Skip to main content
. 2024 Jun 22;24(13):4072. doi: 10.3390/s24134072
Algorithm 1: Superpixelwise Multiscale Adaptive T-HOSVD(SmaT-HOSVD)
Input: Hyperspectral image XI1×I2×I3, ground truth label LI1×I2, number of superpixels S, reduction dimensionality n, threshold T1 and T2.
  • 1:

    The first principal component X is obtained by applying PCA to X is obtained by applying PCA to X.

  • 2:

    Apply Equation (7) to get superpixels If

  • 3:

    While Xk in {If} do

  • 4:

             Fill Xk to get the standard tensor Xk

  • 5:

             Apply Equations (8) and (9) to compute the optimal rank of Xk

  • 6:

             Apply Equations (5) and (6) for Xk to obtain the low-rank representations Y1and Y2

  • 7:

             Apply Equation (10) to get multiscale representation Y˜=[Y1,Y2]

  • 8:

              Apply Equation (11) get results y

  • 9:

             Update the superpixel Xk with the result Y with the result Y

  • 10:

             k ← k+1

  • 11:

    End while

  • 12:

    Updating XI1×I2×n with superpixels If

  • 13:

    Training and testing of X and L using SVM

OUTPUT: Classification results