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Abstract: In the face of increasing climate variability and the complexities of modern power grids,
managing power outages in electric utilities has emerged as a critical challenge. This paper intro-
duces a novel predictive model employing machine learning algorithms, including decision tree
(DT), random forest (RF), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost).
Leveraging historical sensors-based and non-sensors-based outage data from a Turkish electric utility
company, the model demonstrates adaptability to diverse grid structures, considers meteorological
and non-meteorological outage causes, and provides real-time feedback to customers to effectively
address the problem of power outage duration. Using the XGBoost algorithm with the minimum
redundancy maximum relevance (MRMR) feature selection attained 98.433% accuracy in predicting
outage durations, better than the state-of-the-art methods showing 85.511% accuracy on average over
various datasets, a 12.922% improvement. This paper contributes a practical solution to enhance
outage management and customer communication, showcasing the potential of machine learning to
transform electric utility responses and improve grid resilience and reliability.

Keywords: power outage duration prediction; XGBoost; power disruption; electricity distribution;
machine learning; power system; power interruption; MRMR

1. Introduction

A reliable power supply is the cornerstone of modern society, playing an indispensable
role in facilitating the seamless functioning of various sectors and enhancing the quality of
life for individuals. The ubiquity of electricity has transformed from a mere convenience
to an absolute necessity, impacting essential aspects of daily life, including agriculture,
healthcare, education, communication, environmental sustainability, economic prosperity,
transportation, public safety, and overall well-being [1–8]. This pervasive dependence
on electricity underscores the critical need for uninterrupted power availability in our
interconnected and technology-driven world. As the reliance on digital technologies
continues to grow, electricity demand is poised to escalate; it is not only essential for
current operations but also for powering the innovations that will define the future.

However, the specter of power outages, characterized by temporary disruptions in
the continuous flow of electricity, poses a significant challenge to electric utilities and their
communities. These outages, colloquially referred to as blackouts or electrical failures, arise
from many factors, ranging from catastrophic weather conditions and natural disasters
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to equipment failures and the intricate configurations of power grids. The dynamic and
multifaceted nature of these outage events necessitates innovative solutions for effective
management and mitigation. Also, the restoration of power to affected areas demands
not only time but also an intricate understanding of the grid configuration, the identifi-
cation of fault points, and the probable duration of the outage to undertake the requisite
preparations [9].

Furthermore, outage management is a critical component of maintaining customer
satisfaction, as customer complaints and dissatisfaction can intensify when power is not
restored promptly or when communication is lacking about the duration of an outage. On
the customer side, the consequences of power outages are equally profound and are just
as significant as the effects faced by the utility companies or the broader society. Modern
lifestyles depend on reliable electricity, and outages disrupt critical functions and daily life.
The problem of power outage strikes at the heart of critical functions, affecting the operation
of utilities and deeply impacting the lives and livelihoods of customers and communities.
Therefore, effective outage management is absolutely a fundamental necessity to maintain
the stability and resilience of contemporary lifestyles [10].

In the current age of data-driven decision making and artificial intelligence, the electric
utility sector is on the cusp of a transformative evolution in outage management. Machine
learning, a subfield of artificial intelligence (AI), has emerged as a robust resource to address
complicated problems across various fields. Within the domain of power distribution,
predicting power outage duration is a crucial facet that demands thorough consideration.
Power outage duration refers to the period during which a disruption in the electricity
supply occurs. This disruption can result from various factors, including natural disasters,
equipment failures, or human errors. The significance of accurately forecasting power
outage duration lies in its potential to equip utility providers and consumers with valuable
insights. Such predictions contribute to proactive decision making in resource allocation,
disaster preparedness, and infrastructure planning.

By leveraging extensive datasets, advanced algorithms, and real-time inputs, machine
learning enables the creation of predictive models that can adapt, learn, and refine their
predictions, offering the potential to revolutionize the efficiency and accuracy of power out-
age duration estimation. Furthermore, the intricate nature of contemporary power systems,
coupled with the increasing integration of sustainable energy sources, has prompted a
notable surge in implementing machine learning techniques for predictive analysis within
the power sector. These methodologies present fresh perspectives on system dynamics,
contribute to heightened forecasting precision, and furnish real-time decisions to elevate
the effectiveness and dependability of power systems [11].

The growing utilization of machine-learning-based techniques in the predictive anal-
ysis of power systems has the potential to be attributed to their adeptness in managing
extensive datasets. The widespread adoption of sensors and other data collection tools
within the context of power systems results in the generation of huge amounts of data. The
machine learning models possess the capacity to instantaneously process these data and
extract patterns between them that is challenging to identify through traditional methods.
Moreover, machine learning can learn from past experiences to forecast future events [12].
Furthermore, these approaches offer a greater degree of flexibility compared with tradi-
tional methods. As power systems undergo continuous evolution and complexity, machine
learning algorithms are appropriate options to adjust to dynamic conditions. Such capabili-
ties empower the operators of utilities to address emerging challenges promptly [13].

In addition to machine learning models, classical statistical or mathematical models
play a significant role in electric power forecasting based on classical statistical theories
and mathematical principles. Classical statistical models typically involve making pre-
sumptions regarding the fundamental distribution of the data and estimating factors based
on observed samples. Examples of classical statistical methods include linear regression,
logistic regression, analysis of variance (ANOVA), and hypothesis testing. These methods
are often grounded in the principles of probability and statistics, and their application
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involves adherence to certain assumptions and conditions. Also, the integration of com-
posite approaches has made substantial advancements in electric power prognostication,
combining the strengths of both traditional and advanced methodologies for enhanced
predictive accuracy and robustness [14]. Several statistical methods are already applied in
different studies of electric power systems and compared with intelligent methods that are
revealed as the most popular ones [15,16].

Although machine learning techniques in electric power distribution systems have
been extensively studied [17–31], our classification model stands out for its accurate outage
duration forecasting and real-time customer feedback. This model introduces a ground-
breaking predictive method that leverages the capabilities of machine learning models.
It was developed through an empirical case study utilizing historical outage data from a
Turkish electric utility company and transcends conventional approaches by incorporating
diverse grid structures and considering both meteorological and non-meteorological outage
causes. Before exploring the technical intricacies, it is essential to highlight the key contribu-
tions of this study that distinguish it in the domain of power outage duration forecasting:

(i) A novel machine learning model for power outage duration prediction with an
impressive accuracy of 98.433% over a substantial real-world dataset provided by an
electric utility, outperforming state-of-the-art methods with an average accuracy of
85.511% on different datasets, offering a 12.922% improvement.

(ii) The first study to employ both XGBoost and MRMR algorithms together to construct
a predictive model for power outage management, configuring various hyperpa-
rameters of XGBoost such as objective function, monotone constraints, learning rate,
minimum child weight, maximum depth of trees, and number of boosting rounds.

(iii) Originality in addressing the outage duration prediction task as a classification prob-
lem with distinct time duration classes of very short, short, medium, and long time,
contrasted with previous studies that predominantly proposed regression-based and
statistical solutions.

(iv) Introduces a unique approach by selecting features based on the MRMR technique,
which effectively identifies the importance scores of dataset properties. It not only
enhances the interpretability of the model but also contributes significantly to the
overall predictive accuracy by focusing on the most relevant aspects of the dataset.

(v) Deep investigation of various machine learning algorithms, including decision tree
(DT), random forest (RF), k-nearest neighbors (KNN), and extreme gradient boosting
(XGBoost) to select the most efficient model based on a diverse array of evaluation met-
rics, including Accuracy, Precision, F1-Score, Recall, Support, Macro Avg, Weighted
Avg, and Confusion Matrix.

(vi) Demonstration of practical applicability by testing the proposed method on real-world
test sets for several ranges of months, obtaining consistent results that were evaluated
and approved by the utility in each iteration.

As we explore the intricacies of our machine-learning-based model and its application,
the subsequent sections describe the related works, employed methodology, analyzed
dataset, and obtained results. Comparisons against individual algorithms highlight the
excellence of our approach. Additionally, we discuss broader implications and future works
for the electric utility sector in the face of evolving challenges.

2. Literature Review

Power outage prediction models play a pivotal role in ensuring the reliability of the
electricity supply during extreme conditions and natural disasters. In recent research, sev-
eral innovative approaches have been explored to enhance the accuracy and effectiveness
of these models. In [32], the authors propose a smart power grid allocation technique
that incorporates public opinions by mining microblog tweets. This approach examines
the need for power restoration and evaluates secondary disaster risks. The study utilizes
optimization algorithms, including the A-star path and stud genetic algorithm (Stud GA),
demonstrating successful results in mitigating negative sentiments and ensuring timely
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public electricity demand during events like the Chaba typhoon in 2022. Another signifi-
cant contribution comes from the work [33], where a new model is formulated to construct
a synthetic electrical grid layout based on publicly accessible data. This model simulates
power disruptions at buildings subjected to different hazard loadings, offering localized
assessments of power loss probabilities due to natural hazards.

Advancements in machine learning models have been instrumental in improving
the accuracy of power outage prediction models. In [34], the authors employ a stacking
ensemble learning technique for forecasting outage duration within typhoon disasters. This
method utilizes various machine learning models, incorporating extreme gradient boosting
(XGBoost), random forest (RF), and extra tree (ET), showing promising results in accurately
forecasting outage durations during severe weather events like the Chapaka typhoon in
2021. The study [35] introduces two different outage prediction models (OPMs) for forecast-
ing power disruptions triggered by ice and snow storms. These models, based on machine
learning (ML) and the generalized linear model (GLM), respectively, demonstrate different
strengths. The GLM excels in predicting extreme events, while the machine learning meth-
ods offer superior results for less-impactful occurrences and provide more accurate spatial
dispersion insights for power outages. Similarly, [36] addresses the prediction of electricity
outages caused by weather events in the context of climate change and its potential impact
on power grid reliability, in which an artificial neural network (ANN) model using the
back-propagation algorithm is introduced. This model proves effective, outperforming
conventional approaches like multiple linear regression (MLR) and exponential smoothing
(ES) in forecasting electricity outages related to weather-induced faults in electricity grids.

Addressing the challenge of anticipating the impact of tropical cyclone winds on power
transmission systems, Huang and Wang [37] propose an adaptive nested dynamic down-
scaling (ANDD) method. This method acknowledges terrain characteristics, topology, and
transmission system malfunctioning processes, adapting in real time to evolving cyclones.
The study illustrates the strategy’s advantages using the electricity transmission network
in China, specifically amidst Super Typhoon Lekima. In [38], an AI-based grid-hardening
model is also reported to enhance resilience in extreme weather. This model predicts the
component states of outages and operations through machine learning and strategically
places distributed generation units. Simulations on the IEEE 118-bus system demonstrate
improved robustness against multiple component outages during extreme events with
decentralized energy resources. Moreover, focusing on the reliability enhancement of
local energy systems, Hooshmand et al. [39] present a two-layered power management
system for setups featuring storage and distributed generation. This approach addresses
the complexity of diverse energy suppliers and is evaluated by simulating the energy
system of an Indian base transceiver station, incorporating real load data and historical
outage information.

Xu et al. [40] delve into the deployment of a configuration plan for emergency power
supply vehicles tailored for extreme weather conditions. The study introduces an ensemble
learning algorithm, the XGBoost classification model, to counter unplanned power outages
stemming from equipment failures. This model surpasses traditional classification methods
and other ensemble learning approaches in accurately forecasting outage incidents. In [41],
large-scale power outages are predicted using a universal framework and a theoretical
model without infrastructure damage. For events causing damage, outage duration and
restoration probability hinged on access and repair challenges. It also derived reliability
requirements for emergency power systems, demonstrated through cases like Hurricane
Katrina and Fukushima. This work is confirmed for the probability and duration of power
outages, encompassing normal and extended scenarios caused by severe events with
repair difficulties.

In [42], the authors focus on improving predictions of extreme-weather-related power
outages through a data-intensive model. This model forecasts the impact on power grids,
including datasets with various storm examples and predictors. The study underscores the
need for multifaceted hazard descriptions in future analyses of extreme weather impacts.
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Introducing a deep neural network (DNN) ensemble model for estimating power outages
in overhead distribution systems, Das et al. [43] consider environmental factors. The
model employs a partitioning approach for the input space, where each neural network
in the ensemble focuses on estimating outages in a specific segment. A new algorithm
is presented for simultaneous training of the neural networks and optimal input space
partitioning, demonstrating a significant improvement in estimating outages caused by
wind and lightning. Also, the authors examine power outage data in a U.S. utility’s service
area, with a specific focus on outages caused by weather events [44]. It advocates for using
a deep neural network trained and tested on outage data to predict restoration and repair
durations, aiding utilities in scheduling repair work and dispatching crews, especially
during extreme weather conditions in the distribution network.

In [45], the authors conduct an examination of the frequency and length of interrup-
tions in a distribution grid system. They utilize outage data and employ gradient-boosting
regressor and random forest to determine the paramount features in forecasting the length
of outages. The study finds that climatic conditions, equipment failures, and wind speed
emerge as the most significant predictors of outage length in the dataset under analysis.
Zhao et al. [46] investigate the linear and nonlinear correlations between outage duration
and weather factors using Pearson and distance correlation coefficients. The gradient-
boosting decision tree (GBDT) algorithm assesses the contribution ratio of various weather
factors in the prediction model. This is achieved by generating a predictive model that
correlates weather-influencing factors with response variables.

In [47], a machine learning classifier using Bayes decision theory is presented to pre-
dict power system component outages during extreme weather events. The proposed
approach minimizes prediction errors, accounts for the cost of preventive actions, and seeks
to improve power system resilience through operation-oriented measures. The impact of
power outages resulting from weather-related natural disasters on the revenue of electric
power suppliers is investigated in [48]. The study examines the relationship between key
properties such as outage duration and revenue to offer insights for electric power suppliers,
emphasizing the importance of risk assessment and strategic system planning measures.
In [49], the authors focus on predicting power outages, critical for planning responses and
maintenance in power systems specializing in frequent non-weather-related (NOW) out-
ages. The authors developed forecasting models with outage data in Massachusetts through
advanced techniques including the Bayesian optimization, Prophet model, and hierarchical
prediction. Both Prophet-TPE and hierarchical Prophet-Bottom-Up outperformed other
models in predicting non-weather outage counts. The analyses indicate a troubling pattern
in the expansion of non-weather-related outages in Massachusetts, prompting potential
mitigation recommendations.

Yang et al. [50] introduce a novel conditioned power outage prediction model (OPM)
that classifies event severity into low, moderate, and high groups. This model utilizes
subsets based on severity as training datasets for power outage predictions. The division,
calculated using the quantile weight distance (QWD) between predicted and extreme
weather phenomena, significantly reduces the mean absolute percentage error (MAPE),
ensuring high accuracy in event severity classification. In [51], a multifaceted event-based
outage model is proposed to enhance outage forecasting in diverse weather conditions.
The model utilizes the collaborative neural network (CONN) algorithm to transform
sophisticated event-triggered outage challenges, splitting into two continuous differential
subproblems, each with a solitary objective. Experiments affirm the effectiveness of the
CONN event-driven forecasting algorithm in overcoming challenges related to obtaining
extensive and intricate weather events and outage data.

This comprehensive literature review highlights the diverse methodologies and ap-
proaches employed in recent research to improve power outage prediction models. From
machine learning techniques to adaptive strategies and resilience enhancement, these
studies contribute significantly to the field, emphasizing the importance of accurate out-
age predictions for resilient power systems. It is worth mentioning that, in addition to
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the reviewed studies, a substantial body of literature addressing the prediction of power
outage durations exists. Various methods have been explored in [52–66] to enrich our
understanding of this critical aspect of power system resilience.

3. Proposed Model
3.1. Model Description

This study presents a machine-learning-based model to predict the power outage
duration (POD) and notify the customers. In this study, a real-world power outage dataset
is utilized from a well-known electric company in Turkey for the first time in the literature.
This approach applies an extreme gradient boosting (XGBoost) machine learning model on
the mentioned dataset. Also, the feature engineering of the proposed method involves a
feature selection algorithm of maximum relevance minimum redundancy (MRMR), feature
encoding of categorical variables, and feature scaling of numerical variables. Our study is
unique in that it introduces an innovative machine learning solution designed to predict
power outage duration as very short, short, medium, and long for the periods between 0
and 1, 1 and 2, 2 and 4, or more than 4 h, respectively, intending to notify corresponding
customers. Figure 1 demonstrates the overall framework of the presented model.

Based on [67,68], the MRMR algorithm is chosen to select features, which employs an
incremental greedy strategy. The MRMR feature selection method is designed to identify
a subset of features that are most relevant to the target variable while minimizing redun-
dancy among the features themselves. This method maximizes the mutual information
between each feature and the target variable (relevance) and simultaneously minimizes the
mutual information among the selected features (redundancy). The MRMR criterion can be
mathematically expressed as Equation (1):

MRMR = maxS⊆F(
1
|S|∑ fi∈S MI( fi, C)− 1

|S|2 ∑ fi , f j∈S
MI

(
fi, f j

)
) (1)

where

• S ⊆ F: All possible subsets S of the feature set F.
• MI( fi, C): The mutual information between feature f i and the target variable C.
• |S|: The number of features in subset S.
• MI

(
fi, f j

)
: The mutual information between features fi and fj.

In predictive modeling, handling categorical variables involves the techniques of
dummy and label encoding. Dummy encoding transforms categorical variables with
multiple levels into a binary matrix, where each level becomes a binary column. This
method is particularly useful when there is no ordinal relationship among the categories.
Furthermore, label encoding assigns a unique numerical label to each category when there
is an inherent order or hierarchy among the categories. On the other hand, for numerical
variables, feature scaling is a crucial step to check that all variables contribute equally
to the model and to prevent the dominance of features with larger scales. A common
method for scaling numerical variables is normalization, where each variable is scaled to a
specific range, e.g., between 0 and 1. It ensures that the numerical features are on the same
scale, preventing biases that may arise due to differences in measurement units or scales.
Together, these encoding and scaling techniques contribute to the robust preprocessing of
data, facilitating effective training and performance of machine learning approaches.
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Figure 1. The proposed model.

In machine learning, datasets are commonly divided into three main subsets: the
training set, validation set, and test set. The training set is used to train the model by
learning patterns and adjusting hyperparameters. The validation set is used during model
development to tune hyperparameters and make decisions about model improvements,
ensuring the model does not overfit. The test set is used for the final evaluation of the
model’s performance, providing an impartial assessment of completely unseen data. The
70/30 split ratio was chosen according to experiments in the current study, balancing
the need for appropriate training data with the requirement for accurate performance
evaluation. Acceptable ratios such as 80/20 and 90/10 may also be considered, depending
on the dataset size [69]. Randomly shuffling the dataset before splitting also helped to
ensure that both sets were representative of the overall data distribution.

The real-world datasets mentioned in the Results section refer to the test datasets to
meticulously evaluate our presented model. These datasets span from 1 February 2023 to
15 May 2023 (late winter to early spring); 1 March 2023 to 1 July 2023 (spring to early
summer); 1 August 2023 to 16 September 2023 (late summer to early fall); and 1 March 2024
to 19 March 2024 (early spring). The overlap in periods (1 February 2023 to 15 May 2023;
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1 March 2023 to 1 July 2023) was intentional to evaluate the model’s performance across
different seasons, specifically, winter and spring and spring and summer. The datasets
used are indeed the same; there are no different datasets. This approach allows us to assess
varying power consumption patterns during these transitional periods. It is important
to note that these datasets were not added to the training set. Therefore, the overlapping
periods do not influence our machine learning model, but serve solely to evaluate its
performance under diverse conditions.

The presented approach explores four machine learning classification algorithms—
decision tree (DT), random forest (RF), k-nearest neighbors (KNN), and extreme gradient
boosting (XGBoost)—by tuning their respective hyperparameters to optimize performance.
Model performance undergoes evaluation using metrics including Accuracy, Recall, Precision,
F1-Score, and Support. Following a thorough assessment, the XGBoost classifier emerges as
the most effective model among the alternatives. This operates as a service, interacting with
the infrastructure of the electric utility to provide accurate predictions based on the input test
query values guided by insights from the company.

To gain deeper insight into the proposed model, Figure 2 illustrates an example of
its architecture. In this integrated model architecture, the synergy between the electric
utility, predictive modeling, notification system, and a diverse range of customers fosters
an efficient and proactive approach to power outage management. This predictive model
becomes the linchpin for the seamless flow of information to customers. The electric utility,
armed with the foresight provided by the model, utilizes a robust notification system to
disseminate outage duration predictions to a diverse customer base. Residential customers
benefit by receiving timely alerts, enabling them to prepare for potential power interrup-
tions and safeguard their homes. Similarly, businesses, ranging from small enterprises to
large industries, employ this predictive information to make informed decisions about
operational adjustments, backup power deployment, and supply chain management. The
notification system’s versatility shines as it delivers outage alerts through multiple channels,
such as SMS, email, and social media, ensuring widespread accessibility. This comprehen-
sive architecture not only empowers customers with the knowledge needed for proactive
planning but also enhances the general resilience and adaptability of the electric utility
confronted with unforeseen events, thereby fostering a more reliable and customer-centric
power distribution system.
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3.2. Model Properties

The presented machine-learning-based model is designed for the classification task
of predicting power outages. The intricacies of the model are defined in this section to
emphasize its effectiveness. In classification, the model seeks to establish relationships be-
tween independent variables, such as historical outage data, including weather-based and
non-weather-based conditions, and the dependent variable of the power outage duration.
Through a meticulous evaluation process, different machine learning algorithms, including
decision trees, random forests, k-nearest neighbors, and XGBoost, are assessed for their
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performance using the accuracy metric. Among these algorithms, XGBoost emerged as
the top performer, showcasing superior predictive capabilities. XGBoost, an ensemble
learning algorithm, structures its decision trees sequentially, optimizing their collective
performance. Its advantages lie in its ability to handle numerical and categorical vari-
ables, successfully managing complex datasets while mitigating the risk of overfitting.
The main hyperparameters of the XGBoost algorithm, critical in shaping its behavior and
performance, are detailed in Table 1. This includes values for hyperparameters such as
the objective, monotone constraints, learning rate, minimum child weight, the number of
boosting rounds, and maximum depth of trees.

Table 1. Hyperparameters configuration.

Hyperparameters Type Hyperparameters Value

Objective “multi:softprob”
Monotone constraints 0

Learning rate 0.3
Minimum child weight 1.0

Maximum depth of trees 6.0
Number of boosting rounds 100

The objective hyperparameter is used to specify the learning task and the corre-
sponding objective function that the algorithm should optimize. In this work, it is set to
“multi:softprob”, indicating a multi-class classification task. The XGBoost algorithm uses
the softmax function to calculate probabilities for each class. The softmax function takes
a vector of raw scores and converts them into probabilities. This is especially useful in
multi-class classification scenarios, where each class is assigned a probability, and the class
with the greatest possibility is predicted as the final output. Also, the monotone constraints
hyperparameter is employed to specify monotonic relations among individual features and
the outcome variable during the training process. When set to 0, it signifies that there are no
specific monotonic constraints imposed on the corresponding feature. In other words, the
feature is allowed to have any relationship, including positive, negative, or non-monotonic,
with the target variable. Essentially, a value of 0 for monotone constraints indicates that the
associated feature is not constrained to exhibit a specific monotonic trend concerning the
target, allowing the model to determine the most appropriate relationship during training.

Another critical hyperparameter in the XGBoost algorithm is the learning rate that
influences the step size of each tree’s contribution to the final model during the boosting
process. This hyperparameter determines the tradeoff between training speed and model
accuracy; a higher learning rate can lead to faster convergence but may risk overfitting,
while a lower learning rate provides a more stable model but requires more boosting
iterations. Also, the lowest value of the child weight factor specifies the minimum total
of instance weights needed within a child node during the tree building of XGBoost. This
regularization technique helps prevent the creation of overly complex nodes, mitigating
overfitting. A higher value increases regularization strength, but finding the right balance
is crucial to avoid underfitting. Moreover, the maximum depth of trees hyperparameter
controls the maximum depth of individual trees in the ensemble, influencing the XGBoost
model complexity. Higher values allow trees to capture intricate patterns but may lead
to overfitting, while lower values constrain complexity to prevent overfitting. Another
hyperparameter is the count of boosting rounds to specify the number of boosting rounds
or trees to be built in the ensemble. Each boosting round contributes a new tree to the
model, and the ultimate prediction is the accumulation of predictions from all the trees.
The optimal configuration of hyperparameters can be tuned through different techniques
like grid search and cross-validation regarding the dataset characteristics of the task.

Here, the chosen hyperparameter values are the result of systematic experimentation
aiming to find an equilibrium between model intricacy and predictive efficacy. This hy-
perparameter tuning process is conducted using the validation set to ensure an impartial
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estimate of model performance. The transparency provided by Table 1 ensures the repro-
ducibility of the findings and serves as a valuable reference for future research and model
refinement. Evaluation of the model based on the accuracy metric reveals its efficacy in
predicting power outage durations. The comprehensive approach, combining advanced
algorithms, feature selection, and data preprocessing, contributes to the robustness of the
model, providing a valuable tool for informing and alerting customers about potential
power disruptions.

We evaluated different machine learning algorithms, including KNN, DT, and RF,
and tuned their hyperparameters to optimize performance. For KNN, the main hyper-
parameters tuned were the number of neighbors (3), weight function (“uniform”), and
an algorithm to find the nearest neighbors (“auto”). For DT, the key hyperparameters
included the split quality criterion (“entropy”), splitter strategy (“best”), maximum tree
depth (“none”), and the minimum samples required for splits (2) and leaf nodes (1). The
RF model involved tuning the number of trees (100), split quality criterion (“entropy”),
tree depth (“none”), minimum samples for splits (3) and leaves (2), number of features per
split (“sqrt”), and the use of bootstrap samples (“true”). Hyperparameters for all models
were evaluated with various values to identify the combination that provided the best
performance on the training data. The approach ensured the best setup of each model,
leading to reliable results.

The duration of a power outage relies on various factors, including the type of the
disturbance, geographical location, and the resilience of the power grid. By harnessing
machine learning models to analyze historical outage data, we can enhance our ability
to predict outage durations with a high degree of accuracy. This predictive capability
not only aids in effective outage management but also empowers utility companies to
communicate timely and precise information to consumers as a vital tool. Improved
communication fosters a resilient relationship between service providers and customers,
ensuring transparency and reliability during challenging circumstances. In the present
context, this study aims to implement a predictive model for power outage duration under
diverse inputs such as the power grid elements, urban HV, rural LV, and outage causes.

3.3. Algorithm 1

Algorithm 1 outlines a machine-learning-based model to predict power outage dura-
tions, employing a combination of the XGBoost algorithm and MRMR feature selection.
The algorithm begins by collecting power outage data instances, denoted as N, each charac-
terized by a set of features (F1, F2, . . ., F26). The desired output is the power outage duration,
T, represented as (t1, t2, . . ., tN). The data undergo a comprehensive preprocessing phase,
involving data analysis, feature engineering, and encoding. The MRMR algorithm is ap-
plied to each feature, assessing its importance, and the top-ranking features are selected
for subsequent processing. Categorical data are encoded using one-hot encoding, while
numerical data are standardized through feature scaling. DS, the resultant dataset, is
subsequently divided into sets DS1 and DS2, with a 70/30 ratio.

Following dataset preparation, the XGBoost model is fitted using the training data DS1.
The evaluation phase involves iterating over each instance in DS2 to predict power outage
durations using the trained model. The predictions are categorized into predefined classes:
“VERY SHORT”, “SHORT”, “MEDIUM”, or “LONG”, based on specific threshold values
(60, 120, and 240, respectively). The algorithm concludes by returning the categorized
outage durations. This comprehensive approach, combining XGBoost and MRMR feature
selection, aims to enhance the accuracy and interpretability of power outage duration
predictions, contributing to the robustness of the proposed model.
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Algorithm 1. The Proposed Model (XGBoost + MRMR)

Model Inputs:
N: Number of power outage instances
F: Features (F1, F2, . . ., F26)

Model Output:
T: Power outage duration (t1, t2, . . ., tN)

Begin:
//Data Collection
for i = 1 to N do

record Data i //insert power outage data instances
end
//Data Preprocessing
Analyze the Data //Feature Engineering
//Feature Selection

for each feature Fi in Data do //each feature Fi in Features
score (Fi) = CalculateMRMR (Fi) //ascertain feature importance with MRMR

end
MS = max (score (Fi)) //select features with high MRMR ranking

1 ≤ i ≤m
//Feature Encoding

for each categorical data in MS do
D = get_dummies

//Feature Scaling
for each numerical data in MS do

S = get_standardscalers
DS = joint(D,S) //obtained dataset after feature engineering
//Dataset Split

(DS1, DS2) = split (DS, ratio = 0.7)
//split dataset into train DS1 (70%) and DS2 (30%) sets

//Model Training
Modelpop = XGB(DS1)

//Model Evaluation
for each di in DS2 do

mi = Modelpop(di) //attain prediction of power outage duration
MXGB = MXGB U mi

end
//Indexing Predicted Duration

for each MXGB xi do
if xi ≤ 60 then

Return “VERY SHORT”
elseif xi ≤ 120 then

Return “SHORT”
elseif xi ≤ 240 then

Return “MEDIUM”
else

Return “LONG”
end

end
End

3.4. Dataset Description

In the current study, a real-world dataset is utilized for training the predictive model to
forecast the outage duration of power obtained from an electric company in Turkey. It offers
valuable information for analyzing outage patterns and optimizing outage management
systems in the region. The abstract characteristics of the dataset are presented in Table 2,
encompassing 95,454 instances of power outage events with various causes during the
period from 1 January 2022, 00:04:48, to 31 December 2022, 22:50:37. Both regression and
classification tasks can make use of this dataset in the field of machine learning.
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Table 2. Dataset information.

Dataset Features Data Types Relevant Tasks Field Instances Features Date

Multivariant Object, Integer, Float Regression, Classification Power Systems 95,454 26 2022

The variables within the dataset are outlined in Table 3. This dataset comprises
95,454 instances, represented as rows, and 26 features, represented as columns. These
features are as follows: Code Number, Level, Province, District, Power Grid Element,
Power Grid Element Code, Outage Cause Description, Source, Start Date and Time, End
Date and Time, Outage Duration (Numeric), Outage Duration (Categoric), Cause Type,
Notification, Urban LV, Urban HV, Suburban LV, Suburban HV, Rural LV, Rural HV, Total
Urban LV, Total Urban HV, Total Suburban LV, Total Suburban HV, Total Rural LV, and
Total Rural HV. In these features, the abbreviations LV and HV stand for low voltage and
high voltage signals, respectively.

Table 3. Dataset variables.

Row Variable Name Variable Explanation Variable Type

1 Code Number Identifier for each power outage event. Each code is unique. It was
removed during preprocessing. Numerical

2 Level Level of the outage. It was removed during preprocessing due to the
uniform value of 1. Numerical

3 Province Geographic information about provinces, such as Manisa and Izmir. Categorical

4 District Geographic information about districts, such as Urla, Konak, Bergama,
Bornova, Kula, and Soma. Categorical

5 Power Grid Element Information about power grid elements, such as field distribution box,
subscriber facility, and distribution transformer. Categorical

6 Power Grid Element Code Code for the power grid element, utilized after being split for
detailed information. Categorical

7 Outage Cause Description Description related to the cause of the outage, such as rain, fire,
earthquake, and transformer maintenance work. Categorical

8 Source Source of the outage, such as distribution and transmission. Categorical

9 Start Date and Time Start date and time of each outage, such as 11.27.2022 08:47:45.
It was removed during preprocessing. Timestamp

10 End Date and Time End date and time of each outage, such as 11.27.2022 09:20:00. It was
removed during preprocessing. Timestamp

11 Outage Duration (Numeric)
Duration of power outage in hours; for example, 0.55 refers to 33 min. It
is the difference between the “Start Date and Time” and “End Date and

Time” features. It was removed during preprocessing.
Numerical

12 Outage Duration (Categoric)

Duration of power outage, performed discretization while preprocessing
into categories, such as very short (0–1 h), short (1–2 h), medium (2–4 h),

and long (more than 4 h), based on the “Outage Duration (Numeric)”
feature. This feature was selected as the target.

Categorical

13 Cause Type The main reason for the outage event, such as external factors, security
concerns, or operator-related issues. Categorical

14 Notification Status of the outage, whether with or without notification. Categorical

15 Urban LV Low voltage level in the urban area in the power outage event. Numerical
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Table 3. Cont.

Row Variable Name Variable Explanation Variable Type

16 Urban HV High voltage level in the urban area in the power outage event. Numerical

17 Suburban LV Low voltage level in the suburban area in the power outage event. Numerical

18 Suburban HV High voltage level in the suburban area in the power outage event. Numerical

19 Rural LV Low voltage level in the rural area in the power outage event. Numerical

20 Rural HV High voltage level in the rural area in the power outage event. Numerical

21 Total Urban LV Total amount of low voltage level in the urban area in the power
outage event. Numerical

22 Total Urban HV Total amount of high voltage level in the urban area in the power
outage event. Numerical

23 Total Suburban LV Total amount of low voltage level in the suburban area in the power
outage event. Numerical

24 Total Suburban HV Total amount of high voltage level in the suburban area in the power
outage event. Numerical

25 Total Rural LV Total amount of low voltage level in the rural area in the power
outage event. Numerical

26 Total Rural HV Total amount of high voltage level in the rural area in the power
outage event. Numerical

For further description, in the power outage dataset, the unique and uninformative
nature of the Code Number feature led to its removal. Similarly, the uniformity of the
Level feature, with the value of 1 for all instances, made it non-contributory, so it was
excluded. Additionally, the temporal features, including “Start Date and Time”, “End Date
and Time”, and “Outage Duration (Numeric)” were removed, as they were used to derive
the “Outage Duration (Categoric)” feature. This strategic elimination aimed to ensure a
non-trivial task and enhance the dataset’s clarity, emphasizing pertinent information for
subsequent analyses, particularly focusing on predicting the “Outage Duration (Categoric)”
as the target feature. The refined dataset ensures that the model focuses on meaningful
variables, facilitating more accurate insights into power outage patterns. Table 4 exhibits
the statistical attributes of continuous features in the dataset, encompassing minimum
(min), maximum (max), mode, mean, and standard deviation (SD).

Table 4. Statistical attributes of continuous variables in the dataset.

Variable Name Min Max Mode Mean SD

Outage Duration (Numeric) 0.0003 170.7217 0.0111 2.4153 2.2736
Urban LV 0.0000 1984.0000 0.0000 10.8174 47.8706
Urban HV 0.0000 78,711.0000 0.0000 477.3364 2161.3012

Suburban LV 0.0000 750.0000 0.0000 1.8341 16.1757
Suburban HV 0.0000 26,742.0000 0.0000 74.9930 640.5180

Rural LV 0.0000 800.0000 0.0000 3.2682 20.7670
Rural HV 0.0000 13,698.0000 0.0000 71.3874 434.2675

Total Urban LV 0.0000 9021.3900 0.0000 16.9404 126.0593
Total Urban HV 0.0000 383,182.7572 0.0000 761.4465 4895.6947

Total Suburban LV 0.0000 3059.5644 0.0000 2.4968 33.9616
Total Suburban HV 0.0000 144,658.0725 0.0000 109.0963 1397.3997

Total Rural LV 0.0000 5185.7333 0.0000 5.0012 53.2843
Total Rural HV 0.0000 97,378.7967 0.0000 109.1477 1092.3362

The dataset underwent rigorous cleaning and preprocessing, including the removal
of null values, scaling of features, and encoding of categorical variables using dummies.
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Additionally, timestamps were standardized, and anomalies in the dataset were identified
through a robust approach utilizing statistical methods, visualization tools, and domain-
specific knowledge. A custom function was developed to identify anomalies within the
outage duration data. This function systematically detected outliers by calculating standard
deviations and means of the data, setting upper and lower limits based on these statistics,
and iteratively identifying data points falling beyond these limits. Strategies such as
outlier detection and handling were implemented to ensure data quality and maintain
data integrity. With the dataset prepared, it was ready for advanced analyses, including
feature engineering and machine learning modeling. The dataset provides a comprehensive
view of electric power outages in a province of Turkey during 2022, making it a beneficial
asset for comprehending outage patterns and optimizing outage management within the
region. For a comprehensive understanding of the dataset’s collection process, it is crucial
to highlight the role of various sensors in gathering real-time data on electric power outages,
thereby enriching the dataset with accurate information.

From the perspective of the electric utility structure, the outage management system
(OMS) integrates with the automatic meter reading system (AMRS), supervisory control
and data acquisition (SCADA), customer relationship management (CRM), enterprise
asset management (EAM), and geographic information system (GIS). GIS is utilized for
transferring location and inventory details within the Gdz region. Data from meters and
sensors, such as transformer-bar meters and environmental sensors in the Gdz region,
is transmitted to the OMS via AMRS integration. If transformer meters and sensors are
involved in energy flow at the same interruption point, a power outage is signaled within a
specified timeframe. As defined by the rule set, an interruption is then automatically created
in the OMS. Breakers in the field can be controlled not only by field personnel but also by
SCADA. It translates the open–closed status of breakers into machine language, represented
as 0 and 1 based on operations performed. Opening–closing data are transmitted to the
OMS via integration following SCADA operations and automatically create interruptions
within predefined scenarios in Gdz. If the current value in the Türkiye Elektrik İletim A.Ş.
(TEİAŞ) feeders or transformers drops below 3 A, an interruption is automatically created
in the OMS. In addition, if the information requested in calls transmitted by the CRM is
correct and complete (e.g., including building numbers), and also there are three or more
calls on the same power flow, an automatic interruption occurs at the relevant point.

4. Experimental Studies
4.1. Experiments

In this part, we present the experimental studies conducted to rigorously inspect
and compare the proficiency of various machine learning algorithms on our dataset. To
reach this goal, we conducted four experiments to offer a comprehensive analysis of
the presented model. The selection process of the machine learning algorithm involved
exhaustive assessing of the decision tree (DT), random forest (RF), k-nearest neighbors
(KNN), and the chosen algorithm, extreme gradient boosting (XGBoost). This thorough
investigation not only involves a meticulous examination of the experimental methodology
but also includes analyzing the underlying principles of each algorithm by tuning the
related hyperparameters.

The presented model is implemented using the Python 3.12.1 language in Jupyter
Notebook v7.0.6, accessible from the Anaconda computer program. The choice of this plat-
form provides distinct advantages to developing machine-learning-based models through
various data science packages. Python, with its versatility and extensive libraries, combined
with the interactive environment of Jupyter Notebook, contributes to the efficiency of data
analysis and model development.

The chosen machine learning algorithms—decision tree (DT), random forest (RF),
k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost), and the evaluation
metrics Accuracy, Precision, Recall, F1-Score, Support, Macro Avg, Weighted Avg, and
Confusion Matrix, are regarded in the subsequent sections of this study. Next, we present
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the results obtained from our experiments, followed by a comparative assessment that aims
to highlight the superiority of our chosen approach.

4.1.1. Machine Learning Algorithms

The performance of the following machine learning classification algorithms is evalu-
ated on the presented power system dataset:

K-nearest neighbors (KNN): This is a rudimentary, instance-based learning algorithm
applied for regression and classification tasks. It is one of the most basic yet widely
employed classifiers, known for its versatility. In this algorithm, the classification of a
data point is determined by the predominant class among its k-nearest neighbors in the
feature space, not assuming the underlying data distribution. The k in this algorithm is
a crucial hyperparameter influencing model performance, and it determines the number
of neighbors considered. Despite its computational inexpensiveness in training, KNN can
become computationally intensive during prediction, particularly with large datasets. It is
widely utilized in various applications for its ability to identify and group data with similar
characteristics [70].

Decision tree (DT): These are hierarchical structures that recursively split the dataset
based on the most significant feature at each node, with splits determined by maximizing
information gain or minimizing impurity. This treelike structure represents decision paths,
utilizing inference and trimming processes. In the inference step, the tree structure is
constructed, while trimming mitigates complications. Inputs are connected to outputs by
traversing through various branches of the tree. Decision trees, being easy to interpret
and visualize, are powerful classifiers known for their simplicity and commendable per-
formance. However, they are susceptible to overfitting, especially in complex trees with
numerous branches and conditions, hindering effective generalization to new inputs. To
address this, boosting, bagging, and regularization approaches are commonly utilized to
mitigate overfitting issues [71].

Random forest (RF): This classifier distinguishes itself by employing multiple decision
trees instead of a single one. It is an ensemble learning method that generates several
decision trees in the course of the training phase, producing the most frequent class for
classification or the average prediction for the regression task, calculated from the single
trees. This technique introduces randomness by utilizing a subset of features for each tree
and aggregating their predictions. This ensemble approach is particularly advantageous,
as it effectively reduces overfitting, enhancing the generalization capability of the model.
Random forests are preferred over decision trees in various applications due to their
improved accuracy and ability to overcome overfitting. Nevertheless, the implementation
of this technique can be challenging due to its intricate structure, and it may not be the
optimal choice for real-time predictions because of its relatively slower processing speed
compared with other machine-learning models [72].

Extreme gradient boosting (XGBoost): As a highly acclaimed algorithm, this is
renowned for its speed, performance, and versatility. It employs a gradient boosting
procedure, building trees sequentially to correct errors and optimize predictive accuracy.
The framework of the algorithm incorporates regularization techniques, enabling con-
trol over model complexity and addressing overfitting concerns through regularization
terms. With robust parallelization, XGBoost capitalizes on multiple cores for efficient
training. It adeptly handles missing values and supports built-in cross-validation, facilitat-
ing model evaluation and hyperparameter tuning. Also, XGBoost offers flexibility, with
custom-defined objective functions, and features early stopping to prevent overfitting. Its
comprehensive set of capabilities contributes to its widespread adoption as a powerful
algorithm in machine learning applications [73].
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As a mathematical proof, the objective function and regularization expressions of the
XGBoost algorithm are presented in Equations (2) and (3), respectively.

L(α) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (2)

where

• α: Model hyperparameter.
• n: Training examples count.
• yi: True label for the ith example.
• ŷi: Predicted label for the ith example.
• l(yi, ŷi): Loss function quantifying the prediction error.
• K: Number of leaves in the model.
• fk: Score of the kth leaf in the tree.
• Ω( fk): Regularization term to limit model complexity to prevent overfitting.

Ω( fk) = γT +
1
2
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4.1.2. Evaluation Metrics

In this study, various types of evaluation metrics, including Accuracy, F1-Score, Preci-
sion, Recall, Support, Macro Avg and Weighted Avg for F1-Score, Precision, Recall, Support,
and Confusion Matrix are utilized to assess the functionality of the presented method for
power outage duration prediction. The expressions of these metrics are shown in Table 5.
Here, the terms TP, FP, TN, and FN denote the true positive, false positive, true negative,
and false negative, respectively. These are widely applied in evaluating the conduct of clas-
sification problems and represent different outcomes of forecasts produced by a machine
learning model compared with the actual ground truth, in which the TP and TN instances
demonstrate where the model accurately estimates the positive and negative classes, re-
spectively. Also, the FP and FN instances determine where the model falsely identifies the
positive class as a Type I error and the negative class as a Type II error, respectively.

In Table 5, Accuracy is the proportion of correctly predicted instances to the total
instances, which affords an overall model correctness measure. F1-Score is the harmonic or
reciprocal mean of recall and precision, which is advantageous when there is an uneven
class distribution, as it addresses both false positives and false negatives scoring between 0
and 1; higher values denote greater accuracy in predictions to underscore the effectiveness
of the decision boundaries. Precision is the proportion of true positives to the total of
true positives and false positives to measure the accuracy of the positive predictions made
by the model. Recall is the proportion of true positives to the total of true positives and
false negatives to measure the ability of a model to capture all the positive instances in the
dataset. Support is directly related to the number of instances of each class contributing to
understanding the distribution of classes and can be used in conjunction with other metrics
to assess model performance.
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Table 5. Model evaluation metrics.

Metric Expression

Accuracy (TP + TN)/(TP + TN + FP + FN)
F1-Score (2TP)/(2TP + FP + FN)
Precision TP/(TP + FP)

Recall TP/(TP + FN)
Support TP + FN

Macro Avg F1-Score
n
∑

i=1
(F1-Scorei)/n

Macro Avg Precision
n
∑

i=1
(Precisioni)/n

Macro Avg Recall
n
∑

i=1
(Recalli)/n

Weighted Avg F1-Score
n
∑

i=1

(
Supporti × F1− Scorei

)
/

n
∑

i=1
Supporti

Weighted Avg Precision
n
∑

i=1

(
Supporti × Precisioni

)
/

n
∑

i=1
Supporti

Weighted Avg Recall
n
∑

i=1
(Supporti × Recalli)/

n
∑

i=1
Supporti

Moreover, Macro Avg (Macro Average) is a method to calculate the average perfor-
mance over multiple classes in a classification task. It calculates the metric of interest, such
as F1-Score, Recall, and Precision, autonomously for every class and thereafter takes the
average across all classes. In these calculations, n is the number of classes, and F1-Scorei,
Precisioni, and Recalli represent the mentioned metrics for class i. The Macro Avg treats
all classes equally and is notably advantageous when there is a class imbalance, as it gives
each class the same weight in the average, regardless of its size. Similarly, the Weighted
Avg (Weighted Average) is another alternative to calculate the average performance over
multiple classes in the classification task, where the contribution of every class to the
average is weighted by the number of instances in that class. The Support metric for each
class is denoted as Supporti and indicates the count of instances belonging to class i.

The Confusion Matrix is a table employed in statistics and machine learning contexts to
assess the effectiveness of a classification model. It summarizes the results of a classification
task, examining the predicted and actual outputs into four categories, namely TP, FP, TN,
and FN as the terms of true positive, false positive, true negative, and false negative,
respectively, shown in Table 6 [74].

Table 6. Description of the Confusion Matrix.

Predicted Values

A
ct

ua
l

V
al

ue
s Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

4.2. Results

Various machine learning models based on evaluation metrics, namely, Accuracy,
Precision, Recall, F1-Score, Support, Macro Avg and Weighted Avg for Precision, Recall,
F1-Score, and Support, are confirmed. Through Table 7, the results of the experiments are
presented in the Accuracy metric for the current study over 30% of the described dataset
in Section 3.4 to evaluate the models. According to the obtained results, the importance
of selecting XGBoost as the most appropriate classification model with a high accuracy of
98.433% is underscored for its optimal performance in handling diverse duration classes of
power outage prediction in this study. The results show that the extreme gradient boosting
(XGBoost) algorithm outperformed the other machine learning algorithms, including
decision tree (DT), random forest (RF), and k-nearest neighbors (KNN), to predict the
duration of power outages as very short, short, medium, and long classifications for time
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periods between 0 and 1, 1 and 2, 2 and 4, or more than 4 h, respectively, with the aim of
notifying corresponding customers for a city in Turkey.

Table 7. Comparison of the trained models for power outage durations.

Trained Model Accuracy

Extreme Gradient Boosting (XGBoost) 98.433%
Decision Tree (DT) 95.620%

Random Forest (RF) 81.452%
K-Nearest Neighbors (KNN) 67.256%

The evaluation results of four classification models—XGBoost, decision tree (DT),
random forest (RF), and k-nearest neighbors (KNN)—reveal varying performances for
the prediction of different power outage durations, shown in Tables 8–11. The XGBoost
model displayed superior accuracy of 98.433% and consistency in Precision, Recall, and
F1-Score, achieving the average value of 98.466%, 98.435%, and 98.449%. Random forest
demonstrated reasonable overall performance in the mentioned metrics, ranging from
80.978% to 81.940%, resulting in an accuracy of 81.452%. K-nearest neighbors exhibited
mixed performance, with Precision, Recall, and F1-Score values ranging from 66.235% to
69.160% and an accuracy of 67.256%. The decision tree showed results between 95.602%
and 95.615% for the regarded metrics, with an accuracy of 95.620%.

Table 8. Results of the XGBoost classification model in different evaluation metrics.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 99.379 98.582 98.979 8601
Short 97.555 98.295 97.923 7916

Medium 97.790 98.351 98.070 6974
Long 99.139 98.514 98.825 4911

Macro Avg 98.466 98.435 98.449 28,402
Weighted Avg 98.439 98.433 98.435 28,402

Accuracy 98.433% 28,402

Table 9. Results of the DT classification model in different evaluation metrics.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 97.538 97.186 97.362 8601
Short 94.186 94.745 94.464 7916

Medium 94.386 94.264 94.352 6974
Long 96.350 96.213 96.281 4911

Macro Avg 95.615 95.602 95.608 28,402
Weighted Avg 95.624 95.620 95.622 28,402

Accuracy 95.620% 28,402

To visually demonstrate the performance of the trained models, Figure 3 represents a
chart based on the F1-Score metric through Tables 8–11. This chart highlights the compara-
tive effectiveness of each model, complementing the accuracy results in Table 7.

Additionally, comprehensive insights into the performances of the classification mod-
els are illustrated through the Confusion Matrices in Tables 12–15, providing a detailed
breakdown of classifications for each model across different durations. By incorporating
these tables, a more nuanced understanding of the models’ abilities is achievable to cor-
rectly classify instances and mitigate errors, offering a thorough evaluation of their overall
efficacy in handling the various duration categories. The elements along the diagonal in
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the Confusion Matrix represent the instances where the actual and predicted classes match,
indicating correct predictions. In the context of the XGBoost Confusion Matrix, the diagonal
elements are the highest values, signifying the maximum number of correct predictions,
while off-diagonal elements are the minimum number of incorrect predictions compared
with other matrices of models.

Table 10. Results of the RF classification model in different evaluation metrics.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 89.794 88.583 89.184 8601
Short 75.272 78.676 76.936 7916

Medium 74.719 77.258 75.968 6974
Long 87.974 79.393 83.464 4911

Macro Avg 81.940 80.978 81.388 28,402
Weighted Avg 81.730 81.452 81.536 28,402

Accuracy 81.452% 28,402

Table 11. Results of the KNN classification model in different evaluation metrics.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 81.962 78.665 80.280 8601
Short 56.374 66.865 61.173 7916

Medium 56.929 57.141 57.034 6974
Long 81.373 62.268 70.550 4911

Macro Avg 69.160 66.235 67.259 28,402
Weighted Avg 68.582 67.256 67.564 28,402

Accuracy 67.256% 28,402
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Table 12. Confusion Matrix for the performance of the XGBoost classification model.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 8479 122 0 0

Short 52 7781 83 0
Medium 1 72 6859 42

Long 0 1 72 4838
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Table 13. Confusion Matrix for the performance of the DT classification model.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 8359 239 2 1

Short 202 7500 210 4
Medium 7 219 6574 174

Long 2 5 179 4725

Table 14. Confusion Matrix for the performance of the RF classification model.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 7619 882 95 5

Short 749 6228 869 70
Medium 94 1034 5388 458

Long 23 130 859 3899

Table 15. Confusion Matrix for the performance of the KNN classification model.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 6766 1562 257 16

Short 1128 5293 1412 83
Medium 287 2101 3985 601

Long 74 433 1346 3058

In the testing process, the XGBoost model’s accuracy was rigorously assessed using
real-world test datasets provided by the power utility, spanning four distinct date ranges:
from 1 February 2023 to 15 May 2023; 1 March 2023 to 1 July 2023; 1 August 2023 to
16 September 2023; and 1 March 2024, to 19 March 2024, including 24,230; 29,873; 13,057;
and 3743 instances, respectively, represented in Tables 16–19 through the assessment criteria
of Accuracy, F1-Score, Precision, Recall, Support, Macro Avgs, and Weighted Avgs and in
Tables 20–23 as Confusion Matrices. In Tables 16–19, the model consistently demonstrated
high accuracies of 97.660%, 97.687%, 97.664%, and 97.542% across all these varied periods,
respectively. In addition, all the results of the Precision, Recall, and F1-Score metrics
are impressively greater than 95.678, 96.602, and 96.21, respectively, in these tables. In
Tables 20–23, the predicted true positive, false negative, false positive, and true negative
values are demonstrated for each class label. High diagonal elements of the matrices
(e.g., 7889; 6042; 5509; and 4223 in Table 20) for each class, with low off-diagonal elements
(e.g., 0, 61, 62, and 109 in Table 20), extremely confirmed the high performance of the model.
Also, the trained model usually had no trouble in classifying all types of durations based on
Tables 20–23. For instance, 4734 out of the 4822 long class were predicted accurately; only
88 of them are misclassified by the presented model in Table 21. This series of evaluations
reinforces the model’s robust performance and emphasizes its reliability in predicting
outage durations, showcasing its effectiveness and applicability for practical deployment
within the power utility domain.

Certain features carry greater significance in the dataset than others. The current work
employed the MRMR feature selection algorithm to cross-verify results and confirm the
resilience of the chosen feature sets, demonstrating which features can influence the predic-
tion of power outage durations more in the power management process. The outcomes
are presented in Table 24, illustrating the weight scores attained through the MRMR algo-
rithm to assess the significance of each predictor. A higher weight score suggests greater
significance of the associated predictor. The verbosity level factor of MRMR, controlling
diagnostic facts, was configured to zero. The MRMR algorithm can effectively identify
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features influencing the prediction of the target. Under this algorithm, features such as
“Total Urban HV”, “Cause Type”, “Total Rural LV”, “Total Urban LV”, and “Notification”
have substantial impacts on the prediction, with weight scores of 0.5631, 0.4140, 0.0165,
0.0151, and 0.0102, respectively. Furthermore, the MRMR algorithm indicates that features
like “Power Grid Element Code”, “District”, and “Province” exhibit lower correlation with
the output variables compared with other features, through the weight scores of 0.0009,
0.0008, and 0.0004, respectively.

Table 16. Results of the XGBoost model for the 1 February 2023 to 15 May 2023 test dataset.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 99.220 98.293 98.754 8026
Short 96.088 97.107 96.595 6222

Medium 96.531 97.007 96.768 5679
Long 98.576 98.141 98.358 4303

Macro Avg 97.604 97.637 97.619 24,230
Weighted Avg 97.671 97.660 97.664 24,230

Accuracy 97.660% 24,230

Table 17. Results of the XGBoost model for the 1 March 2023 to 1 July 2023 test dataset.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 99.234 98.389 98.810 10,800
Short 96.103 97.013 96.556 7600

Medium 96.513 96.963 96.737 6651
Long 98.400 98.175 98.287 4822

Macro Avg 97.562 97.635 97.598 29,873
Weighted Avg 97.697 97.687 97.691 29,873

Accuracy 97.687% 29,873

Table 18. Results of the XGBoost model for the 1 August 2023 to 16 September 2023 test dataset.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 99.360 98.631 98.994 5040
Short 95.919 96.602 96.259 3090

Medium 95.808 96.849 96.326 2761
Long 98.652 97.969 98.309 2166

Macro Avg 97.435 97.513 97.472 13,057
Weighted Avg 97.677 97.664 97.669 13,057

Accuracy 97.664% 13,057

Table 19. Results of the XGBoost model for the 1 March 2024 to 19 March 2024 test dataset.

Durations
Evaluation Metrics

Precision (%) Recall (%) F1-Score (%) Support

Very Short 98.943 97.516 98.224 1248
Short 95.678 96.748 96.210 984

Medium 96.753 98.026 97.386 912
Long 98.990 98.164 98.575 599

Macro Avg 97.591 97.613 97.599 3743
Weighted Avg 97.559 97.542 97.547 3743

Accuracy 97.542 3743
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Table 20. Confusion Matrix of the XGBoost model for the 1 February 2023 to 15 May 2023 test dataset.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 7889 137 0 0

Short 62 6042 118 0
Medium 0 109 5509 61

Long 0 0 80 4223

Table 21. Confusion Matrix of the XGBoost model for the 1 March 2023 to 1 July 2023 test dataset.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 10,626 174 0 0

Short 82 7373 145 0
Medium 0 125 6449 77

Long 0 0 88 4734

Table 22. Confusion Matrix for the XGBoost model for the 1 August 2023 to 16 September 2023
test dataset.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 4971 69 0 0

Short 32 2985 73 0
Medium 0 58 2674 29

Long 0 0 44 2122

Table 23. Confusion Matrix for the XGBoost model for the 1 March 2024 to 19 March 2024 test dataset.

Predicted Instances

Actual
Instances

Very Short Short Medium Long
Very Short 1217 31 0 0

Short 13 952 19 0
Medium 0 12 894 6

Long 0 0 11 588

Table 24. Ranks of dataset features in MRMR algorithm.

Rank Feature MRMR Weight Score

1 Total Urban HV 0.5631
2 Cause Type 0.4140
3 Total Rural LV 0.0165
4 Total Urban LV 0.0151
5 Notification 0.0102
6 Total Suburban LV 0.0082
7 Total Suburban HV 0.0076
8 Outage Cause Description 0.0065
9 Total Rural HV 0.0050
10 Source 0.0028
11 Power Grid Element 0.0022
12 Urban LV 0.0022
13 Rural LV 0.0021
14 Suburban LV 0.0020
15 Urban HV 0.0016
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Table 24. Cont.

Rank Feature MRMR Weight Score

16 Rural HV 0.0015
17 Suburban HV 0.0011
18 Power Grid Element Code 0.0009
19 District 0.0008
20 Province 0.0004

4.3. Comparisons

In this work, a complete comparative analysis of our power outage duration (POD)
prediction model is conducted in Table 25 against various state-of-the-art techniques [75–77]
employed in the literature for 30 classification tasks, similarly. Our evaluation encompassed
various predictions, considering machine learning models such as random forest (RF),
adaptive similar day (ASD), the combination of RF and ASD, support vector machines
(SVM), and artificial neural networks (ANN), with different configurations relying on
the evaluation metric of Accuracy over various datasets. Worthy of attention, there are
various types of regression-based and statistical methods [14,34,45,54,57,78–81] in the
literature for power outage duration predictions with different evaluation metrics, such
as MSE, MAE, MAPE, and RMSE, that are inappropriate to be compared with the current
classification task.

Table 25. Comparison of the proposed method with state-of-the-art methods on different datasets.

Reference Year Method Accuracy (%)

Mbuya
et al. [73] 2022

Random forest (RF) for 15 min. duration ahead 92.400
Adaptive similar day (ASD) for 15 min. duration ahead 90.600

RF–ASD for 15 min. duration ahead 90.200
Random forest (RF) for 1 h. duration ahead 88.400

Adaptive similar day (ASD) for 1 h. duration ahead 87.300
RF–ASD for 1 h. duration ahead 86.800

Random forest (RF) for 24 h. duration ahead 62.000
Adaptive similar day (ASD) for 24 h. duration ahead 85.000

RF–ASD for 24 h. duration ahead 60.900

Taimoor
et al. [76] 2020

SVM cost = 32, gamma = 0.02041 92.500
SVM cost = 256, gamma = 0.02 93.434

SVM cost = 16, gamma = 0.02273 90.000
ANN size of hidden layer = 8, rate of learning = 0.01 90.083
ANN size of hidden layer = 6, rate of learning = 0.01 91.919

ANN size of hidden layer = 14, rate of learning = 0.01 84.286

Eskandarpour et al.
[77] 2017

Linear support vector machine (LSVM) 84.700
Quadratic support vector machine SVM (QSVM) 86.300

Cubic support vector machine SVM (CSVM) 86.100
Gaussian support vector machine SVM (GSVM) 86.400

Logistic regression (LR) 80.900

Average 85.511
Our Proposed

Method
Extreme gradient boosting (XGBoost) + minimum redundancy

maximum relevance (MRMR) 98.433

The results demonstrate the superiority of our proposed method, revealing a substan-
tial performance improvement of 12.922% across the Accuracy metric when compared with
the benchmarks, with an average accuracy of 85.511%. In contrast, our method achieved
outstanding results, with 98.433% Accuracy, 98.466% Precision, 98.435% Recall, and 98.449%
F1-Score. These findings underscore the effectiveness of our approach, positioning it as
a robust and reliable solution for accurately predicting power outage durations across
various time durations, namely very short, short, medium, and long.



Sensors 2024, 24, 4313 24 of 29

The comparison of our proposed method with various machine learning models is
presented in Table 25. To statistically evaluate the differences in performance among these
models, we conducted the Friedman test. The Friedman test is a non-parametric statistical
test used to detect differences in treatments across multiple test attempts and is particularly
useful when the same subjects are used for each treatment. It ranks the performance of each
algorithm and assesses whether the observed differences in performance are statistically
significant. The Friedman test yielded a p-value of 0.000007744, indicating a statistically
significant difference in the performance of the models at a significance level of 0.05.
Therefore, the null hypothesis that there is no difference in the performance of these models
is rejected. As a mathematical proof of our findings, we demonstrate that the observed
p-value is far below the conventional threshold of 0.05, providing strong evidence that the
performance differences are not due to random chance. Given these results, we selected
the extreme gradient boosting (XGBoost) model for its superior accuracy and statistically
significant performance advantage over the other models tested.

5. Conclusions and Future Works

Power outages are a persistent challenge for electric utilities, affecting millions of
customers annually and resulting in significant economic losses. Accurate prediction of
power outage duration and timely notifications sent to customers are crucial aspects of
effective outage management to enhance the overall grid resilience and improve customer
communication. To reach this goal, we proposed a novel machine-learning-based model
for predicting power outage durations (PODs) with an impressive accuracy of 98.433%,
outperforming state-of-the-art counterparts with an average accuracy of 85.511%, and
then with 12.922% improvement. This classification model leverages the extreme gradient
boosting (XGBoost) algorithm over a real-world dataset provided by an electric company
in Turkey to make predictions of power outage durations and notify related customers. Fur-
thermore, the importance scores of dataset features are achieved by utilizing the maximum
relevance minimum redundancy (MRMR) algorithm in our comprehensive experiments.
Under this algorithm, features such as “Total Urban HV”, “Cause Type”, “Total Rural LV”,
“Total Urban LV”, and “Notification” have substantial impacts on the prediction, with
weight scores of 0.5631, 0.4140, 0.0165, 0.0151, and 0.0102, respectively. Furthermore, the
MRMR algorithm indicates that features like “Power Grid Element Code”, “District”, and
“Province” exhibit lower correlations with the output variable compared with other features
through weight scores of 0.0009, 0.0008, and 0.0004, respectively. Based on the findings, the
high accuracy of the presented model is pivotal for electric utilities to streamline outage
management and enhance communication with related customers, ultimately improving
grid resilience and reliability. Consequently, the current method offers the potential to
revolutionize outage management in the electric power industry.

For future works, expanding the application of the power outage duration predic-
tion model to transformers equipped with diverse sensors and environmental data hold
promising implications for enhancing power distribution systems. By integrating real-time
sensor information, the model can contribute to predictive maintenance strategies, fore-
casting potential transformer issues based on environmental conditions and operational
factors. This proactive approach enables utilities to schedule timely maintenance, pre-
venting unexpected failures and improving overall system reliability. Furthermore, such
environmental data allows a comprehensive assessment of external factors influencing
power outage duration predictions. The model can leverage sensor inputs measuring
temperature, humidity, pollution levels, and more to gauge the effect of these conditions
on the functionality of sensor-equipped transformers during outage events. Additionally,
the presented method can be applied to diverse power outage datasets, accommodating
various feature engineering methodologies adapted to their specific characteristics, such as
size and types of features. Such a predictive model offers a holistic solution for resilient
power distribution, supporting informed decision making and predictive maintenance in
the evolving landscape of smart grid technologies.
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Abbreviations
The current paper uses following abbreviations.

AI Artificial intelligence
AMRS Automatic meter-reading system
ANDD Adaptive nested dynamic downscaling
ANN Artificial neural network
ANOVA Analysis of variance
ASD Adaptive similar day
CONN Collaborative neural network
CRM Customer relationship management
CSVM Cubic support vector machine
DNN Deep neural network
DT Decision tree
EAM Enterprise asset management
ES Exponential smoothing
ET Extra tree
GBDT Gradient-boosting decision tree
GIS Geographic information system
GLM Generalized linear model
GSVM Gaussian support vector machine
KNN K-nearest neighbors
LR Logistic regression
LSVM Linear support vector machine
MAPE Mean absolute percentage error
ML Machine learning
MLR Multiple linear regression
MRMR Minimum redundancy maximum relevance
OMS Outage management system
OPM Outage prediction model
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POD Power outage duration
QSVM Quadratic support vector machine
QWD Quantile weight distance
RF Random forest
RF–ASD Random forest–adaptive similar day
SCADA Supervisory control and data acquisition
Stud GA Stud genetic algorithm
SVM Support vector machine
XGBoost Extreme gradient boosting
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