
graphs at the beginning and end of the curve (without their distribution in the middle
part—Figure 9d,e).



Molecules 2024, 29, 3051 11 of 17

Molecules 2024, 29, x FOR PEER REVIEW 13 of 20 
 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. Comparison of the experimental results with the results predicted according to the 
developed mathematical models for (a) ferulic acid derivative (y = 0.9617x + 2.3313), (b) p-coumaric 
acid (y = 0.9294x + 5.0086), (c) kaempferol 3 glucoside (y = 0.9629x + 4.0935), (d) ellagic acid (y = 
0.9864x + 3.1241), and (e) tiliroside (y = 0.9989x + 0.0073). 

As can be seen in Figure 9, the predicted values are well correlated with the 
experimental values; hence, all data points cluster near the determined curves. No 
significantly scattered points are observed, and the graph clearly shows that the obtained 
experimental values closely coincide with those developed by the model. The presented 
regression curves pass through many evenly distributed test points. Probably, the range 
of adopted research parameters is slightly better selected in relation to the other presented 
compounds rather than for ellagic acid and tiliroside, hence the concentration of points in 

Figure 9. Comparison of the experimental results with the results predicted according to the devel-
oped mathematical models for (a) ferulic acid derivative (y = 0.9617x + 2.3313), (b) p-coumaric acid (y
= 0.9294x + 5.0086), (c) kaempferol 3 glucoside (y = 0.9629x + 4.0935), (d) ellagic acid (y = 0.9864x +
3.1241), and (e) tiliroside (y = 0.9989x + 0.0073).

The final reduced mathematical models for response variables (yield of defined
polyphenols) in the coded form are given below as Equations (2)–(6).

Yield of FAd = 72.79 + 2.23X1 − 7.29X2 + 0.97X3 − 2.51X1X3 − 6.13X1
2 − 11.24X2

2 − 5.07X3
2 (2)

Yield of p-CA = 76.72 + 5.76X1 − 13.18X2 + 3.06X3 + 4.17X1X2 − 10.83X2
2 (3)

Yield of 3-gluK = 128.60 + 23.60X1 − 35.20X2 − 34.37X2
2 (4)
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Yield of EA = 278.25 + 19.08X1 − 150.04X2 + 13.88X3 − 20.17X2X3 − 90.94X2
2 (5)

Ln Yield of tiliroside = 7.46 + 0.28X1 − 1.06X2 + 0.05X3 + 0.04X2X3 − 0.13X1
2 − 0.98X2

2 (6)

Response variables were positively correlated with temperature (X1) and the number
of extraction cycles (X3) but negatively correlated with solvent ratio (X2) and with the
quadratic term of solvent ratio (X2

2). The rest of the statistically significant independent
variables (their interactions and the quadratic terms) were at different correlations, depend-
ing on the chemical compound. Table 4 shows the optimal parameters for each polyphenol
considered separately. Differences in the values of these parameters result from the nat-
ural and chemical structure of a given polyphenol compound. For example, the optimal
extraction temperature for the ferulic acid derivative is the lowest among all analyzed
polyphenols, and the highest concentration of ethanol in the (water/ethanol) configuration
is in the case of ellagic acid. This may also be related to the fact that polyphenols may
occur in complex forms with proteins, carbohydrates, and other insoluble phenols with
high molecular mass [48], which also affects the differences in the obtained parameters.

Table 4. The optimal ASE conditions for investigated polyphenols.

Compound Temperature, ◦C Ratio H2O:EtOH Extraction Cycles

ferulic acid deriv. 57 42:58 3
p-coumaric acid 65 40:60 4
kaempferol
3-glucoside 65 37:63 4

ellagic acid 65 27:73 4
tiliroside 65 37:63 4

Considering all variables, such as extraction temperature, solvent ratio, and extraction
cycles, the optimal extraction conditions for the examined compound yield are given in
Table 4.

2.2. Chromatographic Analysis and Isolation

UHPLC-DAD-MS method was employed to analyze the extracts from defatted straw-
berry seeds. Examples of chromatograms obtained using spectrophotometric and mass
detection are presented in Figure S1 (Supplementary Materials). Data used for identification
are included in Table S1 and Figure S2.

The qualitative composition of ASE extracts was in accordance with data in the litera-
ture [30]. Nine phenolic compounds were identified with two predominant components,
namely ellagic acid and tiliroside. The obtained model has been experimentally verified,
taking into consideration the maximal tiliroside yield as a target component for further
isolation. The established ASE conditions allowed the extraction of 2431.5 ± 28.9 µg
tiliroside from one gram of plant material (243.2 mg/100 g). It should be noted that ASE
efficacy was significantly higher than ultrasonic or heat reflux extraction used in our pre-
vious study [22], and the tiliroside yield was approximately two-fold higher than for the
ultrasonic-assisted process.

To ensure effective isolation, the ratio of the target component to the other components
of the extract should be appropriately high. Therefore, to reduce the polar matrix of the
defatted strawberry seeds, preliminary ASE extraction with hot water was applied as a
first step before isolating the tiliroside-containing fraction. It allowed for the increase in
the ratio of tiliroside to the matrix in the extract (Figure S3). Such a tiliroside-rich fraction
was further subjected to preparative chromatography (Figures S4 and S5). The procedure
allows for obtaining tiliroside with 95.2% purity relatively easily (the calculation was based
on the tiliroside standard calibration curve).

It should be highlighted that the isolation of tiliroside usually proceeds in several
stages of solvent–solvent extraction to reduce the matrix, which hampers the chromato-
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graphic process [13,49]. Isolation from defatted strawberry seeds allows for the elimination
of many stages, and the optimized ASE procedure provides a product with high efficiency.

3. Materials and Methods
3.1. Plant Material

The research material consisted of strawberry seeds, which were purchased from a
domestic supplier (Zielony Klub, Kielce, Poland). Before scCO2 extraction, the seeds were
crushed using a Sipma H-752 roller crusher (Lublin, Poland). After crushing, the plant
material was weighed and placed in the extractor. The weight of the charge to the extractor
was 4350 g. The scCO2 process was carried out in continuous mode at a CO2 flow rate of 146
kg/h and with a total extraction time of 120 min at a temperature of 40 ◦C and a pressure
of 230 bar in a quarter-technical installation [50] in Analytical Department Łukasiewicz
Research Network, New Chemical Syntheses Institute, in Puławy (Puławy, Poland). The
defatted seed residues obtained in this way were stored at 4 ◦C until polyphenol analysis

3.2. Extraction

The obtained defatted residue was extracted using ASE 350 (Accelerated Solvent
Extractor, Dionex Corporation, Sunnyvale, CA, USA). The 3.00 g sample was placed in 10
mL stainless steel reaction cells containing filter at the bottom to reduce the presence of
suspended particles in the receiver vials. The process was carried out in several variants
of extraction parameters, which allowed the establishment of the relationship between
the content of individual biologically active compounds in the extract (output/dependent
variables) and the indicated process parameters (input/independent variables).

The ASE process ran at constant parameters as follows: pressure—1500 psi; oven
preheat—5 min; cell heat—5 min; extraction static time—7 min; rinse volume with clean
solvent—60%; and purge—60 s. Temperature, solvent ratio (water to 96% ethanol), and the
number of static cycles were the independent variables. The duration of ASE extraction
in individual experiments ranged from 30 to 50 min. After extraction, the volume of the
obtained extracts was measured, and, until analysis, the samples were stored in amber
glass bottles, protected from light at a temperature of 5 ◦C.

The exact design of the experiments, performed in random order to avoid systematic
errors, is shown in Table 5.

Table 5. Experimental matrix of the Box–Behnken design with coded and uncoded independent
variables.

Run Order

Coded Independent
Variables

Uncoded Independent
Variables

X1 X2 X3
Temperature

(◦C)
Solvent Ratio
(H2O:EtOH)

Extraction
Cycles

1 0 0 0 55 50:50 3
2 −1 0 1 45 50:50 4
3 1 0 −1 65 50:50 2
4 −1 0 −1 45 50:50 2
5 0 1 1 55 75:25 4
6 0 0 0 55 50:50 3
7 1 0 1 65 50:50 4
8 0 1 −1 55 75:25 2
9 0 −1 1 55 25:75 4

10 0 −1 −1 55 25:75 2
11 0 0 0 55 50:50 3
12 1 −1 0 65 25:75 3
13 1 1 0 65 75:25 3
14 −1 1 0 45 75:25 3
15 −1 −1 0 45 25:75 3
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3.3. Chromatography
3.3.1. Ultra-High-Performance Liquid Chromatography (UPLC)

Solvents and standards were from Sigma-Aldrich (Saint Louis, MO, USA). Chromatog-
raphy was carried out using an ultra-high-performance liquid chromatography (UPLC)
Infinity Series II combined with MS with electrospray ionization (ESI) and DAD detector
(Agilent Technologies Santa Clara, CA, USA) and Titan column (10 cm × 2.1 mm, 1.9 µm)
(Supelco, Sigma-Aldrich, USA). The eluent was composed of water (A) and acetonitrile
(B), both acidified with 0.05% formic acid. The elution gradient program and MS working
parameters were detailed and described in the previous work [22].

3.3.2. Preparative Chromatography (pLC)

Tiliroside-rich fraction obtained using ASE-optimized conditions was concentrated
and subjected to LC separation. The isolation of tiliroside was performed using a prepar-
ative chromatograph with a UV-Vis detector, operating within a wavelength range of
200–400 nm (VWR® LaPrep Sigma, Merck). Chromolith® SemiPrep RP-18 end-capped
100-10 monolithic column was applied for separation using methanol and water (75:25,
v/v) as eluent. The identity of isolated compound was confirmed by comparison of the
mass spectrum and UV-Vis spectrum with tiliroside standard.

3.4. Statistical Analysis

Two independent experiments were conducted for each experimental condition. The
values measured were expressed as mean ± standard deviation (SD). The experimental
design and statistical analysis were performed using Microsoft Excel 2013 and Design
Expert 11.0.6.0 (Stat-Ease Inc., Minneapolis, MN, USA) programs. The analysis of variance
(ANOVA) was performed to assess the significance of the estimated coefficients in the
model. The test of statistical significance was based on error criteria with a confidence
level of 95%. To optimize the extraction process, the method of statistical experimental
planning and the Box–Behnken design were selected, obtaining response surface graphs and
polynomial equations/models. The influence of the selected parameters on the response
variables was approximated by a second-order polynomial regression model described by
Equation (7):

y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11X2
1 + β22X2

2 + β33X2
3 (7)

where y denotes the response variable; X1, X2, and X3 denote independent variables, which
are, respectively, temperature, solvent ratio, and extraction cycles; and β denotes coefficients
in the equation that define the equation constant (β0), main effects of parameters (β1, β2,
β3), their interaction (β12, β23, β13), and quadratic terms (β11, β22, β33).

The coefficient of determination R2, adjusted coefficient of determination R2, predicted
coefficient R2, and the lack of fit were used to evaluate the accuracy of adjusting the
experimental data to the model.

4. Conclusions

ASE combined with Box–Behnken design allowed for the extraction of polyphenolic
fractions from plant material with high effectiveness. All obtained mathematical models
generally showed an increase in the efficiency of obtaining the polyphenolic compounds
with an increase in temperature, ethanol content, and the number of extraction cycles.
However, in several of the compounds discussed, the yield began to decrease when the
ethanol content exceeded approximately 60% (the ferulic acid derivative and p-coumaric
acid) and 65% (kaempferol 3-glucoside and tiliroside). Also, the number of extraction cycles
significantly influenced the yield of p-coumaric and ellagic acid, whereas, in the case of
ferulic acid derivative, the interaction effects between the temperature and the number of
cycles had a significant effect on yield. When the temperature was more than 60 ◦C and the
number of extraction cycles was more than 3, the yield of ferulic acid derivative began to
reduce. In summary, taking into account tiliroside, which was the target component, the
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best results were obtained under the following optimal conditions: four extraction cycles, a
temperature of 65 ◦C, and an ethanol percentage (in a water–ethanol mixture) of 63%.

Furthermore, defatted strawberry seeds proved to be a convenient source of tiliroside be-
cause the matrix of accompanying components is relatively poor, which facilitates separation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29133051/s1. Table S1. Data used for identification
of main polyphenolic constituents extracted from defatted strawberry seeds; Figure S1: Example
of base peak chromatogram (BPC) in negative ionization mode (red line) and DAD chromatogram
shown at a wavelength of 254 nm (green line) and 320 nm (blue line) for the extract from defatted
strawberry seeds obtained using accelerated solvent extraction; Figure S2. MS spectra of compounds
identified in the extracts from defatted strawberry seeds obtained using accelerated solvent extraction.
Names of the compounds are given in Table S1; Figure S3. Overlapped chromatograms of the extracts
obtained using pretreatment of plant material with water (red line) and without pretreatment (blue
line); Figure S4. Chromatogram obtained using preparative monolithic column with marked region
of isolation. 1 –tiliroside; Figure S5. Chromatogram registered at 320 nm (blue line) and at 245 nm
(red line) (a) and base peak chromatogram (c) of tiliroside isolated from plant material; Figure S6.
UV-Vis and MS spectrum of the tiliroside standard (grey line) and the isolated compound (blue line).
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