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Abstract: This study aimed to measure the differences in commonly used summary acceleration
metrics during elite Australian football games under three different data processing protocols (raw,
custom-processed, manufacturer-processed). Estimates of distance, speed and acceleration were
collected with a 10-Hz GNSS tracking technology device from fourteen matches of 38 elite Australian
football players from one team. Raw and manufacturer-processed data were exported from respective
proprietary software and two common summary acceleration metrics (number of efforts and distance
within medium/high-intensity zone) were calculated for the three processing methods. To estimate
the effect of the three different data processing methods on the summary metrics, linear mixed models
were used. The main findings demonstrated that there were substantial differences between the
three processing methods; the manufacturer-processed acceleration data had the lowest reported
distance (up to 184 times lower) and efforts (up to 89 times lower), followed by the custom-processed
distance (up to 3.3 times lower) and efforts (up to 4.3 times lower), where raw data had the highest
reported distance and efforts. The results indicated that different processing methods changed the
metric output and in turn alters the quantification of the demands of a sport (volume, intensity and
frequency of the metrics). Coaches, practitioners and researchers need to understand that various
processing methods alter the summary metrics of acceleration data. By being informed about how
these metrics are affected by processing methods, they can better interpret the data available and
effectively tailor their training programs to match the demands of competition.

Keywords: data processing; smoothing; filter; GPS; acceleration

1. Introduction

Global navigation satellite systems (GNSS) are a commonly used athlete tracking
system in team sports and permit the quantification of player movement [1,2]. A GNSS
device accesses satellites from multiple constellations in orbit (e.g., GPS and GLONASS)
to determine its position in space, allowing the estimation of its distance covered, speed
and acceleration [3,4]. In addition, some athlete tracking systems also include a triaxial
accelerometer, gyroscope and magnetometer, allowing human activity recognition and the
measurement of variables such as PlayerLoad™ [5,6]. The accelerometers within the athlete
tracking system are not involved in the calculation of GNSS acceleration; accelerometer-
derived acceleration is distinctly different data. Notably, most researchers and practitioners
(79%) in team sports use GNSS-derived acceleration data [7]. Accurately quantifying
player movements by determining the intensity, frequency and volume of these movements
demonstrates the demands of a sport [8]. This knowledge can be used by practitioners to
design training programs that adequately prepare athletes for competition [8].

Acceleration-based movements have been highlighted across the literature as impor-
tant for team sport performance [9], as many movements require an athlete to accelerate
or decelerate (negative acceleration) rapidly. Within sports, GNSS time-series acceleration
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data are often summarised according to the distance run or number of efforts performed
within certain acceleration/deceleration bands [1,7,9]. Acceleration efforts have been
identified as a critical component of Australian rules football (AF), where acceleration
match demands increase with increasing competition level [10]. Therefore, quantifying
these acceleration-based movements in AF are of interest to coaches and practitioners.
Manufacturer data processing can have a large influence on GNSS acceleration data and
corresponding summary metrics such as number of efforts [11,12]. Different data processes
can alter the quantification of player movement, which may affect a practitioner’s inter-
pretation of the data and training programs. For example, applying a data processing
method with strong smoothing, can cause a reduction in the number of acceleration efforts
recorded during a match [11], potentially changing a practitioners interpretation of players’
workload. Valid GNSS acceleration data are needed to correctly quantify player movement
with summary metrics.

Various validation studies have assessed the ability of GNSS to estimate accelera-
tion [12–16]. This is an ongoing process as each new GNSS device requires validation [17].
Numerous GNSS manufacturers apply their own data processing methods within their
software, which could impact data validity and result in manufacturer-influenced varia-
tions in summary metrics, rather than being directly related to what the GNSS device is
measuring [17]. Within the literature, large manufacturer-influenced variations have been
reported in summary acceleration metrics [11,18]. Variations of up to ~250 acceleration
efforts have been observed when using different manufacturer data processing methods on
an identical dataset from a soccer match [11]. Although it is known that differences exist
between manufacturer software processed data, most practitioners still use manufacturer’s
software-derived GNSS data, as it is a simple and efficient way to obtain data.

Practitioners and researchers experienced with data processing techniques might
choose to extract and process the raw (not smoothed in any way by the manufacturer
software) data from the GNSS devices and analyse it separately [9,19]. This approach offers
several advantages such as eliminating undesired processing practices (e.g., smoothing
and algorithms) and incorporating custom processes such as new summary metrics [9,17].
Custom processing of manufacturer-exported GNSS data has been shown to enhance
acceleration data quality, and derived summary metrics differed compared to manufacturer-
processed data [20]. When using custom processing on manufacturer-processed GNSS
data, double processing and over-smoothing of the data could take place, which could
eliminate important parts of the acceleration data. Using custom processing on raw GNSS
data would eliminate double processing and could enhance data quality. However, there is
no research comparing custom-processed raw GNSS data to manufacturer-processed data.

While the three methods (raw, custom-processed and manufacturer-processed) are
available for analysis of GNSS data, there is no research identifying differences in the
summary acceleration metrics between the methods. Furthermore, there is limited re-
search exploring differences between summary acceleration metrics of just the raw and
manufacturer-processed data. Large differences have been reported in the distance covered
when accelerating between raw and manufacturer-processed data in a controlled environ-
ment where GNSS devices were positioned on a sled [18], and large differences have been
found between just the acceleration data of team sport training sessions [20]. However, no
study has investigated the difference in commonly used acceleration metrics between raw
and manufacturer-processed data of team sport players during competition match-play.

Therefore, the aim of this study was to compare and explore the differences between
three data processing methods (I. raw; II. custom-processed; III. manufacturer-processed) in
the commonly used acceleration metrics of elite Australian football competition match-play
data using GNSS tracking technology. To make this research practical, it was decided that
GNSS-derived acceleration data would be used rather than acceleration data measured by
an accelerometer, as most researchers and practitioners in team sports use GNSS-derived
acceleration data.
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2. Methods
2.1. Participants

Player movement data from thirty-eight elite male players from one Australian Foot-
ball League team were collected with a 10-Hz GNSS tracking technology device from
fourteen matches during the 2019 competitive season. Data were included if the horizontal
dilution of precision (HDOP) was ≤2 and the player was in play on the field. There was no
minimum playing duration requirement for a player file to be included. This resulted in a
total sample size of 262 player files. The procedures used in this study were conducted with
approval from the Human Research Ethics Committee of La Trobe University (reference
number: HEC21282).

2.2. Equipment

Player movement, including estimations of acceleration, speed and distance, was mea-
sured using a 10-Hz GNSS device (Vector S7, Catapult Innovations, Melbourne, Australia).
The device was positioned between the athlete’s shoulder blades using the manufacturer’s
snug-fitting garment to prevent unnecessary device movement. Data collection proce-
dures adhered to the guidelines outlined by Malone, Lovell, Varley and Coutts [17], with
each athlete having their own specific device. The study sample had an average (±SD),
12 ± 1 number of satellites and horizontal dilution of precision (HDOP) of 0.62 ± 0.07.

The Vector S7 has reported acceptable levels of reliability and validity for speed
(coefficient of variation ≤2%, mean bias −0.5%) and reliability and validity for distance
(coefficient of variation ≤1.3%, mean bias ≤1%) according to Catapult’s vector data integrity
testing [21] and peer reviewed research [22].

The raw (not smoothed in any way by the manufacturer software) GNSS Doppler-shift
speed data were exported and retrieved from the Catapult software (Openfield, version
2.7.1, Catapult Sports, Melbourne, Australia) files folder. The raw acceleration dataset
was calculated using a central difference method on the raw Doppler-shift speed data. To
determine the most appropriate custom processing method, several common smoothing
methods (Butterworth filter: cut-off frequencies 0.1 to 4.9 Hz, exponential smoothing:
smoothing constant 0.1 to 0.9, moving average: sliding window 0.1 s to 0.9 s) have been
applied to the raw GNSS Doppler-shift speed data and were compared with a gold standard
motion analysis system (Vicon) dataset. The fourth order (zero lag) low-pass Butterworth
filter with a cut-off frequency of 2 Hz showed the strongest relationship with the Vicon data
(mean bias 0.00 m·s−2, 95% LoA ± 1.55 m·s−2, RMSE 0.79 m·s−2) and was therefore used
on the raw GNSS Doppler-shift speed data for the custom processing method. After using
the Butterworth filter, acceleration was calculated using a central difference method on the
custom-processed GNSS Doppler-shift speed data. Applying the processing to the raw
Doppler-shift speed data before deriving acceleration data will ensure that any noise present
in the raw Doppler-shift speed data will not be increased due to deriving acceleration.
The manufacturer-processed GNSS distance and acceleration data were exported from the
manufacturer’s software using their default settings (Openfield, version 2.7.1, Catapult
Sports, Melbourne, Australia). A summary of the details of the three datasets used for
further analysis, (I) raw, (II) custom-processed, (III) manufacturer-processed, can be found
in Table 1.
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Table 1. Summary of the three used data processing methods and details on how acceleration data
were obtained for each processing method.

Data Processing
Method How the Acceleration Data Were Obtained

Raw Central difference method applied to raw GNSS Doppler-shift speed data
to calculate acceleration.

Custom

Raw GNSS Doppler-shift speed data were processed with a fourth order
(zero lag) low-pass Butterworth filter with a cut-off frequency of 2 Hz,
whereafter acceleration was calculated using a central difference method
on the processed GNSS Doppler-shift speed data.

Manufacturer GNSS acceleration data were directly exported from manufacturer
software using their default settings.

As the custom-processed data were derived from the raw data, these datasets were
automatically synchronised. To allow for comparison of all results, the manufacturer-
processed data were synchronised with the raw data. The raw data files represented all
data from the time the GNSS units were switched on to start data collection until they
were switched off. However, the manufacturer-processed data represented only gametime.
Consequently, the files varied in length and could not be synchronised by means of cross-
correlation. Unix timestamps (also known as epoch time) were used for synchronisation.
The raw data files only included one Unix timestamp corresponding to the time the GNSS
units were switched on to start data collection; they did not include a timestamp variable.
The Unix timestamp was used to create a timeseries for the raw datafiles by extending
the Unix timestamp by the sampling frequency of the device and the length of each file.
The Unix timeseries of the raw and manufacturer-processed datasets were then used to
synchronise and join both datasets. Cross-correlation analysis was performed afterwards
to confirm perfect alignment of the raw and manufacturer-processed data.

2.3. Data Analysis

Two common summary acceleration metrics were extracted from the datasets. The first
metric was the number of high- and medium-intensity acceleration and deceleration efforts
which were extracted for each player and game from each of the three acceleration datasets.
The start of a high effort was defined by a ±3 m·s−2 threshold (a negative threshold defines a
deceleration effort and a positive threshold an acceleration effort) and ±2 m·s−2 for medium
efforts. These thresholds were selected as they are commonly used for high and medium
acceleration and deceleration efforts in the research literature [7,9,23]. An effort was counted
when the acceleration data reached the set threshold and stayed above the set threshold for
at least 0.3 s [24] and ended when the acceleration data reached 0 m·s−2 [11]. The second
metric was the distance covered in meters using the manufacturer-processed GNSS distance
within a predefined high (≥3 m·s−2 for acceleration and ≤−3 m·s−2 for deceleration) and
medium (2 to 3 m·s−2 for acceleration and −2 to −3 m·s−2 for deceleration) intensity zone,
extracted from each of the three acceleration datasets.

2.4. Statistical Analysis

To estimate the effect of the three different data processing methods on the number
of acceleration/deceleration efforts (#) and distance (m) within the high-intensity zone
(±3 m· s−2) or medium-intensity zone (±2 m·s−2), linear mixed models were used to
account for recurring measures. A negative binomial generalised linear mixed model was
used for the effort model, as the efforts were count-based, not normally distributed data [25],
and a linear mixed model was used for the distance model [26]. Each model included a
fixed effect for processing method (raw, custom-processed, manufacturer-processed). The
models included a random effect for player ID and game, which allowed for different mean
values for each player and game. The change in number of efforts or distance reported
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between processing methods within the medium- or high-acceleration or -deceleration
zone was estimated, and a 95% confidence interval (CI) was used to denote the imprecision
of the fixed effect parameter estimates. To determine the difference in number of efforts
(#) and distance (m) within each processing method between the high-intensity zone or
medium-intensity zone, the same mixed models were used as mentioned above, but with
intensity (medium or high) as a fixed effect. All analysis were performed in MATLAB
(version 9.14.0 (R2023a), The MathWorks Inc., Natick, MA, USA).

3. Results
3.1. Between Processing Methods Effects

Overall, manufacturer processing had the lowest reported distance and efforts, fol-
lowed by the custom processing, then the raw data. When using manufacturer-processed
data, distance covered while accelerating above the high threshold was on average 7.5 m,
whereas the custom processing brought the distance up to an average of 421 m and the raw
data, 1380 m (Figure 1). For the efforts reported in the high-acceleration zone, manufacturer
processing reported 3 efforts on average, where custom processing reported 138 efforts and
raw data 224 efforts.
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Figure 1. Distance (m) decelerating (left–top) and accelerating (right–top), number of deceleration
efforts (left–bottom) and acceleration efforts (right–bottom), calculated for Medium (±2 m·s−2) and
High (±3 m·s−2) zones for one dataset processed in three different ways (I) raw, (II) custom-processed,
(III) manufacturer-processed. R = Data are different compared to Raw dataset of the same intensity.
C = Data are different compared to custom-processed dataset of the same intensity. * = Significantly
higher distance compared to the other intensity which was processed the same way.

For the variable distance in meters while in the high deceleration zone, the main
effect for processing method was significant (F(2, 696) = 5371, p < 0.001). Comparing
the custom processing to manufacturer processing, distance increased by 217 m, (95%
confidence interval (CI) = [200 m to 233 m], t(696) = 25, p < 0.001). Comparing the raw
data to manufacturer processing, distance increased by 849 m, (95% CI = [832 m to 865 m],
t(696) = 100, p < 0.001). Comparing the raw data to custom processing, distance increased
by 632 m, (95% CI = [615 m to 649 m], t(696) = 74, p < 0.001). The results of the effect of
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processing method on distance in the medium/high-acceleration or -deceleration zones are
presented in Table 2.

Table 2. Effects of processing method (raw, custom-processed, manufacturer-processed), on distance
in meters split by medium (±2 m·s−2)- and high (±3 m·s−2)-acceleration or -deceleration intensity.

Effect of Processing Method on Distance

Intensity Effect Estimate
(m)

Lower 95%
CI

Higher
95% CI df t p

A
cc

el
er

at
io

n High
Custom–Manufacturer 413 389 437 697 34 <0.001
Raw–Manufacturer 1373 1349 1397 697 112 <0.001
Raw–Custom 959 935 983 696 78 <0.001

Medium
Custom–Manufacturer 529 515 543 719 74 <0.001
Raw–Manufacturer 1042 1028 1056 719 145 <0.001
Raw–Custom 513 499 527 719 71 <0.001

D
ec

el
er

at
io

n High
Custom–Manufacturer 217 200 233 696 25 <0.001
Raw–Manufacturer 849 832 865 696 100 <0.001
Raw–Custom 632 615 649 696 74 <0.001

Medium
Custom–Manufacturer 327 315 339 719 53 <0.001
Raw–Manufacturer 798 786 810 719 130 <0.001
Raw–Custom 471 459 484 719 76 <0.001

df = degrees of freedom; t = t-statistic; p = p-value.

For the variable number of efforts while in the high-deceleration zone, the main effect
for processing method was significant, X2(2) = 15,938, p < 0.001. Comparing the custom
processing to manufacturer processing, the number of efforts increased 8.88 times, (95%
CI = [8.51 to 9.57], p < 0.001). Comparing the raw data to manufacturer processing, the
number of efforts increased 15.2 times, (95% CI = [14.6 to 15.9], p < 0.001). Comparing the
raw data to custom processing, the number of efforts increased 1.71 times, (95% CI = [1.67
to 1.77], p < 0.001). The results of the effect of processing method on number of efforts in
the medium/high acceleration or deceleration zones are presented in Table 3.

Table 3. Effects of processing method (raw, custom-processed, manufacturer-processed), on number
of efforts split by medium (±2 m·s−2) and high (±3 m·s−2) acceleration or deceleration intensity.

Effect of Processing Method on Number of Efforts

Intensity Effect
Estimate
(Rate of
Change)

Lower 95% CI Higher 95% CI p

A
cc

el
er

at
io

n High
Custom–Manufacturer 55.7 51.3 60.4 <0.001
Raw–Manufacturer 89.7 82.6 97.4 <0.001
Raw–Custom 1.61 1.57 1.66 <0.001

Medium
Custom–Manufacturer 1.43 1.38 1.48 <0.001
Raw–Manufacturer 6.13 5.93 6.34 <0.001
Raw–Custom 4.29 4.16 4.43 <0.001

D
ec

el
er

at
io

n High
Custom–Manufacturer 8.88 8.51 9.57 <0.001
Raw–Manufacturer 15.2 14.6 15.9 <0.001
Raw–Custom 1.71 1.67 1.77 <0.001

Medium
Custom–Manufacturer 1.18 1.14 1.23 <0.001
Raw–Manufacturer 5.09 4.92 5.27 <0.001
Raw–Custom 4.30 4.16 4.45 <0.001

3.2. Within Processing Method Effects

Overall, the distance while accelerating or decelerating was largest in the medium
zone compared to the high zone for all processing methods, except for distance while
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accelerating for the raw method. The number of efforts was largest in the high zone
compared to the medium zone for all processing methods except manufacturer processing.

For the variable distance while decelerating processed by the manufacturer, the main
effect for intensity was significant (F(1, 453) = 4345, p < 0.001). Distance in the medium-
intensity zone increased by 79 m compared to the high-intensity zone (95% CI = [77 m
to 81 m], t(453) = 66, p < 0.001). The results of the effect of intensity on distance while
decelerating or accelerating for each processing method are presented in Table 4.

Table 4. Effects of acceleration or deceleration intensity, medium (±2 m·s−2) and high (±3 m·s−2),
on distance in meters split by processing method (raw, custom-processed, manufacturer-processed).

Effect of Intensity on Distance

Processing Effect Estimate
(m)

Lower 95%
CI

Higher
95% CI df t p

A
cc

el
er

at
io

n Manufacturer Medium–High 118 114 121 455 74 <0.001

Custom Medium–High 234 225 243 455 51 <0.001

Raw Medium–High −211 −234 −189 455 −18 <0.001

D
ec

el
er

at
io

n Manufacturer Medium–High 79 77 81 453 66 <0.001

Custom Medium–High 190 182 197 455 52 <0.001

Raw Medium–High 29 13 45 455 3.4 <0.001

df = degrees of freedom; t = t-statistic; p = p-value.

For the variable number of efforts while decelerating processed by the manufacturer,
the main effect for intensity was significant (X2(2) = 1368, p < 0.001). The number of efforts
in the medium-intensity zone was 2.28 times greater compared to the high-intensity zone
(95% CI = [2.18 to 2.38], p < 0.001). The results of the effect of intensity on number of efforts
while decelerating or accelerating for each processing method are presented in Table 5.

Table 5. Effects of acceleration or deceleration intensity, medium (±2 m·s−2) and high (±3 m·s−2) on
number of efforts, split by processing method (raw, custom-processed, manufacturer-processed).

Effect of Intensity on Number of Efforts

Processing Effect Estimate
(Rate of Change) Lower 95% CI Higher 95% CI p

A
cc

el
er

at
io

n Manufacturer Medium–High 12.1 11.1 13.1 <0.001

Custom Medium–High 0.71 0.63 0.79 <0.001

Raw Medium–High 0.83 0.81 0.85 <0.001

D
ec

el
er

at
io

n Manufacturer Medium–High 2.28 2.18 2.38 <0.001

Custom Medium–High 0.30 0.29 0.31 <0.001

Raw Medium–High 0.66 0.60 0.72 <0.001

4. Discussion

This study aimed to measure the differences in commonly used summary acceleration
metrics during elite Australian football games of GNSS acceleration data that were derived
using three different processing methods (raw, custom-processed, manufacturer-processed).
The main finding was that there were substantial differences between the three process-
ing methods when calculating the same metric. Overall, compared to the raw data, the
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manufacturer-processed acceleration data had the lowest reported distance (up to 184 times
lower) and efforts (up to 89 times lower), followed by the custom-processed distance (up
to 3.3 times lower) and efforts (up to 4.3 times lower), where raw data had the highest
reported distance and efforts.

The raw data were unprocessed and consequently had the most noise present, result-
ing in the highest distance covered and number of efforts. The manufacturer-processed
acceleration data had the lowest reported distance and efforts. The results were approx-
imately 28 efforts lower than those found in literature using a similar GNSS device and
manufacturer software [27]. The difference could be explained by the fact that Rennie,
Kelly, Bush, Spurrs, Austin and Watsford [27] used a lower threshold of ±2.78 m·s−2 and
a shorter duration above the set threshold of 0.2 s to identify an effort. A lower duration
above the threshold of 0.2 s vs. 0.3 s (which was used in this study) has been shown to
identify 45% more acceleration efforts and 13% more deceleration efforts [24]. Furthermore,
all data that involved <75% of total game time were excluded from Rennie, Kelly, Bush,
Spurrs, Austin and Watsford [27], while there was no minimum game time requirements for
this study. When taking all factors (lower threshold, shorter duration above the threshold
and game time criteria) into consideration, the number of efforts reported are comparable
to the current study. This further highlights the effects of different processing methods on
acceleration data and accompanying difficulty in comparing results across studies.

Coaches and practitioners use acceleration metrics to quantify the demands (volume,
intensity and frequency of the metrics) of a sport or activity [7,28], which can be used to
create training programs to adequately prepare players for competition [8]. Furthermore,
researchers could be using and analysing GNSS manufacturer-processed acceleration data
and metrics for their research. A change in the metric output due to processing methods
will alter the demands they are quantifying. For example, a sudden increase in the volume
of acceleration undertaken might indicate to a coach that players are working harder than
normal. Although they are undertaking the same amount of work as usual, the metric
output increased due to different processing methods used. Examples of when processing
methods might change include when software is updated, athlete tracking technologies
are changed or when different software/algorithms are used to process the data. Coaches,
practitioners and researchers should be aware that processing methods can change, and
that these changes could affect metric outputs and alter the demands they are quantifying.

To be able to select a suitable processing technique for acceleration data, one should be
aware of the characteristics of their data (patterns and frequencies that could be present in
the data). The characteristics of the data can determine what type of processing method is
most suitable [29]. Based on the results of this study, practitioners using GNSS acceleration
data are recommended to select a processing method specific to their use case and charac-
teristics of the data. It is also recommended to evaluate the impact of different processing
methods on metrics of interest (e.g., number of efforts). For this study, the characteristics of
team sport-specific human movement patterns (elite AF players) and potential sources of
variability in the acceleration data should be taken into consideration. An athlete in full
sprint could have anywhere between 2 and 5 steps per second [30], indicating that at least
2 Hz patterns (corresponding to 2 steps per second) could be present in the acceleration
data. The acceleration data varies within a single step (from the heel strike of one foot to the
subsequent heel strike of the other foot), which is a result of changing the balance between
the propulsive and braking forces at each ground contact [31]. A surplus in propulsive
forces results in acceleration, where a surplus of braking forces results in deceleration. If an
athlete performs 2 steps per second, that means the acceleration data change significantly
at each single step [32]. This suggests that acceleration data might be more variable and
higher than what is currently indicated by GNSS devices.

The high acceleration values (considered as acceleration and deceleration values with
a high rate of change in speed) are shown by the results of the custom processing method,
which was smoothed with a filter which had a 2 Hz cutoff frequency, allowing for 2 Hz
patterns in the data. This method might be the closest approximation to the real world
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of all three processing methods. The larger distance run and number of efforts in raw
and custom-processed data compared to manufacturer-processed data is an indicator of
stronger data smoothing in the manufacturer-processed data. The custom-processed and
raw dataset showed that the acceleration data exceeded the high threshold (±3 m·s−2) for
more than 0.3 s, significantly more (up to 89.7 times) than the manufacturer-processed
dataset (see Table 3). Strong smoothing in the manufacturer data could eliminate important
portions of a signal by smoothing peaks and lowering the amplitude of high acceleration
data. The amplitude of the manufacturer-processed acceleration data is lowered to the
point where more data exceed the medium threshold (±2 m·s−2) but stay below the high
threshold (±3 m·s−2), as evident by the larger number of efforts in the medium zone
compared to the high zone (see Table 5). When looking into the literature, athletes have
reached acceleration values between 5–7 m·s−2 [32–35], suggesting that elite AF players
should be able to reach these values. However, the manufacturer-processed data suggest
that the elite AF players barely reach the set ±3 m·s−2 threshold, which is an indication that
manufacturer-processed data may be over-smoothing and masking the actual acceleration
values that an athlete is capable of.

The application of a data processing method with strong smoothing has been shown
to cause a reduction in the number of recorded acceleration efforts during a match [11].
Furthermore, manufacturer-processed GNSS acceleration data have shown a very large
mean bias, with lower acceleration values, when compared to a criterion measure [12]. In
combination with the results from the current study, these findings collectively suggest that
manufacturer-processed data are subject to extensive data smoothing.

Distance run in the medium-acceleration zone exceeded that of the high zone for all
different processing techniques except for the raw acceleration dataset, where the distance
recorded in the high zone was greater. The raw acceleration dataset was not subject to
smoothing, meaning that all potential sources of noise, such as sensor movement, multipath
interference and environmental conditions [36], were present in the data. This noise may
manifest as high-frequency components, leading to a larger representation of raw data in
the high zone compared to the medium zone and all other processing methods. Similar
findings have been reported for distance based summary acceleration metrics between
raw and manufacturer-processed data in a controlled environment [18] and between the
acceleration data of team sport training sessions [20].

Large inconsistencies exist in the literature for reported processing steps used on
acceleration data, which hinders the comparison of acceleration summary metric results
between studies [7,37]. The findings of the current study demonstrated substantial dif-
ferences between different processing methods when estimating the same acceleration
and deceleration metric. Therefore, future research should report all different processing
steps performed on their used acceleration data derived from an athlete tracking system to
ensure comparability of results between studies.

A noteworthy strength of this research is the use of elite Australian Football team data.
The dataset consisted of games played on different days and at different locations within
stadia, providing a real representation of diverse GNSS team data. The data were collected
with one type of GNSS device and is thus only representative of this specific device. Fur-
thermore, the manufacturer-processed data were exported using the specific manufacturer
software mentioned in the methods section. Since data processing procedures could vary
between software versions, it is important to note that the manufacturer-processed data
are representative only of this specific software. Future research investigating processing
methods of acceleration data of athlete tracking technologies should consider using local
positioning systems (LPS) and optical positioning systems, next to GNSS. Current elite
team sport environments require teams to use a variety of athlete tracking technologies
suitable for different locations, e.g., LPS or optical for indoor stadia, GNSS for outdoor or
training sessions [18]. The use of different athlete tracking systems interchangeably, re-
quires research to establish the influence of data processing on acceleration data of different
tracking systems to be able to compare acceleration data longitudinally.
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5. Conclusions

The results from this study demonstrated that there were substantial differences in
commonly used summary acceleration metrics (number of efforts performed and dis-
tance covered) during elite Australian football games between three processing methods
(raw, custom-processed, manufacturer-processed). Overall, the manufacturer-processed
acceleration data had the lowest reported distance and efforts, followed by the custom-
processed distance, where raw data had the highest reported distance and efforts. The
results indicate that different processing methods changed the metric output (number
of efforts and distance covered) and can in turn alter the quantification of the demands
of a sport (volume, intensity and frequency of the metrics). It is important for coaches,
practitioners and researchers using GNSS-derived acceleration data to know how, and be
aware that, processing methods change summary acceleration metrics (e.g., efforts and
distance covered) because they are often used to quantify the demands of a sport and to
create training programs to adequately prepare players for competition. Furthermore, it
is recommended that future research and tracking technology manufacturers report all
data processing practises performed on the acceleration data where possible. Knowing all
performed processing steps allow for comparability of results and the ability to identify if
differences may be due to processing practises rather than the used tracking technology.
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