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Abstract: This study aims to demonstrate the feasibility of using a new wireless electroencephalogra-
phy (EEG)–electromyography (EMG) wearable approach to generate characteristic EEG-EMG mixed
patterns with mouth movements in order to detect distinct movement patterns for severe speech
impairments. This paper describes a method for detecting mouth movement based on a new signal
processing technology suitable for sensor integration and machine learning applications. This paper
examines the relationship between the mouth motion and the brainwave in an effort to develop
nonverbal interfacing for people who have lost the ability to communicate, such as people with
paralysis. A set of experiments were conducted to assess the efficacy of the proposed method for
feature selection. It was determined that the classification of mouth movements was meaningful.
EEG-EMG signals were also collected during silent mouthing of phonemes. A few-shot neural
network was trained to classify the phonemes from the EEG-EMG signals, yielding classification
accuracy of 95%. This technique in data collection and processing bioelectrical signals for phoneme
recognition proves a promising avenue for future communication aids.

Keywords: biomedical signal processing; wearable biomedical sensors; machine learning; speech
disability; human–computer-interface

1. Introduction

The ability to communicate with others is a fundamental human interaction; how-
ever, many individuals find this challenging due to damage to their vocal cords or other
speech-impairing conditions. The complexity of recognizing silent speech has increased,
but it remains challenging to improve the performance of real-time detection systems. Ap-
proximately 5.4 million Americans suffer from some degree of physical paralysis at present.
The majority of these cases are due to strokes (34%), followed by spinal cord injuries (27%),
individuals with a form of sclerosis (19%), and cerebral palsy (9%) [1]. In some instances,
paralyzed individuals are unable to communicate through simple speech. People with
paralysis must rely solely on the assistance of others to perform even the most fundamental
communication tasks under these conditions. The purpose of this paper is to investigate a
path that, on a very limited scale, could assist people with severe physical impairments in
acquiring communication independence through a nonverbal interfacing system.

The problem faced here is that individuals with damaged vocal cords or other speech-
impairing conditions are deprived of a fundamental human experience, the ability to
communicate with others in their lives. By providing a solution to this problem, these
individuals will be able to express their thoughts, hopes, and dreams and be able to fully live
their lives through speech. Traditional methods of communication such as sign language,
pen and paper, eye tracking, or other methods are adequate solutions. However, by
tapping into the electrical signals of the body, these individuals are presented with another
solution form which to choose from that has the potential to identify and communicate
their thoughts more clearly.
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The lips and tongue are the muscles directly connected to the brain which motivate
researchers to exploit this potential for more complex tasks [2,3]. The amount of previous
research on this topic is limited. Understanding the relationship between the brain and the
specific mouth muscle movements is one of the primary objectives of this research. Broca’s
area is essential in speech production. This area of the brain acts as a command center,
orchestrating the complex muscle movements necessary for articulating spoken words. To
form words and sentences, Broca’s area must relay signals to coordinate the muscles of
the lips, tongue, and throat [4]. The studies establish a link between the left hemisphere
and a specific stage of vocal development [5]. For instance, according to research, the
superior temporal gyrus is most active during word perception, whereas Broca’s area is
most active prior to speech articulation [6]. Interestingly, the motor cortex is the most active
brain region during word and pseudoword articulation [7–9]. Finding and distinguishing
the brain regions responsible for speech from those accountable for the motor functions
of the tongue and lips are conducted to identify and locate the associated brain regions
that control these movements and functions. The areas responsible for tongue and lip
function appear slightly more prominent on both cortices. However, the premotor and
motor cortex of the left hemisphere are believed to be the primary centers for tongue and
lip movements [10].

This report explores the possibility of EEG (electroencephalogram) and EMG (elec-
tromyograph) data establishing communication for these individuals under speech-impairing
conditions. EEG is a non-invasive method for measuring brain activity and a potentially
useful technology for brain–computer interface applications. Multiple studies have exam-
ined how the tongue’s signal interacts with the brain. The motor cortex is the most active
region of the brain, producing the most effective results at voltage frequencies between
70 Hz and 120 Hz (high gamma frequency) [11,12]. To distinguish the EEG signals while
only moving the tongue, machine learning techniques were employed [13,14]. Various
studies have implemented several data collection strategies to establish a connection be-
tween the brain and the tongue. This type of design comprises the user with a 3D-printed
device that is lightweight and comfortable [15]. Another method of application involves
wrapping a fabric strap around the head with embedded textile surface electrodes [16].

Although tongue movement can be detected from EEG signals, identifying patterns
of tongue movement from the EEG signals is still challenging and can be difficult due to
weak sensor signals, which require precise sensor data signal processing technology. In
addition, wearability is crucial for obtaining EEG signals while moving [17,18]. Further, a
study shows that EEG-measured brainwave frequencies can include facial muscle EMG
signals [19,20]. EMG signals are used for detecting the electrical signals produced by the
muscles. Incorporating EMG sensor input signals from mouth movement muscles can
improve the performance of identifying mouth motions. The approach requires a real-time
sensor network system and necessitates a sensor fusion model to acquire tongue movement
from the different sensor types. This study proposes developing and employing a small
and wearable EEG-EMG measurement system with wireless communication capabilities
that is more practical in real-world settings.

This study also evaluates if neural networks could be trained on EEG and EMG data to
accurately and efficiently recognize speech phonemes. This will be performed by collecting
multiple EEG and EMG datasets of different mouthed phonemes from two different subjects,
training neural networks that can ingest this information, potentially identify patterns
in the data, and then accurately predict phonemes from test datasets. An LSTM (long
short-term memory) network was initially trained on the dataset for phoneme classification.
To increase accuracy, a few-shot CNN (convolutional neural network) was then trained
on the data. Finally, augmentation was applied to the dataset and the few-shot CNN was
again trained. This study explores the possibility of EEG (electroencephalogram) and EMG
(electromyograph) data establishing communication for these individuals. Leveraging the
capabilities of the neural networks, a system has been developed as a proof of concept aimed
at recognizing phonemes, the basic units of human speech, from measured bioelectrical
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signals [21–24]. This approach involved collecting EEG and EMG data from the temples
and jaws, respectively, associated with different phonemic sounds from various subjects.

This paper is structured as follows. The second section describes a custom-designed
sensor system for concurrently sensing EEG-EMG signals with a set of biopotential elec-
trodes that adhere comfortably to human skin. The third section explains the evolution
of the correlation and covariance-based signal preprocessing method for extracting mean-
ingful mouth motion patterns. The fourth section evaluates the ability of phoneme clas-
sification with neural networks. Lastly, the discussions and conclusions on the proposed
method are provided.

2. Wearable Mouth Movement Monitoring System

We developed a novel EEG-EMG system that monitors mouth motion activities and
provides rapid digital identification (Figure 1). The wearable wireless system employs
biopotentials to monitor the EEG of brainwaves and EMG of facial muscles simultane-
ously [25]. In addition, the wearable sensor system contains a signal processing circuit that
conducts edge computing before data transmission via a wireless data transmission chip.
An external computer system is utilized for signal evaluation and feature categorization.
The components of the sensor system are exhaustively described and specified in Table 1.
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Figure 1. The circuit diagram of the wireless wearable mouth movement monitoring system.

Table 1. The specifications of the wireless wearable sensor.

Specification Description Value

Power source Rechargeable battery 8 h/charging
Data transmission BLE 5.0 1 M bps in 2 m

EEG/EMG electrodes Disposable Ag/AgCl standard, pre-gelled and self-adhesive (20 × 20) mm
Front-end circuit Intan Tech Chip (RHD2216) 10 mV, 16 bit, 16 ch

Onboard CPU ARM Cortex M4 4096 Hz/ch sampling rate
Wireless circuit NRF 52X 2.4 GHz, BLE 5.0

The precise placement of electrodes on the human head is critical to the design of
this experiment. It has been clearly mentioned and emphasized that in order to achieve
the best outcomes, a few particular regions of the head must be contacted with electrodes.
To summarize, these sections include the left hemisphere of the head (for the EEG). A
biopotential transducer translates brainwave and muscle movement data from the brain
and chin to analog electrical signals. The signal acquisition module makes use of Intan
Technologies, LLC’s digital electrophysiology interface chips (Los Angeles, CA, USA),
which have a 4 kHz sampling rate per channel. The EEG and EMG signals were recorded
using the RHD2216 chip, which is a low-power 16-channel differential amplifier paired with
a 16-bit analog-to-digital converter (ADC). The wearable sensor communicates wirelessly
via Bluetooth Low Energy (BLE). The signal is then wirelessly transmitted to a personal
computer (PC), which uses MATLAB to categorize and process the signal data. The system
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captures sensor signals in real time, amplifies them, filters them, digitizes them, and
wirelessly transmits them. Because of its low power consumption and flexibility, we picked
the Nordic Semiconductor nRF52832 System-on-Chip (SoC) for computation and wireless
data transmission on the module. For this experiment, a custom wearable sensor was built
and constructed to serve as an EEG electrode, in addition to two commercially available
adhesive patches.

3. Tongue Motion Recognition
3.1. Experimental Setup

The left hemisphere is the most active region of the brain when the tongue is activated,
although the right hemisphere is also activated to a lesser extent [15,26,27]. In this experi-
ment, the primary EEG sensor is positioned as close as feasible to the interior motor cortex
in order to record brainwave signals from surface electrodes positioned near the center of
activity on the tongue. Figure 2 depicts the intended positioning area for sensors.
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Table 2 lists the experiments conducted. Experiment I, II, III, and IV depict a tongue
motion pattern with slow and constant-speed movements. Multiple experiments were
conducted to collect data using four electrodes and sensors placed at the previously men-
tioned locations. For this work, we collected experimental data without motion to avoid
motion artifacts. The recordings were gathered and preserved on a laptop computer. Four
commands were executed by the tongue in order to analyze information from the tongue
muscle and brain and identify any patterns that may be present. According to previous
research, the opening and closing of the eyes during EEG exams also affect the data in
various ways [28,29]. Generally, it seems that opening the eyes during EEG investigations
increases noise and interference in the data. Since the eyes are a crucial component of
sensory reception, it follows that the brain receives a significant quantity of information
while the eyes are open. This can affect brain activity in various regions involved in
sensory reception [30]. Moreover, since blinking and closing the eyes is a natural and
common occurrence, it seemed appropriate to investigate any effect that closing the eyes
may have on the relationship between the tongue and the brain. Due to the fact that the
state of knowledge in this area is still largely uncertain, each trial was conducted under
eye-opening conditions.

Contact between the surface electrodes and the epidermis is a crucial consideration.
Since the finest results are obtained when surface electrodes are held firmly against the skin,
it is essential that they remain immobile during testing. As demonstrated in Figure 2, the
target area for the surface EEG is a pubescent portion of the scalp, and the experiment must
be designed so that hair does not need to be removed in order to wear this device. As the
EEG surface electrodes are dispersed over an adhesive-coated material, this poses a design
challenge. For the most precise results, it is essential that the sensor pad has exceptional
skin contact. Although it would be effective to remove hair from the area in contact with the
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electrode pad, it would be impractical to mandate this for every participant in these EEG
studies. Electrode material applied to the sensors provides a solution to this problem. This
electrode gel is an electrically conductive medium that can be used between the sensors
and the hair to eradicate the problem of hair’s poor conductivity. For the sensors, a specific
gel (Spectra® 360 Electrode Gel, ParkerLabs) is used to maintain resilient conductivity and
minimal contact resistance. Due to the fact that the electrodes used in this experiment are
two-channel surface electrodes, one sensor will be placed directly above the most caudal
portion of the motor cortex, while the other will be placed just above the left ear, where
there is little hair.

Table 2. A breathing cycle experimental protocol.

Experiment Sampling Time

I—Up motion 3 s

II—Right motion 3 s

III—Forward motion 3 s

IV—Neutral position 3 s

In Figure 2, a yellow circle depicts at the location where the second channel is installed.
This area is sparsely haired but near the hypoglossal nerves that connect to the brain. The
electrode gel is applied to both EEG sensors, which is secured by a fabric strap extending
from the back of the head to the jaw. This should decrease the amount of translational
movement between the sensors and the epidermis while permitting a hair-free contact
area. Both sets of data from the two electrodes are collected and combined to provide a
comprehensive view of brain activity.

3.2. Experimental Results

This section describes the outcomes of the methodologies described in the preceding
section. The majority of the results are presented as graphs and charts to illustrate the data
collected and analyzed from the wearable hardware and software. This section attempts
to describe how the tongue and brain interpret sensor-collected signals, as well as the
correlation patterns during directional tongue movements. Multiple sources demonstrate
the tongue’s connection to the brain. It is well known that the motor cortex of the left
hemisphere of the brain is the principal control center for the tongue. Despite the fact that
multiple techniques and studies have demonstrated this to be true, little is known about
the relationship between these two systems and how they can be utilized synchronously
for nonverbal communication. Since the tongue can articulate multiple gestures using
a complex group of muscles, it is essential to determine the relationship between brain
activity and muscular activity as the tongue performs the various enumerated actions. In
this section, the steps taken to analyze the data collected while the tongue performed a
variety of movements are described. The tests were conducted with eyes open. This is
to ensure normal wakeful brain activity within the frequency bands during data analysis,
as it has been demonstrated that the alpha frequency range is substantially increased
when the eyes are closed, and the brain is more meditative. Blinking was not regulated in
the experiment.

Each trial consists of at least five repetitions of two- to five-second intervals, with a
baseline between tongue movements during repose recorded between each repetition. The
purpose of the EEG readings is to record and analyze data corresponding to the tongue
activity being performed. For instance, if the tongue is elevated for three seconds, a distinct
signal from the brain is acquired during those three seconds. The data points will then
undergo multiple analyses to identify correlations between each movement. The purpose
of this experiment is to correlate brain activity with EEG readings in order to eliminate
interference from tongue and mandible movements. Due to the fact that previous research
has indicated that EEG signals in this region of the brain are challenging to detect due to



Sensors 2024, 24, 4125 6 of 17

their low amplitude (on the V scale), careful attention must be paid during the experimental
procedure and sensor placement in order to obtain the best possible signal. For the duration
of these tests, the tongue was pressed with approximately 75% of its relative force capacity
in an effort to maintain consistency across all experiments, although this was subjective to
the person performing the activities.

A series of experiments included several patients performing lingual tasks while EEG
sensors were connected over a net across the scalp. Across the tests, the most substantial
area of brain activity was in the left hemisphere towards the motor cortices [31]. Figure 3
illustrates the time and amplitude characteristics of a typical EMG and EEG signal derived
from the mandible and left-brain regions. The illustration depicts the close coupling of EMG
and EEG signals, as the synchronized graph patterns indicate [32–35]. The signals from
the EEG and EMG sensors come from two separated wearables and also exhibit a normal
distribution, as seen by the EEG channel’s attractive figure. A very similar histogram graph
was also displayed by the EMG signal.
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mandible and left-brain regions.

Figure 3 demonstrates the EMG and EEG activity as the tongue advances forward.
There is a voltage fluctuation pattern visible in the diagram that is mirrored by both the
tongue and the brain. The figure also demonstrates that the EMG and EEG signals are
interconnected. The amplitude increase during tongue movement demonstrates dramatic
variations. When the tongue is moved, there is consistent evidence of a shared pattern of
voltage spikes across all experiments.

The filtered (Butterworth) EMG and EEG signals of Figure 3 are shown in Figure 4a,b.
Further, the moving window covariance calculates the variation in EMG and EEG sensor
signal for each window. This study employs low (or “alpha”, below 13 Hz), high (or
“gamma”, above 30 Hz), and mid (or “beta”, between 13 and 30 Hz) frequency ranges to
filter EMG and EEG signals. The raw signals were also normalized to improve filtering
performance. Figure 4a,b show the differences of the filtered signals between EMG and
EEG signals indicating a low level of potential crosstalk if it exists. In Figure 4c,d, the
moving covariances are also computed using a 500 ms data window and 2000 samples.
Covariance is a quantitative measure of the simultaneous variability of two frequency
bands. For instance, if larger values of one variable tend to correspond with larger values
of another variable, this indicates positive covariance. Figure 4c,d depict the increased
covariance outputs of alpha and beta between gamma frequencies during “spike”. The
graph demonstrates that tongue movement affects increased power of gamma frequency
band during “spike”. Clearly, covariance signals are synchronized with phases of tongue
movement as signal heights increase during tongue motion. The majority of EEG activity
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seemed to be most prominent surrounding the time of the actual tongue movement, show-
ing peak activities within roughly 2 s before and after. The high gamma activation range
for tongue movement recording was between 70 and 120 Hz, with filters on the upper and
lower end of the range in order to remove excess noise from various inputs [11].
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nal. (Upper) The filtered time and amplitude signals from the mandible and left-brain locations:
(top) (a,d) below 13 Hz, (b,e) between 13 and 30 Hz, and (c,f) above 30 Hz. (Lower) The time and
covariance characteristics obtained from the graphs in (a–f): (g,j) below 13 Hz—between 13 and
30 Hz, (h,k) between 13 and 30 Hz—above 30 Hz, and (i,l) below 13 Hz—above 30 Hz.

Covariance is a function of the correlation coefficient. Thus, we conducted a correlation
analysis to determine a statistical measure that indicates the strength of the relationship be-
tween the alpha, beta, and gamma frequency bands collected from the EEG. Comparing the
“pre” datasets to the “spike” datasets, the calculated correlation coefficient data presented
in Figure 5 provide evidence of the increased power of the gamma frequency band during
the “spike”. As predicted, the ratio of frequencies reveals a greater proportion of alpha and
beta frequencies during repose (or “pre”), which rapidly shifts to gamma frequency during
tongue movement (or “spike”). This is consistent with previous research, which states that
the gamma frequency increases when the brain is stimulated to perform an activity, as this
is the frequency band most closely associated with intentional movement. This supports
our hypothesis that tongue movement is related to EEG signals. When the tongue is active,
both the musculature and the brain are stimulated to perform a task. Table 3 shows that
the changes in the correlation coefficients during rest and stimulation not only provide a
statistically roughly meaningful signal but also characterize the nature of this stimulation
(i.e., the directional movements of the tongue).
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Figure 5. Correlation coefficient comparison between “pre” (1) and “spike” (2) in EEG sensor signal.
(a) Forward; (b) right; (c) up: alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz).

Table 3. A F-value and p-value table for correlation coefficients obtained from EEG.

Tidal Volume F-Value
(Forward)

p-Value
(Forward)

F-Value
(Right)

p-Value
(Right) F-Value (Up) p-Value (Up)

Alpha vs. Gamma 10.07 0.0192 8.71 0.0256 7.43 0.0344

Beta vs. Gamma 1.22 0.3119 4.78 0.0715 17.25 0.006

Critical value 5.987 0.05 5.987 0.05 5.987 0.05

In Table 3, the F-value is calculated as the ratio of group variation to within-group
variation. A high F-value suggests that there is more variation across groups than within
them. This shows that there is a statistically significant difference between group means
(four samples each). The F critical value (5.987) is a specified figure to which the F-value
can be compared to determine statistical significance. The table shows that the calculated F
value for EEG signals is more than the F critical value (in the majority of cases), indicating
a difference in correlation coefficients across groups. Furthermore, the estimated p-values
are less than the 0.05 threshold employed in practice. The F statistic determines the p-value,
which is the likelihood that the test results occurred by chance.

The correlation analysis provided insight to the behavior of frequency bands during
tongue movements. In every experiment, correlation values and F values were strong
(>0.7) between all frequencies. One of the most distinguishable patterns within the entire
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data sample was found in the correlation between alpha and gamma. In most cases, there
was a decline in correlation during the spike phase of tongue movement. Since these
two frequencies carry the most weight during rest and activity, it would follow that the
correlation between the two decreases as the gamma frequency becomes more populated.
Additionally, the correlation values and averages remained very similar between both
samples with the eyes open and closed. While a few of the experiments do not directly
mirror the other with the eyes open or closed, a key finding is that the correlation patterns
remain largely the same when moving the tongue in certain directions.

This analysis provided insight into the nature of the alpha, beta, and gamma frequency
bands and how they interact with each other during various tongue movements. When we
observe the correlation change between two brainwave frequency bands differs significantly,
we can deduce that brain power is required to move the tongue. We expect to see the most
significant changes in the correlation between the alpha and gamma band, since these two
frequencies are associated with opposite actions (rest and action, respectively). While this
requires more investigation before it can be used in a practical manner, it allows insight
into and understanding of this relationship.

4. EEG-Based Phoneme Recognition

EEGs, or electroencephalograms, are a noninvasive method of recording electrical
activity in the brain. Of particular interest are its applications in brain–computer interfaces.
By interpreting EEG signals, researchers are able to gain more information about the
pathways and secrets of the brain by translating these micro-signals into usable information.
EMGs, or electromyograms, on the other hand, measure muscle contraction electrical
activity rather than brain electrical activity. This involves a different placement of electrodes
either on the surface of the skin at the area of interest or a more invasive manner by inserting
electrodes into muscles themselves.

In conjunction, these electrical measurement methods provide a new pathway for silent
speech recognition. Damaged vocal cords or severe impairment such as ALS (amyotrophic
lateral sclerosis), strokes, or traumatic brain injuries may result in a decreased ability
to produce speech [36]. This would negatively impact an individual’s quality of life by
stripping them of their ability of effective communication. EEGs are able to capture brain
signals associated with specific speech phonemes, and when paired with the associated
EMG muscle movement measurements in the jaw, speech can be predicated, and these
patients can achieve a state of a silent communication.

4.1. Data Collection

To collect data for this experiment, the following process was taken. First, a list of
English phonemes was made, namely M, D and A. Next, the training experiments were
created. This was performed by recording an audio file that contained each single phoneme
clearly pronounced a total of ten times, spaced apart by five seconds. This was followed
by the entire word being clearly enunciated ten times at the end of the audio file. The
purpose of this was to create a testing framework that could be played and followed by
a test subject. The subject would repeat each phoneme as they were pronounced in the
audio file; however, they would not utilize their voice box. In other words, they would
be purely mouthing each phoneme so that the attached EMG-EEG electrodes would be
able to capture the associated neural and electrical activity. Figure 6 illustrates the time and
amplitude characteristics of a typical EMG and EEG signal derived from the mandible and
left-brain regions. The illustration depicts the mixed nature of the EMG and EEG signals,
as the synchronized graph patterns indicate.

From the raw sensor signals, the study uses a unique signal processing method
that generates a combination of correlation and covariance patterns between different
frequency bands of the EMG-contaminated EEG sensor signals. These patterns reflect the
characteristics per sampling window for a selected combination of sample sensor signals



Sensors 2024, 24, 4125 10 of 17

(say, channels X and Y), and a set of correlations and covariances can be derived from a
matching sampling window for the corresponding zone of channels X and Y.
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Figure 6. The time and amplitude characteristics of a typical EMG-contaminated EEG signal derived
from the left-brain region (left: ‘D’ and right: ‘M’). From the top graph: (6-1) low-frequency com-
ponent of EMG (<25 Hz); (6-2) high-frequency component of EMG (>25 Hz); (6-3) alpha and beta
component of EEG; (6-4) gamma component of EEG.

The presented silent speech dataset contains a total of 60 samples for three phonemes,
M, A, and D. The samples are collected from two different individuals, so 10 samples
per person were recorded for each phoneme. Eight sets of signals were extracted from
the 60 samples and used for training the machine learning models. Those eight sets are
(6-1) low-frequency component of EMG (<25 hz); (6-2) high-frequency component of EMG
(>25 hz); (6-3) alpha and beta component of EEG; (6-4) gamma component of EEG; (7-1)
correlation of (6-1) and (6-2); (7-2) correlation of (6-3) and (6-4); (7-3) correlation of (6-1) and
(6-3); (7-4) correlation of (6-2) and (6-4).

In this following section, machine learning models, including LSTM and few-shot
methods, were evaluated for efficacy on the collected covariance calculated from the
EMG mixed EEG sensors from the brain area exhibiting discernible patterns, as shown
in Figure 7. The goal of a neural network is to uncover some objective function from the
dataset. Given sufficient high-quality data, the objective function can be estimated with
high confidence. However, small datasets pose a specific challenge wherein the objective
function is uncovered specifically for the training set, known as overfitting. Furthermore,
part of the dataset must be reserved for validation, further reducing the training set and
exacerbating the overfitting problem. To maximize the number of training samples, cross-
validation is utilized with 10% of the samples reserved for the validation set.
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4.2. The LSTM (Long Short-Term Memory) Neural Network

An initial study was performed with an LSTM (long short-term memory) neural
network [37]. This type of neural network is generally used for processing sequential
data due to a feedback mechanism where outputs are fed back into the network to update
the network state. This work utilizes a two-layer LSTM network. The first layer takes a
sequential input and produces a sequential output. The sequential output is fed into the
second layer, which outputs only the last step the sequence. A fully connected layer then
reduces the sequence to three outputs, one for each classification. A softmax layer then
outputs the network results for each classification. The network is trained with the Adam
optimizer, a learning rate of 0.0001, a batch size of 16, and a patience of 250 epochs (i.e., if
loss does not decrease for 250 epochs, the training ceases). At the end of training, the epoch
that yielded the lowest validation loss is used for accuracy assessment.

The cross-validation study utilized 10% of the data (six samples) for the validation
set and ten iterations. Each iteration uses two samples not previously evaluated, with the
exception of the first sample of the M classification, which was used in the first and last
iteration due to having one fewer sample than the other sets. Therefore, every sample in
the dataset is included in the cross-validation study.

Samples were shuffled, and cross-validation on the entire dataset was performed
three times. The best result yielded 68% accuracy. From a random classifier, 33% accuracy
is expected, so while this is a marked improvement, the results are not within desired
reproducibility for communication purposes. To determine if this is a data limitation or a
model limitation, additional studies were performed. Specifically, there were techniques
developed to increase accuracy on small datasets, including few-shot learning and applying
data augmentation [38].

In addition, the network type was modified from an LSTM network to a standard
CNN. The motivation for this is twofold. There is no evidence that an LSTM network
outperforms a CNN in classification, and the LSTM is an order of magnitude slower since
it requires feedback and thus cannot work in parallel [39].

4.3. Few-Shot Learning

To classify the data, a 1D convolutional few-shot neural network is employed. The
few-shot network takes in an input sample and outputs a feature vector. To train the
network, a set of reference samples from each class is passed into the network to obtain
the reference feature vectors. As training samples are passed into the network, they are
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compared to the reference feature vector. The loss function forces training samples with the
same label as a reference vector to move closer to the reference vector and samples with a
different label to be pushed away from the reference vector during back propagation. This
method of training is called contrastive loss. In this study, the cosine similarity function was
employed to determine the similarity of the two feature vectors. The number of reference
samples used for each class is the number of shots (e.g., three reference samples would be
denoted as a three-shot network). In this study, a three-shot network is used in all cases
unless otherwise noted. The reference samples are randomly selected four times in each
case and those that yielded the smallest loss during training are selected.

The network architecture is composed of nine blocks, as shown in Figure 8. The first six
blocks (body) consist of 1D convolutions followed by tanh activation, batch normalization,
and max pooling. The final three blocks (head) are a fully connected layer reducing the
output to a feature vector of length 64. The network body gradually converts the 1D time
series into channels via convolutional operations. The network depth allows features at any
point in the time series data to be related to features at all other points. Furthermore, the
fully connected head explicitly relates to all extracted features. The network was trained
with a batch size of 16, a patience of 250 epochs, and a learning rate of 1 × 10−4 using the
Adam optimizer. At the end of training, the epoch that yielded the lowest validation loss is
used for accuracy assessment.
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Figure 8. Network architecture for phoneme classification, where k is kernel, s is skip, p is padding,
and c is channel. The adaptive pooling layer output in block 1 has a static output of 1024 to make the
network invariant to input length. The tensor size is displayed between each of the blocks.

The three-shot network resulted in an 85% cross validation accuracy. This presents a
significant increase over the LSTM results. However, higher accuracies are still desirable
for communication applications. Therefore, the impact on augmenting the dataset is also
explored.

To increase the variance of the training set and reduce overfitting, augmentation on
the training data is employed. Augmented operations are randomly applied to the training
set only each time a sample is accessed. Augmentation can be performed on the entire
sample and/or sections of the samples. Entire sample augmentation includes adding a
random slope to the sample, shifting the sample in the x-direction, shifting the sample in
the y-direction, and scaling the sample. Sections of the sample are augmented by defining
a moving window over the sample and applying an operation to the overlapping area
with a low probability. These augmentations include hanging datapoint, Gaussian filter,
noise addition, and downsampling. All augmentations are applied in random order. These
types of augmentations are also selected to improve the model by making it robust to
voltage shifts, noise intrusions, and brief recording errors. In addition, random cropping is
performed with the intent of promoting weaker features to improve classification.
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The results of the augmentation on the three-shot model show a large improvement
of 95% accuracy. Only three signals (two D and one M) were misclassified. It is expected
that these misclassifications may be corrected and higher accuracies can be achieved with
further training samples.

5. Discussion

The purpose of this study was to develop a small and wearable EEG-EMG measure-
ment system and data analytics for silent speech recognition. To support the study aim,
we studied the relationship between the brain and the tongue muscles responsible for
directional movements for potential nonverbal communication. In a series of experiments,
EEG and EMG were used to record muscle and brain activity with a multimodal wear-
able sensor as the tongue was routinely moved forward, right, and up while at rest. To
record electrical activity during these actions, two EEG sensors were affixed to the head
near the left temporal lobe, just above the left ear, and two EMG sensors were attached
underneath the chin, near the large inner section of the glossal muscles. Then, a correlation
and covariance analysis was conducted to determine the important characteristics of the
collected data.

The EMG transducer detects both low and high frequency movements. Similarly,
this technique divides the EEG signal into three frequency bands: alpha (8–12 Hz), beta
(13–30 Hz), and gamma (30–100 Hz). In fact, the proposed feature extraction methods,
which use correlations and covariances between filtered biopoetential signals, are a unique
approach with few comparable publications. We observed that the changes between the
two signals, specifically the covariance change in the signals, may be used to evaluate the
relationship between the two signals and how much they change together. The results
indicated that the activities of the brain and tongue were distinct and suggested that, with a
larger sample size, they could be distinguished. The analysis of correlation (and covariance)
revealed patterns between the alpha and gamma frequencies that enabled the detection of
tongue movements.

A possibility that should not be overlooked is that there is contamination in the EEG
samples due to cross-talk between sensors or even unwanted input from various muscles
around the head, specifically around the area of the EEG sensor location. If this were the
case, then the analysis performed would have little meaning since most of the EEG data
would merely reflect muscular activity. However, further analysis suggests that these data
are not a product of cross-talk or input from other muscles. The voltage received from
EEG studies is consistently lower than the EMG voltage, which allows a closer look at the
hyperpolarization period after activity. This period does not mimic the pattern of EMG
voltage spikes and can be considered unique to EEG readings. The literature review has
suggested that the alpha, beta, and gamma bands within this physical region are linked to
wakeful activity and should reflect that within each frequency range. The resulting table
highlights this change, showing how each frequency composition is different when the
brain is being used to move the tongue versus when it is at rest. These findings imply
that the EMG and EEG readings are, in fact, unique and not a product of cross-talk or
interference from other muscles or external sources.

While these findings that have been presented can be considered significant, there is
much left to be understood behind the physiological mechanism that allows the brain to
control the tongue in a practical, noninvasive manner. This discovery, coupled with the
correlation (or covariance) study, provides a much clearer understanding of the brain and
how it controls tongue movements. Future research for this study would benefit from the
use of a neural network with a significantly larger sample size. While trends were present
within the analyses performed, it would be beneficial to perform similar tests on multiple
test subjects rather than just one as seen here. More prominent trends in data would be
more prevalent over a larger scale. Additionally, electrodes placed over the left temporal
lobe will have interference from the hair on the head, regardless of the aid of electrode gel.
A shaved head would increase the accuracy of the sensors, as well as reduce noise within
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the EEG. Lastly, as the EEG and EMG were not technically utilized synchronously, future
studies should look to implement a combination of post processing between both studies
to ensure maximum accuracy among directional tongue movements.

This research can be furthered in various ways. While this experiment only used EEG
data, EMG data were also collected. In efforts to increase accuracy, these EMG data could
be incorporated and processed in tandem with EEG data so that multiple data origins can
be used in phoneme recognition. This path would likely be more difficult since these data
sources produce different types of data that would need to be collected, normalized, and
processed to allow them to both be used in neural net training. The ultimate goal would
be to have a single trained neural network that is able to recognize any phoneme based
on EEG/EMG data. Therefore, we performed a comparison on various machine learning
models for phoneme classification.

Neural network training on the phoneme dataset yielded promising results, with ac-
curacies displayed in Table 4. Due to the small dataset, a few-shot method with contrastive
loss was found to outperform an LSTM network with softmax classification. The reason
for this improvement is due to direct comparison of extracted features for classification.
In addition, CNN networks train faster than LSTMs and thus optimal hyperparameters
can be selected more easily. Further accuracy increases were observed by augmenting the
dataset with 95% accuracy obtained during cross-validation.

Table 4. Comparison of classification accuracy from each neural network tested.

Model LSTM Few-Shot Few-Shot + Augmentation

Accuracy 68% 85% 95%

While the few-shot model is capable of handling samples of variable length, it is
unable to classify more than one phoneme in a signal. This means that phonemes must
be segmented prior to classification. To overcome this challenge, a more sophisticated
model such as a sequence-to-sequence transformer model can be employed. Such models
are used to transcribe audio to text in real time but require large datasets. However,
practical challenges in data collection with EMG-EEG (e.g., attaching sensors) has been a
substantial barrier to obtaining large quality datasets. Therefore, given the simple nature of
the proposed device and the high accuracy achieved in this preliminary study, further data
collection can be more easily performed to facilitate future research.

6. Conclusions

To conclude, the results found within this study provide greater insight into the
pathway from the brain to the tongue and allow future research to utilize these principles
to create a noninvasive system that can use the brain and tongue simultaneously to create
a user-controlled device. This study intends to demonstrate the viability of generating
distinctive EMG and EEG patterns with tongue motions to recognize different directional
movements utilizing a novel wireless EMG and EEG wearable network technique. A
wireless EMG-EEG sensor system that permits quick and extremely sensitive data collection
and a machine learning algorithm for tongue motion-based detection from the EMG-EEG
sensor signals make up the study’s two primary components.

Although research has found various methods of utilizing tongue movements to create
human–machine interfaces, many of these methods employ invasive techniques that are
either uncomfortable or impractical for long-term use outside of controlled environments.
The research methods included in this study will use surface electrodes placed at specific
locations around the head to record voltage patterns from the tongue and the brain during
specific tongue movements. An electroencephalograph (EEG) will measure the voltage
output from the brain through surface electrodes coupled with electrode gel, while an
electromyograph (EMG) will record the voltage gathered from the tongue muscles under
the jaw with dry surface electrodes. Modern, higher-quality electrodes can also be used
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to record voltage for future study. Although the results suggest a strong possibility of
achieving this, further exploration and research is required to fully develop a functional
nonverbal communication device for those who are vocally impaired.

In conclusion, this technique of phoneme recognition proved successful in accurately
identifying phonemes from EEG and EMG data. The neural networks are able to take
the raw data from the three recorded phonemes, and while having different patterns, this
network is able to identify patterns within the phonemes and provide accurate recognition.
Once data from test subjects of multiple genders were combined, validation accuracy
drastically increased. This concludes that the temple area of the human–machine interface
is a viable area for phoneme recognition when no sound is made. This opens up an
opportunity for silent communication; however, there is still remaining research that
needs to be performed to expand this to phonemes mixed in words and not only a single
phoneme. This next step will require real-time neural net modeling to be able to process
this information in real time.

7. Patents

The following patent is partially resulting from the work reported in this manuscript:
Moon, K.S., Lee, S.Q. An Interactive Health-Monitoring Platform for Wearable Wireless
Sensor Systems. PCT/US20/51136.
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