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Abstract: Cyber-security research on networked multi-sensor systems is crucial due to the vulnerabil-
ity to various types of cyberattacks. For the development of effective defense measures, attention
is required to gain insight into the complex characteristics and behaviors of cyber attacks from the
attacker’s perspective. This paper aims to tackle the problem of distributed consensus estimation for
networked multi-sensor systems subject to hybrid attacks and missing measurements. To account for
both random denial of service (DoS) attacks and false data injection (FDI) attacks, a hybrid attack
model on the estimator-to-estimator communication channel is presented. The characteristics of
missing measurements are defined by random variables that satisfy the Bernoulli distribution. Then a
modified consensus-based distributed estimator, integrated with the characteristics of hybrid attacks
and missing measurements, is presented. For reducing the computational complexity of the optimal
distributed estimation method, a scalable suboptimal distributed consensus estimator is designed.
Sufficient conditions are further provided for guaranteeing the stability of the proposed suboptimal
distributed estimator. Finally, a simulation experiment on aircraft tracking is executed to validate the
effectiveness and feasibility of the proposed algorithm.

Keywords: networked multi-sensor systems; distributed consensus estimation; hybrid attacks;
missing measurements

1. Introduction

With the advancement of communication technologies, networked multi-sensor sys-
tems have garnered significant interest in recent decades [1,2]. Networked multi-sensor
systems contain components connected via a shared network, thus reducing unnecessary
wired connections, lowering installation costs, and increasing system scalability [3–5]. It is
because of such benefits that networked multi-sensor systems are extensively applied in
smart grids, autonomous driving, robotics, and satellite navigation [6–8]. However, due to
the data transmitted over open and shared communication links, networked multi-sensor
systems are vulnerable to malicious cyber attacks, which can pose a huge threat to life
and property security [9]. As a result, it is of utmost importance to enhance the security of
networked multi-sensor systems to ensure their normal operation. This issue has attracted
widespread attention in recent years [10–12].

There are two main categories into which typical attack models in networked multi-
sensor systems fall: denial of service (DoS) attacks and deception attacks [13]. As all
individuals know, false data injection (FDI) attacks, which are regarded as a typical decep-
tion attack, seek to manipulate the transmitted data by injecting some faked data [14]. DoS
attacks attempt to prevent legitimate users from accessing the server by sending a great
deal of false information, thereby blocking the communication channel [15]. Obviously,
both types of cyber attacks can have profound negative impacts on networked multi-sensor
systems. This problem has also aroused considerable interest among researchers, especially
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regarding the estimation and control issues under FDI and DoS attacks. For instance, based
on prior research in [14], the author proposed a power system state estimation algorithm
under imperfect FDI attacks. The FDI attack model in [14] aimed at compromising de-
fenseless sensors to corrupt measurement information, focusing on the stealthiness of the
attack strategy. By utilizing the event-triggered mechanism, a modified secure remote
estimator under DoS attacks was designed for cyber-physical systems [16], in which DoS
attacks occurring on the sensor-estimator communication channel considered noise and
interference. It is common to find only a single type of attack considered in estimation for
sensor networks. However, in practical systems, to increase the possibility of success of
attacks, adversaries often alternately launch different types of attacks with a certain proba-
bility [13]. Such hybrid attacks not only have a greater negative impact on estimation and
control algorithms, but also pose challenges to existing attack detection mechanisms [17].
Therefore, this has aroused the interest of researchers to address the estimation and control
issues of networked multi-sensor systems under hybrid attacks.

As mentioned before, previous work focused more on centralised multi-sensor systems
or single sensor systems, rather than on distributed systems. With the all-round devel-
opment of computation and communication capabilities in sensor networks, distributed
estimation is widely applied in networked multi-sensor systems due to its high robustness,
scalability and flexibility [9,18]. However, since information sharing and data transmission
are constrained by the inherent coupling relationship between different nodes, distributed
sensor networks are more vulnerable to various cyber attacks [19,20]. As a result, it is a
critically important yet complicated topic to investigate the security issues of distributed
multi-sensor systems. In most existing research, some results such as [21–23] primarily
addressed the distributed estimation problem under malicious cyber attacks on commu-
nication links connecting sensors, and only considering a single type of attack. To our
knowledge, however, few research have addressed the distributed consensus estimation
problem under hybrid attacks that occur between estimators, where data transmitted over
wireless networks between nodes may be tampered with by attackers.

Note that distributed consensus estimation is formed by integrating multi-agent con-
sensus theory into the standard Kalman filter, so it also faces the challenge of missing
measurement issues in traditional state estimation. This challenge has spawned a large
amount of related research [24–26]. For instance, a novel locally optimal distributed con-
sensus estimator was presented in [25] for stochastic systems with missing measurements,
where the missing measurement phenomena are represented by a set of random variables
with Bernoulli distribution. However, reviewing the literature on distributed estimation
from the past few years, it is rare to find that issues regarding cyber attacks and network
communication such as missing measurements are taken into account simultaneously. This
is mainly because the superimposed effect of missing measurements and cyber attacks will
accelerate the degradation of distributed estimation performance, eventually leading to
system instability.

Drawing from the aforementioned discussions, this paper focuses on distributed
consensus estimation issues for networked multi-sensor systems subject to the dual impact
of hybrid attacks and missing measurements. The following three points highlight the
difficulties encountered in this paper: (1) how to construct a hybrid attack model targeting
the estimator–estimator communication channel to account for the joint impact of FDI
and DoS attacks? (2) how can the optimal filter gain matrix be determined under the
influence of multi-random variables? (3) how to construct suitable sufficient conditions to
ensure the convergence of the estimation error under the dual impact of hybrid attacks and
missing measurements?

In light of these difficulties, the following is a summary of the main contributions in
this paper:

1. Governed by multi-random variables with Bernoulli distribution, a unified hybrid
attack model considering the joint impact of random FDI and DoS attacks is pro-
posed. Different from cyber attacks on the sensor-to-estimator communication chan-
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nel in [13,18], the proposed hybrid attack disrupts the data transmission between
neighboring estimators in the distributed consensus estimation.

2. This paper is the first attempt to provide a modified distributed consensus estimation
algorithm for networked multi-sensor systems subject to hybrid attacks and missing
measurements. A suboptimal distributed estimation algorithm, simplified by an ap-
proximation method, is devised to circumvent the computation of the cross-covariance
matrix, thereby reducing the computational complexity.

3. A co-design scheme of consensus gain coefficients, hybrid attack parameters, missing
measurement probabilities and model parameters based on Lyapunov stability analy-
sis is proposed. It is theoretically proved that the stability of the proposed distributed
consensus estimator can be guaranteed by constructing a sufficient condition.

The following is how the rest of the paper is structured. System models under missing
measurements, hybrid attack models, and problem descriptions on the distributed consen-
sus estimation are covered in Section 2. The optimal/suboptimal distributed consensus
estimation algorithms are presented in Section 3, respectively. A formal stability analysis
procedure is performed in Section 4. A simulation experiment is executed in Section 5, and
conclusions are provided in Section 6.

Notation 1. Throughout the paper, the notations are absolutely standard. Rm means the m-
dimensional Euclidean space. AT denotes the transpose of the variable A, and B−1 represents
the inverse matrix of an invertible n × n matrix B. In addition, tr(C) is the trace of the matrix
C. E{D} expresses the expectation of the random variable D. diag{•} is a diagonal matrix, and
the random variable X has a probability density function denoted by P{X}. N(µ, R) denotes the
Gaussian stochastic process with µ and R representing the corresponding mean value and covariance
matrix, respectively.

2. Problem Statement
2.1. System Description

This paper considers a class of linear time-invariant systems as

xk+1 = Axk + wk (1)

yi,k = Hixk + vi,k, i = 1, 2, · · · ,M (2)

where xk ∈ RN and yi,k ∈ RM are the state vector and measurement vector of the i-th sensor
at time instant k, respectively. A and Hi denote the system and measurement matrices,
respectively. In addition, the random variables wk and vi,k are the system noise and the
measurement noise respectively, which are assumed to be mutually independent, and
satisfy wk ∼ N(0, Qk) and vi,k ∼ N(0, Ri,k).

In practical applications, due to sensor failure, unsuccessful measurement, or network
congestion, etc., the measurement values from sensors are not always consecutive and may
be randomly lost [27]. Therefore, the missing measurement model in this paper is described
as follows:

zi,k = γi,k Hixk + vi,k (3)

where the random variable γi,k that satisfies the Bernoulli distribution is used to describe
the missing measurement phenomenon, which is assumed to be uncorrelated with all noise
signals. Furthermore, the probability density function of γi,k is

P{γi,k = 0} = 1 − λi

P{γi,k = 1} = λi

where λi represents the probability that the measurement information of the i-th sensor
successfully arrives.



Sensors 2024, 24, 4071 4 of 16

2.2. Hybrid Attack Model

To characterize the communication topology of the above sensor network in
Equations (1) and (2), consider a fixed undirected graph G = (Vx, Ex) with a set of nodes
Vx = {v1, v2, · · · , vn} and a set of edges Ex ⊆ Vx ×Vx. In this sensor network, the neighbor
set of node i is defined as Ni = {j|(i, j) ∈ Ex}, where the total number of neighbors of node
i, also called its degree, is expressed as di = |Ni|.

Derived from previous works in [28], a distributed consensus estimation algorithm is
introduced for the above sensor network:

x̂i,k+1 = Ax̂i,k + Ki,k(yi,k − Hi x̂i,k) + ϵA ∑
j∈Ni

(x̂j,k − x̂i,k) (4)

where x̂i,k is the estimate of the state xk for node i at time instant k. Ki,k is the filter gain
matrix to be determined, and ϵ is the consensus gain coefficient. Referring to existing
works [29,30], it is noted that ϵ ∈ (0, 1

δ ) with δ = maxidi.
When executing the state estimation process under the distributed consensus esti-

mation in (4), it can be found that not only the innovation of node i itself is utilized, but
also the estimation information from node j needs to be integrated. This prompts us to
investigate the security of the estimation information transmitted between nodes i and
j since the information may be subject to various malicious cyber attacks. Therefore, in
order to describe the actual cyber attack characteristics more realistically in this paper, the
following hybrid attack model is constructed as

x̂a
j,k = αij,k(x̂j,k + qij,kbij,k) + (1 − αij,k)Ax̂a

j,k−1 (5)

where x̂a
j,k denotes the state estimation for node j under hybrid attacks. The random

variable αij,k is used to characterize the occurrence of DoS attacks, which satisfies the
Bernoulli distribution. In other words, αij,k = 0 means that the estimation information
x̂j,k is subject to DoS attacks and cannot be successfully transmitted; αij,k = 1 indicates
otherwise. Furthermore, in the case of DoS attacks, this paper introduces the compensation
strategy in [31,32] to improve the loss of transmitted data. qij,k indicates whether the
estimation information transmitted between nodes i and j is subject to FDI attacks, taking
values of 0 or 1. The random variable bij,k ∼ N(0, Bij,k) is used to model FDI attacks, which
is also assumed to be uncorrelated with all noise signals.

2.3. Problem Statement

In terms of that, this paper considers the issues of missing measurements in (3) and hy-
brid attacks in (5), so the distributed consensus estimation algorithm in (4) is redesigned as

x̂i,k+1 = Ax̂i,k + Ki,k(zi,k − λi Hi x̂i,k) + ϵA ∑
j∈Ni

(x̂a
j,k − x̂i,k) (6)

The main goal of this paper, as indicated by the discussion above, is to derive a suitable
distributed consensus estimator to estimate the system states under the dual impact of
missing measurements and hybrid attacks, and then seek sufficient conditions to ensure
the stability of the proposed distributed estimator.

3. Distributed Consensus Estimator

In this section, a suitable Kalman filter gain matrix and error covariance matrix are
derived to obtain the state estimates.
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For the convenience of presentation, first define

ei,k = xk − x̂i,k, ea
j,k = xk − x̂a

j,k

Pij,k = E{ei,keT
j,k}, P̂ij,k = E{ea

i,keT
j,k}

P̌ij,k = E{ei,k(ea
j,k)

T}, Pa
ij,k = E{ea

i,k(e
a
j,k)

T}

Theorem 1. Consider the linear time-invariant system in (1) and (2) under missing measurements
in (3) and hybrid attacks in (5). Then, the distributed consensus estimation algorithm designed in
(6) has the optimal filter gain as follows:

Ki,k = λi A[Pi,k + ϵ ∑
r∈Ni

(P̂ri,k − Pi,k)]HT
i G−1

i,k

where Gi,k = λ2
i HiPi,k HT

i + λ̃i HiΛk HT
i + Ri,k.

Proof of Theorem 1. According to the above definition, it can be known

ei,k+1 = xk+1 − x̂i,k+1

= (A − λiKi,k Hi)ei,k − Ki,k(γi,k − λi)Hixk

+ ϵA ∑
j∈Ni

(ea
j,k − ei,k) + wk − Ki,kvi,k (7)

where

ea
j,k = xk − x̂a

j,k

= αij,kej,k − αij,kqij,kbij,k + (1 − αij,k)Aea
j,k−1

+ (1 − αij,k)wk−1 (8)

Naturally, we can easily obtain the error covariance matrix

Pij,k+1 = E{ei,k+1eT
j,k+1}

= (A − λiKi,k Hi)Pij,k(A − λjKj,k Hj)
T + Ki,k Hi

×E{(γi,k − λi)(γj,k − λj)xkxT
k }HT

j KT
j,k + ϵ2

× A ∑
r∈Ni

∑
s∈Nj

(Pa
rs,k − P̂rj,k − P̌is,k + Pij,k)AT

+ ϵ(A − λiKi,k Hi) ∑
s∈Nj

(P̌is,k − Pij,k)AT

+ ϵA ∑
r∈Ni

(P̂rj,k − Pij,k)(A − λjKj,k Hj)
T

+ Ki,kE{vi,kvT
j,k}KT

j,k + Qk (9)

When i = j, it yields

Pi,k+1 = (A − λiKi,k Hi)Pi,k(A − λiKi,k Hi)
T + λ̃iKi,k

× HiΛk HT
i KT

i,k + ϵ2 A ∑
r∈Ni

∑
s∈Ni

(Pa
rs,k − P̂ri,k

− P̌is,k + Pi,k)AT + Ki,kRi,kKT
i,k + Qk

+ ϵ(A − λiKi,k Hi) ∑
s∈Ni

(P̌is,k − Pi,k)AT

+ ϵA ∑
r∈Ni

(P̂ri,k − Pi,k)(A − λiKi,k Hi)
T (10)
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where λ̃i = E{(γi,k − λi)(γi,k − λi)} = λi(1 − λi), and Λk = E{xkxT
k } = AΛk−1AT + Qk−1.

In addition, it has

P̂ri,k = E{ea
r,keT

i,k}
=αiPri,k + (1 − αi)[AP̂ri,k−1(A − λiKi,k−1Hi)

T

+ ϵA ∑
s∈Ni

(Pa
rs,k−1 − P̂ri,k−1)AT + Qk−1] (11)

P̌is,k = E{ei,k(ea
s,k)

T}
=αiPis,k + (1 − αi)[(A − λiKi,k−1Hi)P̌is,k−1 AT

+ ϵA ∑
r∈Ni

(Pa
rs,k−1 − P̌is,k−1)AT + Qk−1] (12)

where αi = P{αij,k = 1}.
From the definition of Pa

ij,k, it follows that

Pa
rs,k = E{ea

r,k(e
a
s,k)

T}
= α2

i Prs,k + αi(P̌rs,k − αiPrs,k) + αi(P̂rs,k − αiPrs,k)

+ (1 − αi)
2(APa

rs,k−1 AT + Qk−1) + αiqir,kBir,k (13)

Note that the total estimation error for all nodes is expressed as
M
∑

i=1
E{∥xk − x̂i,k∥2},

which is equivalent to
M
∑

i=1
tr(Pi,k). Based on this, the optimal filter gain matrix Ki,k can be

obtained by solving the equation ∂tr(Pi,k+1)/∂Ki,k = 0.
Thus, applying the matrix calculus operation theory yields

∂tr(Pi,k+1)

∂Ki,k
= 2(A − λiKi,k Hi)Pi,k(−λi Hi)

T

+ 2λ̃iKi,k HiΛk HT
i + 2Ki,kRi,k

+ ϵA ∑
s∈Ni

(P̌is,k − Pi,k)
T(−λi Hi)

T

+ ϵA ∑
r∈Ni

(P̂ri,k − Pi,k)(−λi Hi)
T = 0 (14)

From Equation (14), we have

Ki,k = λi A[Pi,k + ϵ ∑
r∈Ni

(P̂ri,k − Pi,k)]HT
i G−1

i,k (15)

where Gi,k = λ2
i HiPi,k HT

i + λ̃i HiΛk HT
i + Ri,k. This finishes the proof of Theorem 1.

4. A Scalable Estimation Algorithm and Stability Analysis

Note that the derived error covariance matrix in (10) for the proposed distributed
consensus estimation algorithm is not scalable in the number of nodes, making it unsuitable
for large-scale systems such as smart grids and mobile communication networks [33].
In order to compensate for this weakness, this paper derives the following suboptimal
estimation method:
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x̂i,k+1 = Ax̂i,k + Ki,k(zi,k − λi Hi x̂i,k) + ϵA ∑
j∈Ni

(x̂a
j,k − x̂i,k)

x̂a
j,k = αij,k(x̂j,k + qij,kbij,k) + (1 − αij,k)Ax̂a

j,k−1

Ki,k = λi APi,k HT
i (λ

2
i HiPi,k HT

i +λ̃i HiΛk HT
i + Ri,k)

−1

Pi,k+1 = (A − λiKi,k Hi)Pi,k(A − λiKi,k Hi)
T + λ̃iKi,k

× HiΛk HT
i KT

i,k + Ki,kRi,kKT
i,k + Qk (16)

Remark 1. Such an assumption is achieved by eliminating the influence of the cross-covariance
matrices in the proposed distributed consensus estimation algorithm. Instead, by setting ϵ = 0 in
solving Equations (10) and (15) in this paper, a scalable estimator in (16) is obtained. Meanwhile, it
can be easily known that the designed estimator is suboptimal due to the missing terms.

In the following, a formal stability analysis for the suboptimal distributed consensus
estimator constructed as (16) is presented. The following assumptions and lemmas are first
given as

Assumption 1. For some positive numbers, the following inequalities are satisfied

f ≤∥A∥ ≤ f , hi ≤ ∥Hi∥ ≤ hi

qI ≤Qk ≤ qI, ri I ≤ Ri,k ≤ ri I

p
i
I ≤ Pi,k ≤ pi I

Lemma 1 ([34]). There are real numbers ν, ν, υ > 0 and 0 < σ ≤ 1 such that the stochastic process
Vk(ξk) satisfies the following inequalities

ν∥ξk∥2 ≤ Vk(ξk) ≤ ν∥ξk∥2 (17)

and

E{Vk+1(ξk+1)|ξk} − Vk(ξk) ≤ υ − σVk(ξk) (18)

which means that the stochastic process Vk(ξk) is exponentially bounded in mean square, and is
bounded with probability one.

Then, the following will present the main results of the stability analysis.

Theorem 2. For the linear time-invariant system in (1) and (2), consider missing measurements
in (3) and hybrid attacks in (5) and the suboptimal distributed consensus estimation algorithm
proposed in (16). Under Assumption 1 and setting the following condition

∑
j∈Ni

(x̂a
j,k − x̂i,k)

T(x̂a
j,k − x̂i,k) ≤ ςi

where ςi > 0, i = 1, 2, · · · , n, the estimation error ei,k is exponentially bounded in mean square
and is bounded with probability one.

Proof of Theorem 2. In order to satisfy the conditions of Lemma 1, first construct the
augmented estimation error as ek = [eT

1,k, eT
2,k, · · · , eT

n,k] and the augmented estimation error
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covariance as Pk = diag{P1,k, P2,k, · · · , Pn,k}, and then define a suitable Lyapunov function
as follows

Vk(ek) = eT
k P−1

k ek =
n

∑
i=1

eT
i,kP−1

i,k ei,k (19)

By Assumption 1, it can be easily obtained

1
p
∥ek∥2 ≤ Vk(ek) ≤

1
p
∥ek∥2 (20)

which proves that the first condition (17) of Lemma 1 is satisfied with ν = 1
p and ν = 1

p .

Here, p = max{p1, p2, · · · , pn} and p = min{p
1
, p

2
, · · · , p

n
}.

To further meet the second requirement for Lemma 1, Equation (19) needs to be
extended. Combining Equation (7), the following expression is obtained:

E{Vk+1(ek+1)} =
n

∑
i=1

E{eT
i,k(A − λiKi,k Hi)

TP−1
i,k+1(A − λiKi,k Hi)

× ei,k}+
n

∑
i=1

E{λ̃ixT
k HT

i KT
i,kP−1

i,k+1Ki,k Hixk}

+ ϵ2
n

∑
i=1

E{ ∑
j∈Ni

(ea
j,k − ei,k)

T ATP−1
i,k+1 A ∑

j∈Ni

(ea
j,k

− ei,k)}+ 2ϵ
n

∑
i=1

E{eT
i,k(A − λiKi,k Hi)

TP−1
i,k+1

× A ∑
j∈Ni

(ea
j,k − ei,k)}+

n

∑
i=1

E{wT
k P−1

i,k+1wk}

+
n

∑
i=1

E{vT
i,kKT

i,kP−1
i,k+1Ki,kvi,k} (21)

According to the definition, λ̃i ≥ 0 is horizontally established. Therefore, it follows
from Equation (16) and Assumption 1 that

∥Ki,k∥ = ∥λi APi,k HT
i (λ

2
i HiPi,k HT

i + λ̃i HiΛk HT
i + Ri,k)

−1∥ ≤ f pihi

λih
2
i p

i

(22)

Similarly, according to (16) and (22), we obtain

Pi,k+1 ≥(A − λiKi,k Hi)Pi,k(A − λiKi,k Hi)
T + Qk

≥(A − λiKi,k Hi)[Pi,k +
q

( f + f pih
2
i

h2
i p

i
)2
](A − λiKi,k Hi)

T (23)

Then, it can be further obtained, as from inequality (23),

(A − λiKi,k Hi)
TP−1

i,k+1(A − λiKi,k Hi) ≤ [1 +
q

pi( f + f pih
2
i

h2
i p

i
)2
]−1P−1

i,k
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Therefore, the first term on the right-hand side of Equation (21) can be scaled as

n

∑
i=1

E{eT
i,k(A − λiKi,k Hi)

TP−1
i,k+1(A − λiKi,k Hi)ei,k}

≤ [1 +
q

pi( f + f pih
2
i

h2
i p

i
)2
]−1E{Vk(ek)} (24)

In addition, from (16), we have

Pi,k+1 ≥ λ̃iKi,k HiΛk HT
i KT

i,k

Then we have

n

∑
i=1

E{λ̃ixT
k HT

i KT
i,kP−1

i,k+1Ki,k Hixk} ≤
n

∑
i=1

E{xT
k Λ−1

k xk} = n (25)

Further, we proceed to deal with the other terms in (21). Under Assumption 1, we have

ϵ2
n

∑
i=1

E{ ∑
j∈Ni

(ea
j,k − ei,k)

T ATP−1
i,k+1 A ∑

j∈Ni

(ea
j,k − ei,k)}

≤ ϵ2 f
2

p
i

n

∑
i=1

∑
j∈Ni

(ea
j,k − ei,k)

T(ea
j,k − ei,k)

=
ϵ2 f

2

p
i

n

∑
i=1

∑
j∈Ni

(x̂a
j,k − x̂i,k)

T(x̂a
j,k − x̂i,k) (26)

Choose a condition as

∑
j∈Ni

(x̂a
j,k − x̂i,k)

T(x̂a
j,k − x̂i,k) ≤ ςi (27)

where ςi > 0, i = 1, 2, · · · , n is a real number. After that, (26) can be scaled as

ϵ2
n

∑
i=1

E{ ∑
j∈Ni

(ea
j,k − ei,k)

T ATP−1
i,k+1 A ∑

j∈Ni

(ea
j,k − ei,k)} ≤ ϵ2 f

2

p
i

n

∑
i=1

ςi (28)

In terms of the elementary inequality xTy + xyT ≤ xTx + yTy, it naturally follows that

2ϵ
n

∑
i=1

E{eT
i,k(A − λiKi,k Hi)

TP−1
i,k+1 A ∑

j∈Ni

(ea
j,k − ei,k)}

≤ ϵ
n

∑
i=1

E{eT
i,k(A − λiKi,k Hi)

TP−1
i,k+1(A − λiKi,k Hi)ei,k}

+ ϵ
n

∑
i=1

∑
j∈Ni

E{(ea
j,k − ei,k)

TP−1
i,k+1(e

a
j,k − ei,k)}

≤ ϵ[1 +
q

pi( f + f pih
2
i

h2
i p

i
)2
]−1E{Vk(ek)}+ ϵ

n

∑
i=1

ςi (29)

The remaining noise terms will be processed next, and we have

n

∑
i=1

E{wT
k P−1

i,k+1wk} ≤ 1
p

i

n

∑
i=1

E{tr(wkwT
k )} ≤ qNn

p
i

(30)



Sensors 2024, 24, 4071 10 of 16

and

n

∑
i=1

E{vT
i,kKT

i,kP−1
i,k+1Ki,kvi,k} ≤

f
2
p2

i h
2
i

λ2
i h4

i p3
i

n

∑
i=1

E{tr(vi,kvT
i,k)} ≤

f
2
p2

i h
2
i ri Mn

λ2
i h4

i p3
i

(31)

According to Equations (21), (24), (25) and (28)–(31) can be further scaled as

E{Vk+1(ek+1)} ≤ υ + (1 − σ)E{Vk(ek)} (32)

where

σ =1 − (1 + ϵ)[1 +
q

pi( f + f pih
2
i

h2
i p

i
)2
]−1

ϵ =(
ϵ2 f

2

p
i

+ ϵ)
n

∑
i=1

ςi + n +
qNn

p
i

+
f

2
p2

i h
2
i ri Mn

λ2
i h4

i p3
i

It can be found that the second condition (18) of Lemma 1 is satisfied when ϵ < q/pi( f +
f pih

2
i

h2
i p

i
)2. Finally, it can be concluded that the estimation error is bounded with proba-

bility one and exponentially bounded in mean square, which completes the proof of
Theorem 2.

5. Simulation Results

In this section, a simulation example of the aircraft tracking problem moving in two-
dimensional horizontal plane is presented. The state vector is defined as xk = [ζk, ζ̇k, ηk, η̇k]

T,
which consists of position (ζk, ηk) and velocity (ζ̇k, η̇k). The tracking system considered
in this section is as described in (1) and (2), where the relevant parameters are defined
as follows:

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, T = 1

Qk = 0.04


T4/4 T3/2 0 0
T3/2 T2 0 0

0 0 T4/4 T3/2
0 0 T3/2 T2


To track the target aircraft, ten distributed sensors with the topology shown in Figure 1

are utilized, where each sensor interacts with only a matched estimator. The target position
is generated as the sensor measurement

yi,k =

[
1 0 0 0
0 0 1 0

]
xk + vi,k, i = 1, 2, · · · ,M

where the measurement noise covariance is set to Ri,k = i ∗ R0 with R0 = diag{0.22, 0.22}.
Further, the initial state is set to x0 = [10, 1.5, 10, 1.2]T.
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Figure 1. Network topology with M = 10.

In addition, the root-mean-square errors (RMSEs) are introduced to more precisely
assess the estimation performance. The RMSEs on position and velocity over all sensors
are respectively defined as

RMSEp
k =

√√√√ 1
M

M

∑
t=1

[(
ζk − ζ̂t,k

)2
+ (ηk − η̂t,k)

2
]

RMSEv
k =

√√√√ 1
M

M

∑
t=1

[(
ζ̇k − ˆ̇ζt,k

)2
+

(
η̇k − ˆ̇ηt,k

)2
]

where M = 100 represents 100 Monte Carlo runs over 10 targets. ζ̂t,k, η̂t,k, ˆ̇ζt,k, and ˆ̇ηt,k are
the estimates of position and velocity at time k from the i-th run, respectively.

The performance of the proposed distributed consensus estimation algorithm under
hybrid attacks and missing measurements is shown in Figure 2, where the measurement
arrival probability λi is set to 0.9 and the consensus gain is chosen as 0.05. It is assumed
that the hybrid attack considered in (5) only occurs between two targets, where the relevant
parameters are set to αi = 0.5 and Bij,k = 0.04I. It can be found that the distributed
consensus estimator still has good tracking performance in position and velocity under
hybrid attacks and missing measurements. In addition, the RMSEs in position for ten
estimators are presented in Figure 3. It can be seen that all the curves fluctuate around the
horizontal axis 0, which also proves the effectiveness of the proposed algorithm in (16).
Further, RMSEs in position with different consensus gains ϵ = 0.05, 0.1, 0.15, 0.2 are plotted
in Figure 4. It can be seen that when ϵ = 0.05, 0.1, 0.15, the curves still fluctuate near the
horizontal axis 0, but when ϵ = 0.2, the curve rises rapidly. Thus, it can be found that the
consensus parameter in this paper has an upper bound. Once this upper bound is exceeded,
the estimator lacks stability, which also proves the correctness of Theorem 2. It is worth
noting that the consensus parameters need to be chosen very carefully to make a tradeoff
between tracking performance and stability.

On the other hand, the performance of the proposed distributed consensus estimation
algorithm under hybrid attacks, FDI attacks in [30] and DoS attacks, as well as without
attacks in [35] are compared in Figure 5. For examining the impact of different attack
scenarios on the proposed distributed estimation algorithm, it is first necessary to exclude
the interference of the missing measurement, so the measurement arrival probability λi
is set to 1 in this comparison experiment. As shown in Figure 5, RMSEs under hybrid
attacks are significantly higher than those under other attack scenarios, while RMSEs
under only DoS attacks are almost the same as those without attacks. This proves that
hybrid attacks have a greater impact on the proposed distributed estimator than only one
single type of attack. In addition, this paper introduces a compensation strategy for DoS
attacks. Thus, only DoS attacks have little impact on the estimation performance of the
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proposed distributed estimator, which is clearly demonstrated in Figure 6. As shown
in Figure 6, RMSEs in position do not change significantly as the DoS attack probability
increases, strongly proving the effectiveness of the compensation strategy. Further, RMSEs
in position under different FDI attack intensities are plotted in Figure 7. In order to better
characterize the FDI attack intensity, the standard deviation ς of the random attack variable
bij,k is introduced. It is clear that the proposed distributed consensus estimator has certain
resistance to FDI attacks when ς is small. Finally, it is noted that hybrid attacks will degrade
the estimation performance in Figure 5, but the distributed estimator proposed in this
paper can still remain stable, which is a major advantage of this algorithm.

0 20 40 60 80 100

0

50

100

150

200

250

0 20 40 60 80 100

1

1.5

2

2.5

3

0 20 40 60 80 100

0

50

100

150

200

250

0 20 40 60 80 100

Time instant

0.5

1

1.5

2

2.5

3

S
ta

te
s

 a
n

d
 t

h
e

ir
 e

s
ti

m
a

ti
o

n
s

Figure 2. States and their estimations for sensors 5 and 7.
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Figure 3. RMSEs in position for ten estimators.
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Figure 4. RMSEs in position with different consensus parameter.
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Figure 5. RMSEs in position under hybrid attacks, FDI attacks and DoS attacks as well without attacks.
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Figure 6. RMSEs in position under different DoS attack probabilities.
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Figure 7. RMSEs in position under different FDI attack intensities.

6. Conclusions

In this paper, a modified distributed consensus estimation algorithm has been pro-
vided for networked multi-sensor systems subject to hybrid attacks and missing mea-
surements. A random variable satisfying the Bernoulli distribution has been applied to
account for the missing measurement phenomenon. From the viewpoint of the attacker, a
unified hybrid attack model has been constructed to disrupt the data transmission between
neighboring estimators, which takes into account the characteristics and behaviors of both
random FDI and DoS attacks. Starting from optimality and scalability, optimal/suboptimal
distributed consensus estimators have been proposed, respectively. Furthermore, sufficient
conditions for convergence of the proposed distributed suboptimal estimator have been
obtained. It has been explicitly established that there are correlations between the conver-
gence and hybrid attack model as well as missing measurement parameters. Future works
will focus on extending linear multi-sensor systems to nonlinear systems.
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