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Abstract: Space targets move in orbit at a very high speed, so in order to obtain high-quality
imaging, high-speed motion compensation (HSMC) and translational motion compensation (TMC)
are required. HSMC and TMC are usually adjacent, and the residual error of HSMC will reduce
the accuracy of TMC. At the same time, under the condition of low signal-to-noise ratio (SNR),
the accuracy of HSMC and TMC will also decrease, which brings challenges to high-quality ISAR
imaging. Therefore, this paper proposes a joint ISAR motion compensation algorithm based on
entropy minimization under low-SNR conditions. Firstly, the motion of the space target is analyzed,
and the echo signal model is obtained. Then, the motion of the space target is modeled as a high-order
polynomial, and a parameterized joint compensation model of high-speed motion and translational
motion is established. Finally, taking the image entropy after joint motion compensation as the
objective function, the red-tailed hawk–Nelder–Mead (RTH-NM) algorithm is used to estimate the
target motion parameters, and the joint compensation is carried out. The experimental results of
simulation data and real data verify the effectiveness and robustness of the proposed algorithm.

Keywords: inverse synthetic aperture radar (ISAR); space targets; joint motion compensation; entropy
minimization; noise robust

1. Introduction

Inverse synthetic aperture radar (ISAR) is an important sensor for the observation and
imaging of aerial and space targets. Compared with optical sensor, ISAR is free from the
interference of sky background light and cloud occlusion, has better all-weather working
ability, and has a long detection distance, so it plays an important role in space target
surveillance [1–4]. The range resolution of ISAR depends on the radar bandwidth, and the
azimuth resolution depends on the relative motion between the target and the radar [5–7].
The target of interest for ISAR is non-cooperative, meaning that the motion parameters is
unknown in advance, which poses a significant challenge to high-quality ISAR imaging [8].
Generally speaking, the motion of the target relative to the radar can be divided into
two parts: translational motion and rotation motion [9,10]. The rotational motion provides
the azimuth resolution that is needed for imaging, while the translational motion will cause
range cell misalignment and phase error, which make the ISAR image defocused and blurry.
Therefore, in order to achieve high-quality ISAR imaging, the translational motion needs to
be compensated for [11].

The key to high-quality ISAR imaging lies in the precise compensation for translational
motion. Current methods of translational motion compensation (TMC) are divided into
two main categories. One category is non-parametric TMC methods, also known as adjacent
TMC methods, which are carried out in two steps: range alignment (RA) [12–14] and phase
adjustment (PA) [15–18]. RA can eliminate range cell misalignment. The resemblance
between adjacent range profiles is utilized to find the correct number of range cells for
shifting each range profile [19]. Apart from resemblance-based methods, there is another
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type of RA algorithm that relies on optimizing the quality measures of the alignment. The
methods based on the entropy and the contrast of the average range profile are presented
in [20] and [21], respectively. After RA, PA is utilized to eliminate phase error. The
algorithms for PA mainly include the following: the dominant scatters algorithm [22],
the Doppler centroid tracking (DCT) algorithm [23], the phase gradient autofocus (PGA)
algorithm [24], and the eigenvector-based algorithm [25]. There are also algorithms based
on image quality assessment, such as the minimum entropy algorithm [26–28] and the
maximum contrast algorithm [29–31].

Another category is parametric methods, also referred to as joint TMC methods [32–35].
These methods utilize entropy or contrast as the focus quality assessment metrics for ISAR
images. Subsequently, the motion of the target is modeled as a high-order polynomial,
and the optimal image focus quality assessment metrics are used to solve for the motion
parameters of the target. Then, range cell misalignment and phase error are compensated
for simultaneously. This compensation method does not depend on the resemblance
between adjacent range profiles, thus avoiding the impact of residual RA error on PA.
Therefore, it can achieve better TMC even under low signal-to-noise ratio (SNR) conditions.

It is noteworthy that the above-mentioned TMC methods are all aimed at low-speed
targets such as airplanes and ships. For high-speed moving targets such as satellites and
missiles, the motion velocity is usually several kilometers per second, and the “stop-go”
model is no longer applicable. The high resolution range profile (HRRP) will be stretched
due to the high-speed motion of the target, which affects the accuracy of RA, thereby
affecting subsequent PA and the ISAR image would be seriously blurred [36]. Therefore,
before performing TMC, it is necessary to estimate the velocity of the target and carry out
high-speed motion compensation (HSMC).

The current HSMC methods are divided into two main categories. One category is
based on signal parameter estimation, which models the echo of each pulse as a multi-
component higher-order phase signal and then estimates the signal parameters through
fractional Fourier transform (FrFT) [37,38], integrating cubic phase functions (ICPF) [39],
etc., and further obtaining the target motion velocity. This category relies on the accurate
estimation of signal parameters and is easily affected by noise. The other category is based
on the focusing quality of HRRP [40,41], constructing compensation terms with different
speeds to compensate for the echo. The target motion velocity is estimated by optimizing
the focusing quality of HRRP. Waveform entropy and contrast are both commonly used
focusing quality assessment metrics. The limitation of these algorithms lies in the fact that
they process each pulse independently, resulting in a large error in velocity estimation.
Owing to the separate processing of echoes, within one coherent processing interval (CPI),
the high-speed motion estimation error of each pulse gradually accumulates, leading to a
poor overall high-speed compensation effect.

In ISAR imaging, due to transmission loss or limitations in the transmitted energy,
the issue of a low SNR of the target echo often occurs. In the case of a low SNR, both
HSMC and TMC face challenges [42,43]. Wang [44] proposed an HSMC method based
on the minimum entropy of two-dimensional ISAR images, which achieves high-quality
imaging under low SNRs. However, this method assumes that the translational error can be
eliminated through TMC, leaving only the high-speed motion error in the echo. In practice,
due to the presence of high-speed motion error, TMC becomes very difficult. Therefore, the
assumption of this method is overly idealized, which significantly limits its applicability.
In the case of low SNR, the precision of HSMC diminishes, and the residual error of HSMC
will lead to a decrease in the precision of TMC, which severely degrades the quality of
ISAR imaging.

Aiming to perform high-quality ISAR imaging of space targets under a low SNR,
a noise-robust joint motion compensation algorithm for ISAR imaging-based entropy
minimization is proposed in this paper. Firstly, the influence of the high-speed motion and
translational motion of the space targets on the echo in de-chirp mode is analyzed, and the
signal model of the space targets is established. Considering the continuity of the motion
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of the target in a CPI, the motion of the target is modeled as a high-order polynomial,
and the motion polynomial coefficients are optimized by minimizing two-dimensional
image entropy. Based on the established minimum entropy optimization model, the red-
tailed hawk–Nelder–Mead (RTH-NM) algorithm is used to solve the minimum entropy
optimization problem, and then joint motion compensation is realized. Electromagnetic
simulation data and Yak-42 measured data verify the effectiveness of the joint motion
compensation algorithm. Compared with existing algorithms, this algorithm is innovative
in the following aspects:

• A novel joint compensation model for the simultaneous compensation of high-speed
motion and translational motion is proposed for the first time. Existing methods
typically separate HSMC and TMC into two steps. The residual error from HSMC will
affect the accuracy of TMC. However, in this paper, a parametric joint compensation
model is used to simultaneously compensate for the high-speed motion and translation
motion of the target. The joint motion compensation reduces the impact of residual
error from HSMC on TMC, thus achieving higher motion compensation accuracy.

• Many existing parametric motion compensation methods rely on gradient-based
approaches to solve problems, which necessitate intricate derivative calculations
and are highly sensitive to the selection of initial values. In this paper, a two-step
optimization method that synergizes the red-tailed hawk (RTH) algorithm with the
Nelder–Mead (NM) algorithm, called the RTH-NM algorithm, is used to estimate
the target motion parameters. The RTH algorithm facilitates the avoidance of local
optima during parameter optimization, enabling a preliminary search for parameters.
The NM algorithm, on the other hand, achieves a more refined search, ensuring the
precision of motion parameters. The integration of both algorithms enables rapid
convergence towards an accurate solution, identifying the optimal motion parameters.
In comparison to gradient-based methods, this approach proves to be more effective
and pragmatic.

• This algorithm fully utilizes the high SNR gain accumulated from two-dimensional
ISAR images, which is beneficial for the joint compensation of high-speed motion and
translation motion under low-SNR conditions. It improves the accuracy of motion
compensation, leading to the enhanced quality of ISAR images.

This study is based on the following assumptions: (1) Random disturbances in the
envelope caused by the radar system and the changing sampling wave gate are not consid-
ered. (2) Within the imaging CPI, the relative rotation angle of the target is small, and the
equivalent rotation angular velocity of the target is constant.

This paper is organized as follows. Section 2 introduces the de-chirp signal mode
for space targets. In Section 3, a joint motion compensation model based on entropy
minimization is established, and the RTH-NM algorithm is used to estimate the target
motion parameters. In Section 4, the experimental results of simulation data and real data
are given, and the effectiveness and robustness of the proposed algorithm are analyzed.
Finally, some conclusions are summarized in Section 5.

2. De-Chirp Signal Model for Space Targets

The imaging geometric configuration of the radar and space target is shown in Figure 1.
O is the origin of the coordinate system, located at the centroid of the space target. The
direction of the radar line of sight (LOS) corresponds to the Y-axis. Assuming the effective
rotational vector (ERV) of the target is ωe, then the direction of ωe is the Z-axis of the
coordinate system. The X-axis of the coordinate system can be obtained by the right-hand
rule. The XOY plane is the image projection plane (IPP). Supposing that the wideband
radar transmits a linear frequency modulated (LFM) signal,

s(tr, tm) = rect
(

tr

TP

)
exp(j2π fct) exp

(
jπγtr

2
)

(1)
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where rect
(

tr
Tp

)
=

{
1,
0,

∣∣tr/Tp
∣∣ ≤ 0.5∣∣tr/Tp
∣∣ > 0.5

, and Tp, fc, and γ represent pulse width, carrier

frequency, and frequency modulation rate, respectively. t = tr + tm is the full time, where
tr is the fast time and tm is the slow time.
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Figure 1. Observation geometry for space target.

As shown in Figure 1, assuming that the space target consists of P scattering centers
and p is an arbitrary scattering center, the radar echo of p can be written as

sp(tr, tm) = σprect
(

tr − td
Tp

)
exp(j2π fc(t − td)) exp

(
jπγ(tr − td)

2
)

(2)

where td = 2Rdp(tm)/c is the echo time delay of p, Rdp(tm) is the instantaneous distance
from p to radar at tm, c is the propagation speed of light, and σp is the backscattering
coefficient of p. Due to the high-speed motion of the space target, the distance change of
the target within one pulse width needs to be considered. So, the distance from p to the
radar can be rewritten as

Rdp(tr, tm) = Rdp1(tm) + Rdp2(tr) (3)

where Rdp1(tm) is the distance change with tm, and Rdp2(tr) is the distance change with tr.
Considering the short duration of a pulse, the variation in velocity within a pulse can be
neglected. That is, if the target can be approximated as moving at a constant speed within a
pulse, then Rdp2(tr) can be approximated as

Rdp2(tr) ≈ v(tm) · tr (4)
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where v(tm) is the radial velocity of the target at tm. By taking the conjugate multiplication
of the echo signal with the reference signal, de-chirp processing can be carried out. The
reference signal is

sre f (tr, tm) = rect

(
tr − tre f

Tre f

)
exp

(
j2π fc

(
t − tre f

))
exp

(
jπγ

(
tr − tre f

)2
)

(5)

where tre f = 2Rre f (tm)/c, Rre f (tm) is the reference distance at tm. After de-chirp processing,
we can obtain the output signal as follows:

s(tr, tm) = sp(tr, tm) · s∗
re f
(tr, tm)

= σprect
(

tr−td
Tp

)
· rect

( tr−tre f
Tre f

)
· exp

{
−j2π

[
fc

(
td − tre f

)
+ γtr

(
td − tre f

)
− 1

2 γ
(

t2
d − t2

re f

)]}
= σprect

(
tr−td

Tp

)
· exp

(
j 4πγ

c2 ∆rp
2
)

· exp
(
−j 4π

c

(
fc + γ

(
tr − tre f

))
∆rp

)
(6)

where ∆rp = Rdp(tr, tm)− Rre f (tm). For the sake of conciseness, let tr = tr − tre f represent
the new fast time. Then, Equation (6) can be rewritten as

s(tr, tm) = σprect
(

tr−2∆rp/c
Tp

)
· exp

(
j 4πγ

c2 ∆rp
2
)

· exp
(
−j 4π

c ( fc + γtr)∆rp

) (7)

Assuming that the coordinate of p in the imaging plane XOY is
(
xp, yp

)
, and consider-

ing that the relative rotation angle of the target within the CPI is small and the rotation is
usually uniform, the instantaneous distance from p to radar is given by

Rdp1(tm) = RT(tm) + xp sin(ωtm) + yp cos(ωtm)
≈ RT(tm) + xpωtm + yp

(8)

where RT(tm) is the translational motion of the target centroid, ω is the angular velocity,
and ω = |ωe|. Substituting Equation (8) into Equation (7) and performing the Taylor
expansion yields

s(tr, tm) = σprect
(

tr−2∆rp/c
Tp

)
· exp

(
−j 4π fc

c

(
RT(tm)− Rre f (tm)

))
· exp

(
−j 4πγtr

c

(
RT(tm)− Rre f (tm)

))
· exp

(
−j 4π fc

c xpωtm

)
· exp

(
−j 4πγtr

c xpωtm

)
· exp

(
−j 4π fc

c yp

)
· exp

(
−j 4πγtr

c yp

)
· exp

(
j 4πv(tm)

c

(
2γR∆

c − fc

)
· tr

)
· exp

(
j 4πγv(tm)

c

(
v(tm)

c − 1
)

tr
2
)

· exp
(

j 4πγ
c2 R∆

2
)

(9)

where R∆ = RT(tm) − Rre f (tm) + xpωtm + yp represents the distance of p from the ref-
erence point at tm, and the phase in Equation (9) can be divided into nine terms. The
first term exp

(
−j 4π fc

c

(
RT(tm)− Rre f (tm)

))
is the phase error term, and the second term

exp
(
−j 4πγtr

c

(
RT(tm)− Rre f (tm)

))
is the range cell misalignment term; both of them are

caused by the translational motion of the target. The third term exp
(
−j 4π fc

c xpωtm

)
is the

rotational Doppler term of p, which is the source of the ISAR azimuth resolution. The fourth
term exp

(
−j 4πγtr

c xpωtm

)
is the range migration term caused by rotational motion, which
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usually does not exceed a range cell in ISAR imaging, and its impact can be negligible. The
fifth term exp

(
−j 4π fc

c yp

)
is constant and can be ignored. The sixth term exp

(
−j 4πγtr

c yp

)
is the range compression term of p. The seventh term exp

(
j 4πv(tm)

c

(
2γR∆

c − fc

)
· tr

)
is

the envelope walk term, and the eighth term exp
(

j 4πγv(tm)
c

(
v(tm)

c − 1
)

tr
2
)

is the range
profile stretched term; they are all caused by the target’s high-speed motion. The ninth
term exp

(
j 4πγ

c2 R∆
2
)

is the residual video phase (RVP) error, which can be removed by
RVP compensation. From Equation (9), we can discover that high-speed motion leads to
envelope walk and a stretched range profile. Due to the reduction in similarity between
HRRP caused by the stretch of the range profile, the accuracy of the adjacent TMC method
will decrease. Simultaneously, the high-speed motion of the target also causes envelope
walk, which breaks the homology between the envelope walk and the phase error of trans-
lation motion and will also reduce the effectiveness of parametric TMC. Under low-SNR
conditions, the impact of high-speed motion will be more significant, which may lead
to the failure of traditional motion compensation methods and the inability to achieve
ISAR imaging.

Subsequently, the seventh phase term of (9) is further analyzed and written as

exp
(

j
4πv(tm)

c

(
2γR∆

c
− fc

)
tr

)
= ℜ1 · ℜ2 (10)

where ℜ1 = exp
(

j 4π
c

(
2γR∆v(tm)

c tr

))
and ℜ2 = exp

(
−j 4π

c fcv(tm)tr

)
. Since both ℜ1 and ℜ2

are related to the fast time tr, both of which will cause envelope walk, the echo from the
same scattering point will be distributed across different range cells within different pulses.
Therefore, their impact needs to be analyzed.

ℜ1 is related to the position of each scattering point p. The frequency resolution in
the range frequency domain is ∆ f = fs/N, where N represents the total number of range
cells, and fs is the sampling frequency. The range cell offset ∆Rcell1 caused by ℜ1 can be
expressed as

∆Rcell1 = 4γR∆v(tm)
c2 /∆ f

= 4γR∆v(tm)N
c2 fs

(11)

ℜ2 is independent of the position of the scattering point p, and the range cell offset
∆Rcell2 caused by ℜ2 can be expressed as

∆Rcell2 = −2 fcv(tm)
c /∆ f

= −2 fcv(tm)N
c fs

(12)

The ratio of the range cell offset caused by ℜ1 and ℜ2 is

ηcell = |∆Rcell1/∆Rcell2| =
2γR∆

fcc
(13)

Subsequently, a simulation analysis is conducted. In the simulation, the frequency
modulation rate γ is set to 1013 Hz/s. Considering that the maximum size of the space
target currently observed is within one hundred meters, we set the maximum of R∆ to
100 m. V is the velocity of space target. The simulation results are shown in Figure 2.
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different R∆. (d) Variation in ∆Rcell2 with V under different fc. (e) Variation in ηcell with fc under
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As can be seen from Figure 2, the range cell offset caused by ℜ1 is basically less than
0.05 range cells, while the range cell offset caused by ℜ2 can reach several tens or even
hundreds of range cells, and ηcell is maintained at the order of magnitude of 10−4 when
fc is greater than 10 GHz. That is to say, the range cell offset is mainly affected by ℜ2;
therefore, we ignore ℜ1. Similar conclusions can also be found in [45]. At the same time,
we can observe that when the target’s velocity changes to about 400 m/s, the variation in
∆Rcell2 can reach approximately 10 range cells. It is precisely because of the variation in
∆Rcell2 that the homology between range cell misalignment and phase error is disrupted,
and the joint TMC method will become unusable as a result. After the above analysis, we
can obtain the final space target echo signal as follows:

s(tr, tm) = s̃(tr, tm) · exp
[
−j 4π

c fc

(
RT(tm)− Rre f (tm)

)]
· exp

[
−j 4π

c γ
(

RT(tm)− Rre f (tm)
)

tr

]
· exp

[
j 4πγv(tm)

c

(
v(tm)

c − 1
)

t2
r

]
· exp

[
−j 4π fcv(tm)

c tr

] (14)

where s̃(tr, tm) is the space target echo of the ideal turntable model and can be represented as

s̃(tr, tm) = σprect
(

tr − 2∆rp/c
Tp

)
· exp

(
−j

4π fc

c
xpωtm

)
· exp

(
−j

4πγtr

c
yp

)
(15)

According to Equation (14), the signal model for joint compensation for high-speed
motion and translational motion is

s̃(tr, tm) = s(tr, tm) · exp
[

j 4π
c fc

(
RT(tm)− Rre f (tm)

)]
· exp

[
j 4π

c γ
(

RT(tm)− Rre f (tm)
)

tr

]
· exp

[
−j 4πγv(tm)

c

(
v(tm)

c − 1
)

t2
r

]
· exp

[
j 4π

c ( fcv(tm))tr

] (16)

By discretizing the echo and performing the fast Fourier transform (FFT) with respect
to tr and tm, the ISAR image after joint motion compensation can be expressed as

I(k, h) =
M
∑

m=1
exp

(
−j2π

hm
M

)
N
∑

n=1
exp

(
−j2π

kn
N

)
·s(n, m) · exp

[
j
4π

c
fc

(
RT(m)− Rre f (m)

)]
· exp

[
j
4π

c
γ
(

RT(m)− Rre f (m)
)

n
]

· exp
[
−j

4πγv(m)

c

(
v(m)

c
− 1
)

n2
]

· exp
[

j
4π

c
( fcv(m))n

]
+ ξ(k, h)

(17)

where I(k, h) is the ISAR image after compensation. k and h are the serial numbers of the
range cells and Doppler cells, respectively. k = 1, 2, · · ·, N and h = 1, 2, · · ·, M, where N
is the number of range cells and M is the number of Doppler cells. s(n, m) is the discrete
form of s(tr, tm). n and m are the discrete form of tr and tm. ξ(k, h) denotes complex noise.
Equation (17) is the signal model of the final ISAR images after joint motion compensation.
In the following sections, the joint motion compensation algorithm based on parametric
minimum entropy optimization uses this signal model.
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3. Optimization of Joint Motion Compensation
3.1. Optimization of Motion Parameters Based on Minimum Entropy

Based on the joint motion compensation model established in the previous subsection,
joint motion compensation can be achieved if the motion parameters of the target can be
accurately estimated. Therefore, the key issue lies in how to accurately estimate the motion
parameters of the target. Unlike aircraft and vessels, space targets typically move along
orbital trajectories utilizing a three-axis stabilization mode, and the motion is relatively
stable. Without the loss of generality, the radial motion of the space target can be model as
an L-order polynomial:

RT(m) =
L

∑
l=0

bl(m∆tm)
l (18)

and the radial velocity of the space target can also be expressed as

v(m) =
L

∑
l=1

l · bl(m∆tm)
l−1 (19)

where l represents the order of each term in the polynomial, l = 0, 1, · · ·, L, and bl represents
the coefficient of each order. ∆tm is pulse repetition time (PRT). For the convenience of
description, polynomial coefficients can be written as a polynomial coefficient vector
b = [b0, b1, · · ·, bL]1×(L+1). At the same time, the reference distance information used in
de-chirp processing can also be obtained from radar measurement information, which
is represented as Rref =

[
Rre f (1), Rre f (2), · · ·, Rre f (M)

]
1×M

. It is important to note that,

in this instance, a high level of precision for Rref is not necessary. It is only necessary to
know exactly what reference distance is used during de-chirp processing; even if there
are errors in Rref, it will not impact the accuracy of the method proposed. After using
b = [b0, b1, · · ·, bL]1×(L+1) and Rref =

[
Rre f (1), Rre f (2), · · ·, Rre f (M)

]
1×M

for joint motion

compensation, the ISAR image of the target can be obtained as follows:

I(k, h) =
M
∑

m=1
exp

(
−j2π

hm
M

)
N
∑

n=1
exp

(
−j2π

kn
N

)
·s(n, m) · exp

[
j
4π

c
fc

(
L
∑

l=0
bl(m∆tm)

l − Rre f (m)

)]
· exp

[
j
4π

c
γ

(
L
∑

l=0
bl(m∆tm)

l − Rre f (m)

)
n
]

· exp

−j
4πγ

c

(
L
∑

l=1
l · bl(m∆tm)

l−1
)
·


L
∑

l=1
l · bl(m∆tm)

l−1

c
− 1

n2


· exp

[
j
4π

c

(
fc

L
∑

l=1
l · bl(m∆tm)

l−1
)

n
]
+ ξ(k, h)

(20)

If the value of b = [b0, b1, · · ·, bL]1×(L+1) is accurately obtained, the high-speed motion
and translational motion of the target will be compensated for, and a well-focused ISAR
image will be obtained. Hence, the problem of joint motion compensation is essentially an
optimal parameter estimation problem. Image entropy [46] is a commonly used evaluation
metric in the field of ISAR imaging to measure the quality of image focus. The smaller
the entropy, the clearer the image, and the better the focusing performance of the image.
Therefore, in this paper, image entropy is chosen as the cost function to implement the
optimization of the target motion parameter b.
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The ISAR image after joint motion compensation by b̃ =
[
b̃0, b̃1, · · ·, b̃L

]
1×(L+1)

, the

estimated value of b, can be expressed as

I
(

k, h; b̃
)
=

M
∑

m=1
exp

(
−j2π

hm
M

)
N
∑

n=1
exp

(
−j2π

kn
N

)
·s(n, m) · exp

[
j
4π

c
fc

(
L
∑

l=0
b̃l(m∆tm)

l − Rre f (m)

)]
· exp

[
j
4π

c
γ

(
L
∑

l=0
b̃l(m∆tm)

l − Rre f (m)

)
n
]

· exp

−j
4π

c
γ


(

L
∑

l=1
l · b̃l(m∆tm)

l−1
)2

c
−

L
∑

l=1
l · b̃l(m∆tm)

l−1

n2


· exp

[
j
4π

c

(
fc

L
∑

l=1
l · b̃l(m∆tm)

l−1
)

n
]
+ ξ(k, h)

(21)

The image entropy of I
(

k, h; b̃
)

is related to b̃ =
[
b̃0, b̃1, · · ·, b̃L

]
1×(L+1)

, and it can be

represented as

EI

(
b̃
)
= ln SI −

1
SI

N

∑
k=1

M

∑
h=1

∣∣∣I(k, h; b̃
)∣∣∣2 ln

∣∣∣I(k, h; b̃
)∣∣∣2 (22)

where SI is the image intensity that can be expressed as

SI =
N

∑
k=1

M

∑
h=1

∣∣∣I(k, h; b̃
)∣∣∣2 (23)

The target motion parameter b̃ =
[
b̃0, b̃1, · · ·, b̃L

]
1×(L+1)

can be obtained by minimiz-

ing the image entropy EI

(
b̃
)

, expressed as〈
b̂0, b̂1, · · ·, b̂L−1

〉
= arg min

b̃0,···,b̃L−1

EI

(
b̃
)

(24)

Many algorithms can be used to solve the problem in Equation (24), such as gradient-
based methods and intelligent optimization algorithms. However, gradient-based algo-
rithms are complex in calculating derivatives and sensitive to the choice of initial points.
Given the inability to provide initial values for the target motion parameters with great
precision, the use of gradient-based methods is restricted. To achieve the optimization of
target motion parameters, this paper adopts intelligent optimization algorithms to solve the
above optimization problems, and the specific steps will be introduced in the next section.

3.2. Parameters Optimization Based on RTH-NM

Based on the joint motion compensation optimization model established in Section 3.1,
the RTH-NM algorithm is used to estimate the target motion parameters, thereby achieving
precise joint motion compensation.

The RTH algorithm is a new nature-inspired metaheuristic optimization algorithm
inspired by the red-tailed hawk’s hinting behaviors of a predatory bird. The RTH algorithm
exhibits strong robustness and a rapid convergence rate, so it is used to optimize the motion
parameters of the space target. The utilization of the RTH algorithm can mitigate the risk
of target motion parameter estimation becoming trapped in local optima. Nevertheless,
the motion parameters derived from the RTH algorithm often lack sufficient precision, and
conducting a highly accurate search for these parameters is time-consuming. To address
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this, the NM algorithm is applied to enhance the precision of the motion parameters. The
specific steps for the RTH-NM algorithm will be described in detail below.

Due to the inability to accurately obtain the target motion parameters, the RTH
algorithm needs to be used for a coarse search. The specific steps of an RTH coarse
search are as follows:

Step 1 (initialization): The following parameters of the RTH algorithm need to be
initialized: the number of red-tailed hawks Q, the maximum number of iterations T, the
initial iteration number t, the echo to be compensated s(tr, tm), the radar de-chirp reference
distance information Rref, the target motion polynomial order L, and the search space for
target motion parameters P. In this paper, Q, T, and t are set to 120, 250, and 1, respectively.
s(tr, tm) and Rref can be obtained from the radar system. L and P can be obtained from the
Two-Line Element Set (TLE) information and Rref.

Step 2 (generating the initial position): Based on P, the initial position B of a red-tailed
hawk can be obtained, where B is a K-row L + 1-column matrix. Calculate the image
entropy according to Equation (22), and the optimal position of the red-tailed hawk is bbest.

Step 3 (high soaring): The position of the red-tailed hawk is continuously updated,
and joint motion compensation is performed using the motion parameters corresponding
to each position to obtain the target ISAR image. The image entropy is calculated according
to Equation (22), and the position with the minimum entropy is obtained to update the
optimal position bbest. The position update formula of the red-tailed hawk q is shown in
Equation (25):

bt
q = bbest +

(
bmean − bt−1

q

)
· Levy · αt (25)

where bt
q represents the position of the red-tailed hawk q at the iteration t, bmean is the mean

position, Levy represents the levy flight distribution function that can be calculated accord-
ing to Equation (26), and αt denotes the transition factor function that can be calculated
according to Equation (28).

Levy = s
µ · σ

|υ|β−1 (26)

σ =

(
Γ(1 + β) · sin(πβ/2)

Γ(1 + β/2) · β · 2(1 − β/2)

)
(27)

where s is a constant (0.01), β is a constant (1.5), and µ and υ are random numbers between
0 and 1.

αt = 1 + sin(2.5 + (t/T)) (28)

Step 4 (Low soaring): The hawk surrounds the prey by flying much lower to the
ground in a spiral line. The position update formula of red-tailed hawk q is shown in
Equation (29):

bt
q = bbest + (xt + yt) ·

(
bt

q − bmean

)
(29)

where xt and yt denote direction coordinates, which can be calculated as follows:{
xt = R(t) · sin(θ(t))
yt = R(t) · cos(θ(t))

(30)

{
R(t) = R0 · (r − t/T) · rand
θ(t) = A · (1 − t/T) · rand

(31){
xt = xt/max|xt|
yt = yt/max|yt|

(32)

where R0 denotes the initial value of the radius, which varies from 0 to 1. A is the angle
gain, which varies from 5 to 15. rand is a random number between 0 and 1. r is a control
gain that varies from 1 to 2.



Sensors 2024, 24, 4332 12 of 25

Step 5 (stooping and swooping): The hawk suddenly stoops and attacks the prey
from the best-obtained position in the low soaring stage. The position update formula of
red-tailed hawk q is shown in Equation (29):

bt
q = ψt · bbest + xt · S1(t) + yt · S2(t) (33)

where S1 and S2 are step sizes and can be calculated as follows:

S1(t) = bt
k − αt · bmean (34)

S2(t) = Gt · bt
k − αt · bbest (35)

where ψ and G are the acceleration and the gravity factors, which can be calculated as follows:

ψt = sin2(2.5 − t/T) (36)

Gt = 2 · (1 − t/T) (37)

Step 6 (termination condition judgment): If the number of iterations reaches the
maximum value T, terminate the search process; otherwise, return to step 3 and continue
the search. Finally, the global optimal position bbest is output as the optimal motion
parameter, that is, bcoarse = bbest.

After the search using the RTH algorithm, the coarse target motion parameters are
obtained, but they are not precise enough. Consequently, a refined search is required to
obtain the fine target motion parameters. The NM algorithm is used for the precise search
of motion parameters, and the specific steps are as follows.

Step 1 (initialization): Use the result bcoarse obtained from the RTH algorithm as the
initial input, and initialize L + 2 points b̃0, · · · , b̃l , · · · , b̃L+1, serving as the vertices of the
L + 1 simplex.

Step 2 (order): Based on the motion parameters corresponding to each vertex b̃l ,
perform joint motion compensation to obtain ISAR images, and calculate the entropy
EI

(
b̃l

)
of the ISAR images. Then, reorder the vertices according to EI

(
b̃l

)
to satisfy

EI

(
b̃0

)
≤ EI

(
b̃2

)
≤ · · · ≤ EI

(
b̃L+1

)
. Check whether the stopping conditions are met.

Step 3 (centroid): Discard the worst point b̃L+1, and calculate the centroid of the first

L+1 vertices, b̃0 = 1
L+1

L
∑

l=0
b̃l .

Step 4 (reflection): Calculate the reflection point b̃r = b̃o + ρ′
(

b̃o − b̃L+1

)
. If EI

(
b̃r

)
is better than EI

(
b̃L

)
but worse than EI

(
b̃0

)
, that is, EI

(
b̃0

)
≤ EI

(
b̃r

)
≤ EI

(
b̃L

)
, then

replace b̃L+1 with b̃r to construct a new L + 1-simplex and continue with step 2.
Step 5 (expansion): If the reflection point is the optimum, that is, EI

(
b̃r

)
< EI

(
b̃0

)
,

then calculate the expansion point b̃e = b̃o + γ′
(

b̃r − b̃o

)
. If the expansion point is better

than the reflection point, that is, EI

(
b̃e

)
< EI

(
b̃r

)
, then replace b̃L+1 with b̃e and continue

with step 2; otherwise, replace b̃L+1 with b̃r and then continue with step 2.
Step 6 (contraction): If EI

(
b̃L

)
≤ EI

(
b̃r

)
≤ EI

(
b̃L+1

)
, calculate the contraction point

b̃c = b̃o + α′
(

b̃r − b̃o

)
. If EI

(
b̃c

)
≤ EI

(
b̃L+1

)
, then replace b̃L+1 with b̃c and continue

with step 3; otherwise, proceed to step 7. If EI

(
b̃r

)
≥ EI

(
b̃L+1

)
, calculate the inner

contraction point b̃cc = b̃o + α′
(

b̃L+1 − b̃o

)
. If the inner contraction point is better than

the worst point, then replace the worst point with b̃cc; otherwise, proceed to step 7.
Step 7 (shrink): Use b̃l = b̃0 + σ′

(
b̃l − b̃0

)
to replace all points except the current

optimum point, and then continue with step 2.
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In the aforementioned steps, ρ′, γ′, α′, and σ′ represent the reflection, expansion,
contraction, and reduction coefficients, respectively, with values typically being ρ′ = 1,
γ′ = 2, α′ = 1/2, and σ′ = 1/2. After further optimization using the NM algorithm, the
precise target motion parameters bfine can be obtained. By utilizing bfine for joint motion
compensation, a high-quality ISAR image of the target can be achieved.

In summary, the flowchart of the joint motion compensation algorithm based on the
RTH-NM algorithm proposed in this paper is shown in Figure 3.
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4. Experiment and Discussion

In this subsection, different experiments were designed to demonstrate the perfor-
mance of the proposed algorithm. The experiments are divided into two types. The first
type was conducted using electromagnetic simulation data, and echo simulations were
performed using the physical optics (PO) method [47]. The second type was conducted
using Yak-42 real measurement data, and the effectiveness and robustness of the proposed
algorithm were further verified. The orbital motion of the target in the experiments was cal-
culated from the TLE [48] information, and four different imaging apertures were selected
for motion compensation experiments. All the images are generated by the range-Doppler
algorithm (RDA); the difference lies in the use of different HSMC algorithms and TMC algo-
rithms. In all experiments, the proposed algorithm is compared with three other algorithms.
The first method is the minimum-entropy high-speed motion compensation, minimum-
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entropy range alignment, and minimum-entropy phase compensation algorithm, referred
to as the ME+MERA+MEPA algorithm. The second involves using ICPF for high-speed
motion compensation, maximum-contrast range alignment, and maximum-contrast autofo-
cus, referred to as the ICPF+MCRA+MCPA algorithm. The other is the minimum-entropy
high-speed motion compensation, minimum-entropy range alignment and sparse Bayesian
learning (SBL) minimum-entropy phase compensation algorithm in [18], referred to as the
ME+MERA+SBLMEPA algorithm.

4.1. Experiments Based on Electromagnetic Simulation

Since satellite data are rarely publicly available, the experimental data in this subsec-
tion were acquired through electromagnetic simulations based on the Tiangong-1 (TG-1)
satellite model. Its three-dimensional model is depicted in Figure 4a. All simulations
utilized triangular facet models, segmenting the target surface into tens of thousands of
equivalent scatterings. To illustrate the effectiveness of the EM simulation, Figure 4 presents
a comparison between the actual ISAR image of TG-1 (Figure 4b) and the EM-simulated
ISAR image (Figure 4c). The comparison results indicate that the quality of the generated
imagery is comparable to that of the measured ISAR image, thereby supporting the research
presented in this paper.
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In order to demonstrate the performance of the proposed joint motion compensation
algorithm under different motion conditions, different orbit motions are added to the echo.
The orbit of the TG-1 satellite is chosen as the simulation orbit, and its TLE [49] is shown in
Table 1. The orbit motion of the TG-1 satellite can be calculated by the Simplified General
Perturbations 4 (SGP4) model according to the TLE information. The TLE of the TG-1
satellite [49] is listed below.

Table 1. Radar parameters of the simulation.

Center
Frequency

Pulse Repetition
Frequency Pulse Width Band Width Sample

Frequency

12 GHz 80 Hz 200 us 2 GHZ 10 MHz

• 37820U 11053A 16266.35688463 .00025497 00000-0 24137-3 0 9991,
• 37820 042.7662 24.7762 0015742 351.0529 104.2087 15.66280400 28580 8.

The imaging scene configuration is depicted in Figure 5, where the ground-based
radar is situated at (29.7◦ N, 119.8◦ E), transmitting an LFM signal. The imaging parameters
are detailed in Table 1. For echo simulation, four distinct imaging apertures from two
visibility arcs is selected, with the respective imaging periods as follows:

• Aperture 1: 22 September 2016 19:0:11~22 September 2016 19:0:25.
• Aperture 2: 22 September 2016 19:3:11~22 September 2016 19:3:25.
• Aperture 3: 22 September 2016 20:35:58~22 September 2016 20:36:12.
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• Aperture 4: 22 September 2016 20:39:58~22 September 2016 20:40:12.
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Figure 5. ISAR imaging scene configuration.

Generally, due to the relatively short duration of the imaging CPI, a fourth-order
polynomial is sufficient to describe the motion of the target. Therefore, the motion of the
target is modeled as a fourth-order polynomial. The coefficients for the polynomials of
various orders for imaging apertures 1–4 are shown in Table 2.

Table 2. Motion parameters of the target in various apertures.

b0 b1 b2 b3 b4

Aperture 1 9.993 × 105 −4432 15.570 0.0696 6.144 × 10−6

Aperture 2 1.041 × 106 4688 13.660 −0.0627 1.809 × 10−6

Aperture 3 1.042 × 106 −5469 9.477 0.0504 9.588 × 10−5

Aperture 4 1.126 × 106 5694 7.279 0.0383 7.763 × 10−5

The variations in the radial distance and radial velocity of the target under different
imaging apertures are illustrated in Figure 6. The magnitude of radial velocity varies
between 4000 and 6000 m/s, with the maximum change in radial velocity reaching approxi-
mately 380 m/s within the CPI. According to the analysis in Section 2, there are high-speed
motion errors in the echo, which can cause range profile stretching and range cell shifts.
Traditional methods use a single echo to estimate the velocity to operate HSMC, leading
to residual errors in high-speed motion that affect the precision of subsequent TMC. This
impact is more severe in the case of low SNR. After employing appropriate HSMC methods
and TMC methods, the ISAR image of the target can be obtained. It is worth noting that
since the raw echo without any compensation cannot be focused for imaging and lacks
reference value, we directly present the ISAR imaging results after HSMC and TMC under
different imaging apertures.
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Figure 6. Variations in radial distance and radial velocity within each imaging aperture. (a) Variation
in the radial distance. (b) Variation in the radial velocity.

The ideal ISAR images under four different imaging apertures are given as shown
in Figure 7. It can be seen that the imaging results under different imaging apertures are
significantly different due to the different imaging perspectives and the motion states of the
target. The first column of Figure 8 displays the ISAR images obtained after compensation
using the ME+MERA+MEPA method, and the second column of Figure 8 shows the ISAR
images obtained after compensation using the ICPF+MCRA+MCPA algorithm. It can be
observed that the image focusing quality achieved by the ME+MERA+MEPA algorithm is
essentially the same as that of the ICPF+MCRA+MCPA algorithm. Due to residual errors
in HSMC, both images are slightly defocused and blurred. The third column of Figure 7
displays the focused ISAR images obtained by the ME+MERA+SBLMEPA algorithm. Due
to the phase compensation based on sparse Bayesian entropy minimization adopted in
the ME+MERA+SBLMEPA algorithm, the defocusing and blurring of the images are
eliminated to a certain extent, and the focusing quality of the images is higher than that of
the images obtained by the ME+MERA+MEPA algorithm and the ICPF+MCRA+MCPA
algorithm. The fourth column of Figure 8 displays the focused ISAR images obtained
by the proposed algorithm. It can be seen that the proposed algorithm obtains a better
focused image due to joint compensation for high-speed motion and translational motion,
which eliminates the residual error. In order to quantify the imaging results, the entropy
of the images after motion compensation by different algorithms is given, as shown in
Table 3. It can be seen from Table 3 that compared with the ME+MERA+MEPA algorithm,
the ICPF+MCRA+MCPA algorithm, and the ME+MERA+SBLMEPA algorithm, the image
entropy obtained by the proposed algorithm is smaller and closer to the ideal image.
Therefore, the proposed method has better motion compensation performance.
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Figure 7. Ideal ISAR images for different imaging apertures. (a) Aperture 1; (b) Aperture 2;
(c) Aperture 3; (d) Aperture 4.



Sensors 2024, 24, 4332 17 of 25

Sensors 2024, 24, x FOR PEER REVIEW 19 of 28 
 

 

Figure 7. Ideal ISAR images for different imaging apertures. (a) Aperture 1; (b) Aperture 2; (c) 
Aperture 3; (d) Aperture 4. 

 ME+MERA+MEPA ICPF+MCRA+MCPA ME+MERA+SBLMEPA Proposed 

A
pe

rt
ur

e 
1 

    
 (a) (b) (c) (d) 

A
pe

rt
ur

e 
2 

    
 (e) (f) (g) (h) 

A
pe

rt
ur

e 
3 

    
 (i) (j) (k) (l) 

A
pe

rt
ur

e 
4 

    
 (m) (n) (o) (p) 

Figure 8. Imaging results of TG-I electromagnetic simulation data under different motion conditions. 
(a–d) Imaging results by different algorithms of aperture 1; (e–h) imaging results by different algo-
rithms of aperture 2; (i–l) imaging results by different algorithms of aperture 3; and (m–p) imaging 
results by different algorithms of aperture 4. 

Table 3. Entropy of images acquired by different algorithms. 

 Aperture 1 Aperture 2 Aperture 3 Aperture 4 
Ideal Image 11.9732 11.9087 11.8467 11.9437 

ME+MERA+MEPA 11.9983 12.1623 12.0865 12.0051 
ICPF+MCRA+MCPA 11.9918 11.9217 11.8743 11.9661 

ME+MERA+SBLMEPA 11.9897 11.9203 11.8649 11.9607 
Proposed 11.9819 11.9102 11.8572 11.9543 

To verify the performance of the proposed algorithm under low-SNR conditions, 
complex Gaussian white noise is added to the electromagnetic simulation data to produce 
different SNRs (from 0 dB to −13 dB). The electromagnetic simulation data and orbital data 
of aperture 3 are chosen for the experiment. Figure 9 presents the ideal images under dif-
ferent SNRs. The ISAR images after compensation by different motion compensation al-
gorithms are shown in Figure 10. The first and second columns show the images obtained 
after motion compensation using the ME+MERA+MEPA algorithm and the 

Figure 8. Imaging results of TG-I electromagnetic simulation data under different motion conditions.
(a–d) Imaging results by different algorithms of aperture 1; (e–h) imaging results by different algo-
rithms of aperture 2; (i–l) imaging results by different algorithms of aperture 3; and (m–p) imaging
results by different algorithms of aperture 4.

Table 3. Entropy of images acquired by different algorithms.

Aperture 1 Aperture 2 Aperture 3 Aperture 4

Ideal Image 11.9732 11.9087 11.8467 11.9437
ME+MERA+MEPA 11.9983 12.1623 12.0865 12.0051

ICPF+MCRA+MCPA 11.9918 11.9217 11.8743 11.9661
ME+MERA+SBLMEPA 11.9897 11.9203 11.8649 11.9607

Proposed 11.9819 11.9102 11.8572 11.9543

To verify the performance of the proposed algorithm under low-SNR conditions,
complex Gaussian white noise is added to the electromagnetic simulation data to produce
different SNRs (from 0 dB to −13 dB). The electromagnetic simulation data and orbital
data of aperture 3 are chosen for the experiment. Figure 9 presents the ideal images
under different SNRs. The ISAR images after compensation by different motion com-
pensation algorithms are shown in Figure 10. The first and second columns show the
images obtained after motion compensation using the ME+MERA+MEPA algorithm and
the ICPF+MCRA+MCPA algorithm. The third and fourth columns present the images
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obtained using the ME+MERA+SBLMEPA algorithm and the proposed algorithm. In
Figure 10, it is noteworthy that due to intense noise, there are residual errors in HSMC,
and the correlation of the HRRP is reduced, leading to a decrease in the precision of TMC.
As a result, the images obtained by the traditional motion compensation algorithms are
of poor quality with artifacts in the images. When the SNR is less than −5 dB, the images
begin to defocus, and when the SNR is less than −9 dB, all traditional motion compen-
sation algorithms fail, making focused imaging virtually impossible. Compared to the
other two algorithms, the ME+MERA+SBLMEPA algorithm performs better, but it also has
limited performance when the SNR is lower than −9 dB. This is due to the fact that at this
time, the intense noise will result in residual errors in motion compensation. Consequently,
it is not possible to enhance the image focusing effect by improving the accuracy of PA. In
contrast, the proposed algorithm can achieve precise motion compensation and achieve
better focusing results when the SNR is not lower than −13 dB. Table 4 provides the entropy
of motion-compensated images after applying different algorithms at various SNRs. Table 4
indicates that the proposed algorithm demonstrates the best performance, achieving the
lowest image entropy compared to other algorithms and coming closer to the ideal image
entropy. Therefore, the motion compensation performance and robustness of the proposed
algorithm are further demonstrated.
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Figure 9. Ideal ISAR images under different SNRs. (a) SNR = 0 dB; (b) SNR = −5 dB; (c) SNR = −9 dB;
(d) SNR = −13 dB.

Table 4. Entropy of images under different SNRs.

0 dB −5 dB –9 dB –13 dB

Ideal Image 13.8573 14.0153 14.2977 14.7418
ME+MERA+MEPA 13.8675 14.1963 14.8536 15.9636

ICPF+MCRA+MCPA 13.9324 14.1879 14.8411 15.9358
ME+MERA+SBLMEPA 13.8653 14.1527 14.7369 15.9175

Proposed 13.8627 14.0738 14.3683 15.0156

Experiments show that the proposed algorithm is unable to compensate for target
motion when the SNR is below −13 dB and decreases further, resulting in severe blurring of
the compensated images. This is because the relationship between focus quality and image
entropy is not consistent when the data contain very strong noise, and the image entropy
depends almost entirely on the strong noise, independent of the joint motion compensation.
In this case, a higher SNR gain can be obtained using more pulses for the imaging process,
and then well-focused images can be generated by the proposed algorithm. Overall, the
algorithm shows good robustness when dealing with noise.
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Figure 10. Imaging results of TG-I electromagnetic simulation data under different SNRs. (a–d) ISAR
imaging results obtained by different algorithms, SNR = 0 dB; (e–h) ISAR imaging results obtained
by different algorithms, SNR = −5 dB; (i–l) ISAR imaging results obtained by different algorithms,
SNR = −9 dB; and (m–p) ISAR imaging results obtained by different algorithms, SNR = −13 dB.

4.2. Experiments Based on Measured Yak-42 Data

In order to verify the performance of the proposed algorithm on the measured data,
this section conducts a performance analysis of the proposed algorithm using the Yak-42
measured data. The orbital motion with different apertures and different noises are added
to the data, and different TSMC and TMC algorithms are executed. The YAK-42 aircraft
dataset was recorded by a C-band ISAR experimental system with a center frequency of
5.52 GHz and a bandwidth 400 MHz. The de-chirp sampling rate is 10 MHz.

The image of the Yak-42 aircraft is shown in Figure 11a, and its ideal ISAR image is
shown in Figure 11b. The velocity of the aircraft is relatively small compared to that of
space targets, so the effect of speed on the echo can be essentially ignored. Therefore, the
motions of different imaging apertures from Table 2 were incorporated into the raw radar
echo of YAK-42. As with the previous experiment, different algorithms are used for HSMC
and TMC, and the corresponding imaging results are shown in Figure 12.
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Figure 11. Optical image and ideal ISAR imaging of Yak-42 airplane. (a) Optical 
image; (b) ISAR image. 
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Figure 11. Optical image and ideal ISAR imaging of Yak-42 airplane. (a) Optical image; (b) ISAR image.
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Figure 12. Imaging results of Yak-42 measured data under different motion conditions. (a–d) Imaging
results by different algorithms of aperture 1; (e–h) imaging results by different algorithms of aperture
2; (i–l) imaging results by different algorithms of aperture 3; and (m–p) imaging results by different
algorithms of aperture 4.
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It can be clearly seen from Figure 12 that compared with the ME+MERA+MEPA
algorithm, the ICPF+MCRA+MCPA algorithm, and the ME+MERA+SBLMEPA algorithm,
no matter which aperture movement is added to the YAK-42 measured data, the proposed
algorithm can obtain significantly clearer images. On the contrary, the images obtained
by the ME+MERA+MEPA algorithm and the ICPF+MCRA+MCPA algorithm have poor
focusing quality, the images are defocused, and there are many artifacts. Compared with
the ME+MERA+MEPA algorithm and the ICPF+MCRA+MCPA algorithm, the focusing
quality of the images obtained by utilizing the ME+MERA+SBLMEPA algorithm has been
improved, but there is still a small amount of artifacts and localized defocusing. In order
to better show the advantages of the proposed algorithm, Table 5 gives the image entropy
after motion compensation using different HSMC and TMC algorithms. It can be seen that
the image entropy compensated for by the proposed algorithm is the smallest, and it still
has the best performance on the measured data.

Table 5. Entropy of images acquired by different algorithms using Yak-42 measured data.

Image Entropy

Ideal Image
7.4752

Aperture 1 Aperture 2 Aperture 3 Aperture 4

ME+MERA+MEPA 7.4868 7.4937 7.4916 7.5125
ICPF+MCRA+MCPA 7.4965 7.4887 7.4865 7.4879

ME+MERA+SBLMEPA 7.4835 7.4856 7.4827 7.5025
Proposed 7.4775 7.4802 7.4794 7.4785

In order to verify the performance of the proposed algorithm under different noises,
noises with different SNR are added to the YAK-42 data, and the motion parameters of
the target are consistent with those of aperture 3. The ideal ISAR images under different
SNRs are shown in Figure 13. The imaging results after using different HSMC and TMC
algorithms are shown in Figure 14. Different columns are the imaging results obtained
using different motion compensation algorithms. By comparison, it can be found that the
ME+MERA+MEPA algorithm and the ICPF+MCRA+MCPA algorithm are basically unable
to image when the SNR is lower than −3 dB because the Yak-42 measured data are more
complex than the electromagnetic simulation data. The motion compensation performance
of the ME+MERA+SBLMEPA algorithm on Yak-42 measured data is somewhat better than
the other two conventional algorithms, but it also fails to focus the image when the SNR is
below −5 dB. On the contrary, the proposed algorithm obtains a well-focused image at a
low SNR (no less than −10 dB). Similarly, the entropy of the compensated images under
different SNRs is shown in Table 6. It can be seen that the performance of the proposed
method is the best.
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algorithms are shown in Figure 14. Different columns are the imaging results obtained 
using different motion compensation algorithms. By comparison, it can be found that the 
ME+MERA+MEPA algorithm and the ICPF+MCRA+MCPA algorithm are basically unable 
to image when the SNR is lower than −3 dB because the Yak-42 measured data are more 
complex than the electromagnetic simulation data. The motion compensation perfor-
mance of the ME+MERA+SBLMEPA algorithm on Yak-42 measured data is somewhat bet-
ter than the other two conventional algorithms, but it also fails to focus the image when 
the SNR is below −5 dB. On the contrary, the proposed algorithm obtains a well-focused 
image at a low SNR (no less than −10 dB). Similarly, the entropy of the compensated im-
ages under different SNRs is shown in Table 6. It can be seen that the performance of the 
proposed method is the best. 
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Figure 13. Ideal ISAR images under different SNRs. (a) SNR = 0 dB; (b) SNR = −3 dB; (c) SNR = −6 
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(d) SNR = −10 dB.
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Figure 14. Imaging results of Yak-42 measured data under different SNRs. (a–d) ISAR imaging results
obtained by different algorithms, SNR = 0 dB; (e–h) ISAR imaging results obtained by different
algorithms, SNR = −3 dB; (i–l) ISAR imaging results obtained by different algorithms, SNR = −6 dB;
and (m–p) ISAR imaging results obtained by different algorithms, SNR = −10 dB.

Table 6. Entropy of images with different SNRs based on Yak-42 measured data.

Image Entropy vs. SNR

SNR 0 dB –3 dB –6 dB –10 dB

Ideal Images 9.5783 10.3027 10.5897 10.6349
ME+MERA+MEPA 9.6208 10.3853 10.6753 10.7641

ICPF+MCRA+MCPA 9.7379 10.3769 10.6561 10.7538
ME+MERA+SBLMEPA 9.6135 10.3674 10.6429 10.7363

Proposed 9.5825 10.3481 10.6135 10.6995
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The complexity of the algorithm is also one of the factors that need to be considered in
the actual processing. Table 7 gives a comparison of the operation time of the proposed
algorithm with other algorithms. The CPU time is obtained by Matlab 2021a coding using a
personal computer equipped with an Intel Core i5-6200 U 2.4 GHz processor and 16 GB of
memory. A total of 200 Monte Carlo simulations were performed and averaged. It can be
seen from Table 7 that the proposed algorithm takes longer than the other three algorithms.
This is because the proposed algorithm accurately estimates the target motion parameters,
and the complexity of the RTH algorithm itself is high, resulting in a longer operation time.
However, compared with a shorter time to obtain defocused images, if high-quality ISAR
images can be obtained, it is acceptable to use a relatively long time. At the same time, if
the computing performance of the computer can be enhanced, the time consumption of
this algorithm will be reduced further.

Table 7. Computation time comparison.

Algorithms Computation Time (s)

ME+MERA+MEPA 210
ICPF+MCRA+MCPA 305

ME+MERA+SBLMEPA 253
Proposed 691

5. Conclusions

The high-speed motion of a space target will lead to a stretch in HRRP and affect
the accuracy of the subsequent TMC. Under low-SNR conditions, the residual error of
high-speed motion may even lead to the failure of traditional TMC algorithms. A new
parametric joint motion compensation algorithm is proposed for the ISAR imaging of
space targets under low-SNR conditions. In this paper, a joint compensation algorithm for
high-speed motion and translational motion is innovatively carried out, which reduces
the influence of residual error of high-speed motion on TMC. In this algorithm, the target
motion in a CPI is modeled as a high-order polynomial, and a parameterized minimum
entropy optimization model is established. By making full use of the TLE information and
radar measurement information of the target, the RTH-NM algorithm is used to quickly
and accurately search the motion polynomial coefficients of the target, so as to realize joint
compensation for the high-speed motion and translation motion of the target and to obtain
high-quality ISAR imaging. The algorithm has good noise robustness and can accurately
compensate for the high-speed motion and translation motion of the target under low-SNR
conditions. Electromagnetic simulation data and measured data experiments verify the
effectiveness of the proposed algorithm. However, our algorithm is more complex than the
traditional algorithm, which is our next improvement. Meanwhile, the performance of the
proposed algorithm is limited under the conditions of target acceleration maneuvering and
sparse apertures. Our future work will focus on these issues.
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