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Abstract: Grasp classification is pivotal for understanding human interactions with objects, with
wide-ranging applications in robotics, prosthetics, and rehabilitation. This study introduces a novel
methodology utilizing a multisensory data glove to capture intricate grasp dynamics, including
finger posture bending angles and fingertip forces. Our dataset comprises data collected from
10 participants engaging in grasp trials with 24 objects using the YCB object set. We evaluate
classification performance under three scenarios: utilizing grasp posture alone, utilizing grasp force
alone, and combining both modalities. We propose Glove-Net, a hybrid CNN-BiLSTM architecture for
classifying grasp patterns within our dataset, aiming to harness the unique advantages offered by
both CNNs and BiLSTM networks. This model seamlessly integrates CNNs’ spatial feature extraction
capabilities with the temporal sequence learning strengths inherent in BiLSTM networks, effectively
addressing the intricate dependencies present within our grasping data. Our study includes findings
from an extensive ablation study aimed at optimizing model configurations and hyperparameters.
We quantify and compare the classification accuracy across these scenarios: CNN achieved 88.09%,
69.38%, and 93.51% testing accuracies for posture-only, force-only, and combined data, respectively.
LSTM exhibited accuracies of 86.02%, 70.52%, and 92.19% for the same scenarios. Notably, the
hybrid CNN-BiLSTM proposed model demonstrated superior performance with accuracies of 90.83%,
73.12%, and 98.75% across the respective scenarios. Through rigorous numerical experimentation,
our results underscore the significance of multimodal grasp classification and highlight the efficacy
of the proposed hybrid Glove-Net architectures in leveraging multisensory data for precise grasp
recognition. These insights advance understanding of human–machine interaction and hold promise
for diverse real-world applications.

Keywords: data gloves; human grasp; grasp classification; deep learning

1. Introduction

Grasping and manipulation are fundamental functions in robotics, which are char-
acterized by complex interactions between robotic hands and a variety of objects. These
interactions are organized into specific grasp types, each necessitating distinct hand con-
figurations and force applications. The accurate understanding and classification of these
grasp types are vital for refining robotic manipulation and carry significant implications
across diverse fields, including robotics, medical device technology, and biomechanics.
These classifications help enhance the dexterity and adaptability of robotic systems, making
them more capable of performing nuanced tasks across different environments.

Despite significant advancements in sensor-based grasp classification techniques,
robotic systems still face challenges in mastering complex manipulation tasks [1]. A crucial
barrier involves the simultaneous interpretation of comprehensive grasp insights during
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hand–object interactions, encompassing hand postures and forces. These insights are vi-
tal for a thorough understanding of manipulation dynamics. Grasp gesture recognition
typically embraces two primary methods: vision-based methods (non-wearable) and data
gloves (wearable) [1–3]. Vision-based methods involve capturing human gestures through
cameras and processing image sequences to extract and classify gesture features. Mod-
ern vision-based sensors and motion-capture systems, while adept at providing detailed
trajectory data, often fail to capture the nuances of physical interactions fully [4,5]. This
limitation is especially problematic in tasks requiring precise hand–object interactions, such
as unscrewing a bottle cap, where actions like squeezing or twisting might appear visu-
ally identical [6,7]. The reliance on visual feedback frequently proves inadequate because
of significant occlusions between the hand and the object, severely compromising data
reliability [1,8].

On the other hand, data gloves offer a promising solution by directly capturing hand
movements, thereby circumventing the occlusion issue [9]. These gloves are equipped
with sensors that provide detailed and continuous data on grasp, enabling precise and
reliable grasp classification even in scenarios where visual information is obstructed. The
potential of data gloves to address occlusion issues and improve data reliability in complex
manipulation tasks is significant [1]. A primary difficulty lies in simultaneously processing
hand gestures and forces, which is crucial for understanding manipulation dynamics and
achieving precise hand–object interactions [10]. This reinforces the argument for the devel-
opment of multisensory data gloves, which effectively integrate sensor data to overcome
the limitations of both methodologies. Integrating force sensors with gesture recognition
technologies, particularly through sensor-based data gloves, has shown promising results
in enhancing the understanding and classification of hand grasps [10,11]. These wearable
technologies offer a comprehensive view of manipulation by capturing both the gestural
configuration of the hand and the forces exerted during object interaction. This multimodal
data approach improves the precision and functionality of robotic systems and facilitates
the development of sophisticated robotic manipulations and advanced prosthetic devices.
Data gloves equipped with sensors effectively understand the human grasp, translating
these complex movements and pressures into digital data that robotic hands can ana-
lyze and replicate. This technology not only enhances human–machine interactions but
also aids in developing intelligent prosthetic systems and contributes to the broader field
of biomechanics.

Building upon the capabilities of sensor-based data gloves, this research is dedicated
to systematically evaluating and comparing the effectiveness of different sensor data
types, specifically bending angles and fingertip forces, and various computational models,
including CNN, LSTM, and CNN-BiLSTM, in the realm of robotic grasp classification. The
primary goal of this study is to identify the most effective combination of sensory data and
modeling techniques that enhance the precision and efficiency of grasp classification. We
hypothesize that a holistic integration of grasp postures, which provide detailed positional
data of the fingers, and fingertip forces, which measure the interaction pressure, will offer
a more comprehensive understanding of grasp dynamics. This investigation will assess
the performance of each model individually and in combination to determine the optimal
configuration for accurate and reliable grasp classification. The findings from this study
are expected to advance the fields of robotics and biomechanics significantly, facilitating
improvements in robotic grasping and aiding in the design of next-generation rehabilitation
devices such as prosthetic hands and exoskeletons that more closely emulate human hand
functionality [10,11]. The significant contributions of this research are outlined below:

• We proposed Glove-Net, a hybrid classification model that integrates the strengths of
Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory
(BiLSTM) networks based on ablation study. This approach leverages CNNs’ ability
to extract local features and patterns from gesture data with BiLSTMs’ strength in
capturing long-range dependencies and context from past and future states.
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• We investigated the potential of the proposed model for three sets of data, namely,
bending angle, fingertip forces, and a combination of both, by evaluating the perfor-
mance metrics such as accuracy, precision, recall, and F1-score. Later, we compared
the proposed model accuracy with the CNN and LSTM models for all three cases.

• The study confirms that combining data of bending angle and fingertip forces yields
better classification accuracy than using these modalities separately. Our test results
demonstrate that our model outperforms existing algorithms in accuracy, precision,
recall, and F1-score, underscoring the efficacy of integrating multiple sensor data types
for robust grasp classification.

2. Literature Review

The way we interact with our environment through our hands has been extensively
studied and classified. Recent advances in grasp categorization involve detailed analysis
of different grasp types and their applications in robotic manipulation. The study of
hand grasps has evolved significantly over time. Schlesinger [12] initially identified six
fundamental grasp patterns: cylindrical, tip, hook, palmar, spherical, and lateral. Building
on this, Napier [13] distinguished between power grasps, which are used for stability
and strength, and precision grasps, which are used for dexterity. Cutkosky [14] further
refined these categories by considering object shape, size, and non-prehensile postures.
Bullock [15] expanded the taxonomy to include subtle within-hand movements, while
Lyons [16] introduced geometric classifications like encompass and lateral grasps. In other
work on hand grasp categorization, Feix [17] proposed a comprehensive taxonomy of
33 grasp types based on the hand’s configuration and the object’s properties, which is
crucial for precision in robotics and prosthetics.

A comprehensive examination of the current literature unveils various methodolo-
gies for grasp classification. Traditional methods, grounded in biomechanical analyses,
have established the groundwork for comprehending fundamental grasp patterns [18].
Grasp classification has been explored through a range of modalities, encompassing EMG
signals [18], visual data [19], and data gloves that capture finger movements [4] and
measure fingertip forces [20]. Embedded sensors within data gloves vary in nature and
functionality. These sensors generally fall into four categories suitable for hand-related
tasks: bend sensors, stretch sensors, inertial measurement units (IMUs), and magnetic
sensors [21]. While the majority of current data gloves employed for hand pose modeling
rely on bend or stretch sensors, there are instances where gloves incorporate a combination
of multiple sensor types. Such data gloves are embedded with tactile and bend sensors to
measure the synchronized multimodal grasp information [22,23]. In grasp classification,
recent progress integrates wearable sensor data and transmission hardware with intelligent
learning algorithms. Developing a classification model stands as a pivotal phase in grasp
recognition. This process involves training sample data with appropriate algorithms to
create models capable of identifying new data and allowing for continuous improvement
through retraining. The choice of model depends on the nature of the data and research
goals. Machine learning (ML) algorithms remain prevalent in glove-based gesture recog-
nition. These include methods such as naive Bayesian (NB) [24,25], logistic regression
(LR) [26], decision trees (DT) [27], support vector machines (SVMs) [28,29], and K-nearest
neighbors (KNNs) [25,27,28]. While the utilization of machine learning with a data glove to
classify acquired data into various sign languages is widespread [25,29], only a few studies
have applied machine learning techniques for classifying grasps performed using a data
glove [27,30] with an average accuracy of 93 percent using SVMs. Researchers [31] con-
ducted a comparative study revealing that SVM exhibited the highest overall accuracy and
the lowest sensitivity to training sample sizes, which was followed by RF and k-NN. SVMs
stand out in training sample sizes, particularly in tasks like assessing locomotion quality
using wearable sensor data. While SVMs require hyperparameter tuning, a grid search
algorithm can estimate suitable values. To address challenges like poor generalization, it
is crucial to train the model on a representative dataset [32]. Nassour et al. [33] used a



Sensors 2024, 24, 4378 4 of 24

sensory glove with linear regression to estimate joint angles and identify 15 gestures with
89.4% accuracy. Chen et al. [27] developed a wearable rehabilitation system that recognized
16 finger gestures using SVM, achieving 93.32% accuracy. Maitre et al. [34] created a data
glove prototype that recognized objects in eight daily activities with 95% accuracy using
random forest. Lin et al. [35] employed linear regression to classify three hand movements
with a high accuracy of 98.0%.

However, in the domain of data gloves, researchers have increasingly turned their
attention to applications of deep learning techniques for grasp classification [2,4,36–38].
CNNs are recognized as the most prevalent deep learning algorithms, which are charac-
terized by stacked convolutional filters, activation functions, and pooling layers. These
components collectively enable the effective extraction of discriminative features from
time-series data. CNNs have succeeded in diverse glove-based gesture classification tasks,
including sign languages and custom classifications. CNNs were specifically employed to
classify hand poses obtained with a data glove using a large-scale tactile dataset, achieving
a classification accuracy of 89.4% [39]. A knitted glove was introduced by Lee et al. [38],
which is capable of pattern recognition for hand poses. Additionally, they designed a novel
CNN model for conducting experiments on hand gesture classification. The experimental
results revealed that the proposed CNN structure effectively recognized 10 static hand
gestures, achieving classification accuracies ranging from 79% to 97% for different gestures
with an average accuracy of 89.5% . Emmanuel et al. [4] pioneered the application of CNN
in classifying grasps through piezoelectric data gloves. Experimental data were collected
in which each participant performed 30 object grasps based on Schlesinger’s classification
method. The findings illustrated that the CNN architecture attained the highest classifi-
cation accuracy, reaching 88.27%. LSTM, a recurrent neural network (RNN), is tailored to
retain long-term dependencies through its memory cell structure, enabling effective grasp
classification when trained with suitable models. Tai et al. [40] proposed a new sensor-based
continuous hand gesture recognition algorithm using LSTM. Although their experimental
results demonstrated the efficacy of the approach, they did not compare it with other
contemporary or traditional methods. A data glove designed for real-time dynamic gesture
recognition incorporated LSTM neural networks, fully connected layers, and advanced
algorithms for the precise localization and recognition of gestures [41]. A data glove
equipped with 3D flexible sensors and wristbands utilized a deep feature fusion network
to capture detailed gesture information effectively [24]. This method combined multisensor
data using a CNN with residual connections and processed long-range dependencies of
gestures via LSTM, achieving high precision on the American Sign Language dataset.

Recent studies have demonstrated that hybrid models, which merge the capabilities
of CNNs and LSTM networks, significantly enhance the accuracy and robustness of classi-
fication tasks such as grasp recognition [42–45]. CNNs effectively extract spatial features
from data but do not capture temporal dependencies, which are vital for understanding
sequences of actions or gestures. On the other hand, LSTMs excel in processing time-
dependent data but might overlook the spatial complexities that CNNs can detect [46,47].
In this context, Lopez et al. [42] utilized EMG signals for hand gesture recognition, in-
tegrating a post-processing algorithm that significantly boosts recognition accuracy by
filtering out erroneous predictions. This approach proved more impactful than solely using
LSTM, enhancing the CNN model’s accuracy by 41.86% and the CNN-LSTM model’s by
24.77%. Moreover, while the inclusion of LSTM improved recognition by 3.29%, it did so at
a high computational cost. The hybrid CNN-LSTM model with post-processing reached
an impressive average accuracy of 90.55%, offering a promising direction for future grasp
recognition research [42]. Karnam et al. [43] introduced a hybrid CNN-BiLSTM architecture
(EMGHandNet) that classifies hand activities using sEMG signals by integrating spatial
and bidirectional temporal data. Evaluated across five benchmark datasets, this model
achieved superior classification accuracies, notably 91.29% on the BioPatRec DB2 dataset,
demonstrating its effectiveness over existing methods and highlighting its potential to
advance hand gesture recognition technologies [43]. Wu et al. [44] explored the use of
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data gloves for dynamic hand gesture recognition in their study, introducing an innovative
model, the Attention-based CNN-BiLSTM Network. This model combines CNNs for local
feature extraction and BiLSTMs for contextual temporal analysis, which is further enhanced
by attention mechanisms to improve recognition accuracy. Across seven dynamic gestures,
the hybrid model demonstrated superior performance, achieving a notable accuracy of
95.05% on the test dataset [44].

Modeling force distribution in grasping is essential for applications requiring physical
human–robot interaction, such as robotic prosthetic hands. These systems must mimic
human-like force patterns for natural interactions [48]. Numerous devices and methods
have been developed to study force distribution across different grasps [20,49,50]. Abbasi
et al. [48] used a data glove with 17 sensors to identify unique force patterns for each grasp
type, creating a robust taxonomy that offers valuable insights for designing robotic hands
and grasp controllers. Understanding these patterns is crucial for enhancing robotic and
prosthetic systems’ functionality. Integrating force sensory feedback into grasp classification
improves accuracy and supports advanced control strategies, leading to more intuitive and
effective human–robot interactions [49,50].

Despite the significant advancements in hand gesture recognition through machine
learning, deep learning, and hybrid models, previous studies have focused on gesture
classification without fully capturing the complete spectrum of grasp characteristics. This
underscores a significant research gap: the limited studies of a multimodal grasp classifica-
tion system integrating both posture and force data. Achieving a genuinely thorough grasp
of classification requires the integration of diverse modalities. While gesture recognition
provides valuable insights into hand movements, it does not account for the force exerted
during these interactions, which is critical for understanding grasp dynamics. Putting force
sensors in data gloves could enable the simultaneous measurement of finger bending and
the forces applied, offering a more detailed view of how objects are manipulated. This
multimodal approach would detect subtle nuances in how different objects are handled,
distinguishing between similar gestures that may require different levels of force. Such
detailed data are crucial for applications requiring high precision in exoskeletons and
prosthetics, where understanding the intensity and stability of a grasp can greatly enhance
functionality and user safety. Due to limited research for multimodal grasp data, many
potential opportunities regarding wearable sensors and intelligent algorithms remain un-
explored. To tackle these challenges, researchers have advocated for a human-inspired
strategy known as multimodal learning, which involves learning a task from various
sensory modalities [51]. For instance, diverse sensors can capture the same event from
different perspectives. Moreover, by incorporating multiple sources of information, mul-
timodal perception enables models to acquire a more resilient understanding of a task
than relying solely on unimodal data [36,52]. A thorough understanding of parameters
like finger-bending angles and fingertip pressures could enhance grasp recognition and
assessment and aid in planning effective rehabilitation strategies.

Based on the above literature gap and related deductions, the authors were inspired
to develop a cost-effective 3D-printed flexible multisensory data glove with embedded
flex sensors and force sensors positioned strategically on the dorsal and palmar regions of
the hand [53]. This glove aimed to gather valuable insights into human grasp regarding
posture and force. Our research hypothesis posits that integrating multimodal data through
a hybrid model offers a more robust framework for grasp classification. This approach
capitalizes on the detailed spatial information captured by CNNs and the temporal insights
provided by BiLSTMs, resulting in optimized classification accuracy. By employing this
method, we aim to enhance the practical application of such technologies in robotics
and prosthetics development, ultimately leading to more nuanced and effective human–
machine interactions.

The structure of the rest of this paper is as follows. Section 3 discusses the methodology,
including the 3D-printed multisensory data glove, data collection, and our hybrid deep
learning approach featuring CNNs and BiLSTM within the Glove-Net model. Section 4
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presents the classification results using angle, force, and combined data and analyzes
model performance. Section 5 discusses the findings and their implications for robotic
grasp classification. Section 6 concludes the paper, summarizing key contributions and
suggesting future research directions.

3. Methodology
3.1. The 3D-Printed Multisensory Data Glove

The data glove is designed to enhance grasp classification by integrating precise
sensors capable of capturing hand movement patterns and fingertip forces. Fabricated
from Raise3D Premium TPU-95A filament, the glove combines elasticity, resilience, and
durability, ensuring user comfort and adaptability across various applications, including
virtual reality and clinical diagnostics. It features strategically placed sensors, including
Finger Tactile Pressure Sensors (FingerTPSs) and flex sensors, which are crucial for the
accurate data acquisition of finger movements and applied forces. These sensors are
embedded in a lightweight structure that conforms to different hand shapes, facilitating
natural movement and ease of use. The complete system, supported by an Arduino-
based instrumentation board, captures and displays real-time data effectively, serving
both professional and recreational purposes comprehensively. The design of the data
glove in this work is centered around three pivotal considerations: Sensor Integration,
Wearability and User Comfort, and Generic Design for multiple users. Detailed discussions
on the glove’s design considerations and functionalities are elaborated in the authors’ prior
research [53], providing a deeper insight into its technical and practical implications. The
complete setup of the 3D-printed fabricated data glove is illustrated in Figure 1.

Figure 1. The 3D-printed data glove setup fabricated with the sensors.

The grasp posture measurement facilitated by the data glove involves flex sensors
embedded within, which provide a generalized measurement of joint flexion by capturing
the overall flexion of the MCP, DIP, and PIP joints combined. These sensors account
for the collective movement patterns rather than the specific angles of individual finger
flexions, ensuring comprehensive data acquisition. The sensors’ design allows for real-time
monitoring and the accurate capturing of dynamic hand movements, which are critical for
evaluating hand functionality during various tasks. The Arduino-based electronic hardware
configuration further enhances this system’s robustness, which processes the sensor data
to provide detailed and reliable output. For detailed insights into the grasp posture
measurement and sensor configurations, please refer to the authors’ previous work [53].
Additionally, fingertip force measurement employs capacitive Finger TPS sensors, which
detect subtle pressure changes and grasp forces with high sensitivity and repeatability.
These sensors, crucial for assessing the tactile feedback during object manipulation, provide
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valuable data for understanding interaction dynamics. Their performance and technical
specifications are detailed further in the authors’ previous work, where their application in
enhancing grasp recognition accuracy is comprehensively explored [53].

3.2. Data Collection

The sensorized glove developed is designed to detect finger flexion/extension and fin-
gertip forces while grasping household objects from the Yale–CMU–Berkeley (YCB) set [54].
An experimental setup is tailored for a specific grasping task, which is benchmarked by the
Anthropomorphic Hand Assessment Protocol (AHAP) utilizing 24 objects from the publicly
accessible YCB object and model set, ensuring potential replication in future studies [55].
Grasping capability involves securely grasping various daily-life objects and sustaining
a stable grip, including eight different grasp types (GTs): pulp pinch (PP), lateral pinch
(LP), diagonal volar grip (DVG), cylindrical grip (CG), extension grip (EG), tripod pinch
(TP), spherical grip (SG), and hook grip (H) [17]. The set includes 24 tasks encompassing
these GTs, which were chosen based on research in human grasp analysis, prosthetics, and
rehabilitation [17]. A selection of three objects from the YCB collection represents each
grasp type, accounting for variations in size, shape, weight, texture, and rigidity, totaling
24 objects covering food, kitchen, tool, shape, and task categories [55]. Figure 2 illustrates
the eight distinct grasp types incorporated into this study. The specifications of each object
are explained in the authors’ previous work [53].

Figure 2. Eight grasp types with three objects from YCB set of objects used in DLAs [53].

Ten healthy subjects, aged 25-45, including six males and four females, were recruited
for the study. They self-reported good hand health, without any pain, injury, or disease
such as arthritis. The experimental procedures followed ethical guidelines outlined in [56],
prioritizing subject well-being and data credibility. Approval was obtained from the
Institute Human Ethics Committee (Reference: IHEC/SH/1/2020). All participants were
right-handed and showed no complications related to cognition or upper extremity function,
aligning with criteria for individuals with hemiparesis.

Establishing clear experimental protocols and benchmarks is essential due to the
diverse interests and evolving nature of manipulation research, making it challenging to
craft adaptable task descriptions. The experiment considered factors such as shape, size,
weight, grasp gesture, and stiffness to accommodate various manipulation types. Subjects
conducted repeated grasp trials with various grasp types using different everyday objects,
with the camera positioned 60 cm from the object, capturing 30-second grasping trials.
Subjects began with their gloved hand resting on the table and then grasped and elevated
the object to a 15 cm height, maintaining a stable hold for 20 s. Data collection divided each
trial into four phases: Approaching, Grasping, Lifting, and Holding. The experimental
setup is detailed in Figure 3.
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Figure 3. (a) Experimental time diagram. (b) Schematic diagram of the experimental setup.

During trials, some fingers made contact with the object without yielding discernible
sensor readings, which was likely due to grasping by finger pads and the palm without
involving fingertips where force sensors are located. To avoid this, participants executed
natural grasps without additional constraints, resulting in diverse grasp postures recorded
for each object. In .csv format, the dataset contains grasp force (in newtons) and finger-
bending angles (in degrees) for the Thumb, Index, Middle, Ring, and Pinky fingers in each
trial. Tactile and bending angle data consist of 5 channels and 1200 steps within 30 s.

The subjects performed 10 trials per object, resulting in a total of 2400 samples
(10 subjects × 8 grasp types × 3 objects per grasp type × 10 trials). Each trial was recorded
over 30 s at a frequency of 40 Hz, yielding 1200 data points per trial, which gives a total
of 2,880,000 data points (2400 trials × 1200 data points per trial). This extensive, high-
resolution dataset supports the effective training of our CNN-BiLSTM model, ensuring an
accurate classification of grasp types and robust generalization. The high testing accuracy
confirms the dataset’s adequacy for reliable neural network training.

3.3. The Deep Learnig Classification Approach
3.3.1. Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a deep learning model designed for pro-
cessing data with grid-like structures, such as images or sequences. CNNs excel at feature
extraction and pattern recognition by applying convolutional layers to capture spatial
hierarchies in the data. In a 1D-CNN, convolution layers use filters (kernels) on input
data to create feature maps, performing element-wise multiplications and summations to
detect local patterns and relationships like those between bending angles and fingertip
forces. Pooling layers, such as MaxPooling1D, down-sample the feature maps by select-
ing the maximum value within a window, reducing dimensionality and computational
complexity while retaining significant features. This makes feature detection invariant
to small translations in the input data. dropout layers prevent overfitting by randomly
setting input units to zero during training, ensuring the network learns robust, generalized
features rather than memorizing the training data. Activation functions like the Rectified
Linear Unit (ReLU) introduce non-linearity, helping the network learn complex patterns by
outputting zero for negative inputs and the input value for positive inputs, speeding up
convergence. Key hyperparameters in a 1D-CNN include the number of CNN layers, the
number of neurons (filters) in each layer, the filter size (kernel size), and the subsampling
factor (pooling size). The network’s depth, determined by the number of convolution layers
and neurons per layer, influences its ability to capture various features, while filter size and
pooling size control the scope and degree of down-sampling.
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Despite the effectiveness of 1D-CNNs in spatial feature extraction, they have limita-
tions in capturing temporal dependencies and long-range interactions within sequential
data. This limitation is crucial for our grasp classification task, as the temporal dynamics
and sequential nature of the bending angles and fingertip forces are essential for accurately
identifying grasp types. To address this, one can combine the CNN with a Bidirectional
Long Short-Term Memory (BiLSTM) network.

3.3.2. Bidirectional Long Short-Term Memory (BiLSTM)

In contrast to 1D-CNNs, which excel at spatial feature extraction, the BiLSTM network
effectively learns temporal dependencies and long-range interactions within sequential
data. BiLSTM is a type of recurrent neural network (RNN) that processes sequential data
in both forward and backward directions, combining the power of LSTM with bidirec-
tional processing. This enables the model to capture both past and future context of the
input sequence, making it highly effective for grasp classification using our dataset. To
understand BiLSTM in the context of grasp classification, let us break down its components
and functionality:

• LSTM addresses traditional RNNs’ limitations in capturing long-term dependencies
in sequential data by introducing memory cells and gating mechanisms. These allow
LSTMs to selectively retain and forget information over time, storing information for
extended durations. This is essential for grasp classification, where the relationship
between bending angles and fingertip forces over time is critical.

• Bidirectional processing enhances RNNs by processing input sequences simultane-
ously in both directions using two LSTM layers: one for the forward direction and one
for the backward direction. Each layer maintains its hidden states and memory cells (see
Figure 4), ensuring the model captures the full context of the grasping sequence.

• During the forward pass, the input sequence (bending angles and fingertip forces)
is fed into the forward LSTM layer from the first to the last time step. The forward
LSTM computes its hidden state and updates its memory cell at each step based on the
current input and previous states. Simultaneously, the backward LSTM processes the
sequence in reverse, from the last to the first time step, capturing future information
during the backward pass.

• Once the forward and backward passes are complete, the hidden states from both
LSTM layers are combined at each time step, either by concatenation or another
transformation. This combined information provides a richer understanding of the
sequence, capturing dependencies from both past and future time steps.

• The benefit of BiLSTM for grasp classification is capturing context before and after a
specific time step. By considering both past and future information, BiLSTM captures
richer dependencies in the input sequence of bending angles and fingertip forces,
leading to more accurate grasp classification.

Figure 4. Schematic diagram of BiLSTM architecture.



Sensors 2024, 24, 4378 10 of 24

The grasp classification architecture includes several key components. The input
sequence consists of vectors representing data points like bending angles and fingertip
forces for each finger during a grasping instance. The core component is the BiLSTM layer,
which has two LSTM layers: one processes the input sequence forward, and the other
processes it backward, each with its parameters. The output of the BiLSTM layer combines
the hidden states from both directions at each time step. This output is passed through
a fully connected layer and a softmax activation for grasp classification to obtain class
probabilities for each grasp type.

Combining CNN and BiLSTM, the architecture captures spatial and temporal features
in the grasping data, enhancing classification performance. To improve its capabilities, the
BiLSTM can be extended with additional layers, such as fully connected layers. Integrating
BiLSTM with CNN addresses the limitations of CNNs in capturing temporal dependencies,
providing a robust solution for grasp classification.

3.3.3. The Proposed Glove-Net Model

To leverage the strengths of both Convolutional Neural Networks (CNNs) and Bidi-
rectional Long Short-Term Memory (BiLSTM) networks, we propose the Glove-Net model
as a hybrid CNN-BiLSTM architecture for grasp classification of our dataset. This model
effectively combines the spatial feature extraction capabilities of CNNs with the temporal
sequence learning strengths of BiLSTM networks, addressing the complex dependencies
within our grasping data. With an iterative selection of learning rates and 50 training
epochs, the model balances convergence speed and performance optimization, ensuring
robust grasp classification. Furthermore, the dataset is strategically divided into three
subsets: training, testing, and validation. The training set is used to train the model, the
testing set is used to evaluate the model’s performance on unseen data, and the validation
set is used to tune hyperparameters and prevent overfitting. During the initial training and
evaluation of the Glove-Net model, the dataset was divided into training (80%), validation
(10%), and test (10%) sets. This three-set division allowed for effective model training
and hyperparameter tuning using the training and validation sets, while the test set was
reserved for final performance evaluation.

Fusing CNN and BiLSTM enables the model to capture both spatial and temporal
features in the grasping data. The fusion process occurs in three main stages: (1) Feature
Extraction with CNN: The input grasp data are processed through convolutional layers,
which apply filters to detect spatial patterns, resulting in a set of feature maps. (2) Temporal
Processing with BiLSTM: These feature maps are passed to the BiLSTM layers, which process
them bidirectionally to capture temporal relationships, producing a sequence of enriched
feature vectors. (3) Integration and Classification: The feature vectors are flattened and fed
into dense layers that learn high-level representations of the grasp actions, culminating in a
softmax layer that classifies the grasp type.

The proposed Glove-Net model architecture for grasp classification integrates the
strengths of both Convolutional Neural Networks (CNNs) and Bidirectional Long Short-
Term Memory (BiLSTM) networks. The model begins with a 1D convolutional layer,
comprising 64 filters with a kernel size of 2, which effectively captures local spatial features
within the bending angles and fingertip forces of the grasping data. This is followed by a
max-pooling layer with a pool size of 2, which reduces the dimensionality of the feature
maps, retaining essential features while reducing computational complexity. The model’s
core is a bidirectional LSTM layer with 64 units, which processes the sequence data in
both forward and backward directions, capturing comprehensive temporal dependencies
from past and future time steps. The output from the BiLSTM layer is then flattened into a
1D feature vector, which is further transformed by a dense layer with 32 units and ReLU
activation, learning high-level representations of the grasping data. A dropout layer with a
50% dropout rate is included to prevent overfitting, promoting robust feature learning. The
final output layer, a dense layer with 8 units and a softmax activation function, classifies
the grasping instances into one of the eight grasp types.
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The model architecture employed in this research underwent a meticulous refinement
process through an extensive ablation study to identify optimal configurations and hyperpa-
rameters for precise and comprehensive grasp classification on our dataset. We performed
a grid search to explore a predefined set of hyperparameters. This involved evaluating
all possible combinations of selected values for each parameter. This study systematically
explored various parameter values, encompassing the number of Conv1D filters, Conv1D
kernel sizes, LSTM units, and dense layer sizes, as displayed in Table 1. Specifically, we
considered Conv1D filters of 32 and 64, Conv1D kernel sizes of 2 and 3, LSTM units of
32 and 64, dense units of 32 and 64, softmax units of 8, and dropout rates of 0.1 and 0.5.
By systematically varying these parameters and assessing their impact on classification
performance, we tailored the model architecture to effectively capture the intricate nuances
of grasp patterns within our dataset, ultimately achieving superior classification accuracy.

Table 1. Top 16 configurations during ablation study.

Config. Conv1D
Filters

Conv1D
Kernel

Size

LSTM
Units

Dense
Units

Dense
Units

Softmax

Dropout
Rate

Accuracy
(%)

C1 32 2 32 32 8 0.1 98.2292
C2 32 2 32 32 8 0.5 98.3333
C3 32 2 32 64 8 0.1 98.4500
C4 32 2 32 64 8 0.5 96.8750
C9 32 3 32 32 8 0.1 95.9375

C11 32 3 32 64 8 0.1 96.5625
C13 32 3 64 64 8 0.1 95.8333
C14 32 3 64 64 8 0.5 94.5833
C16 32 3 64 32 8 0.5 95.2083
C18 64 2 32 32 8 0.5 95.8333
C22 64 2 64 32 8 0.5 98.7542
C24 64 2 64 64 8 0.1 98.6458
C26 64 3 32 32 8 0.5 94.6875
C28 64 3 64 32 8 0.1 97.1875
C29 64 3 64 64 8 0.5 96.8750
C31 64 3 64 64 8 0.5 96.3542

Note: Bold text denotes the optimal CNN-BiLSTM configuration, which is C22.

The primary objective of our ablation study was to pinpoint the CNN-BiLSTM config-
uration yielding the highest accuracy in grasp classification. After evaluating 32 configura-
tions, classifier C22, illustrated in Figure 5, emerged with the highest average classification
accuracy. Consequently, C22 was designated as the optimal CNN-BiLSTM configuration for
our study. This rigorous analysis was pivotal in ensuring that our CNN-BiLSTM algorithm
was equipped with the most effective parameters, enhancing its accuracy in classifying
grasp patterns.
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Figure 5. The proposed 1D CNN-BiLSTM Glove-Net classification model architecture.
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3.4. Performance Matrices

To evaluate the performance of our proposed hybrid CNN-BiLSTM model for grasp
classification, we conducted experiments using robust computational resources and soft-
ware platforms. The software platforms and libraries used in our experiments were Python
3.8, Keras with TensorFlow backend (version 2.4.0) for deep learning, Pandas (version
1.2.3) and NumPy (version 1.19.2) for data manipulation and analysis, Matplotlib (version
3.3.4) and Seaborn (version 0.11.1) for visualization, and Scikit-learn (version 0.24.1) for
evaluation metrics.

To comprehensively evaluate the performance of the grasp classification model, we
employed the following evaluation metrics: accuracy, F1-score, and confusion matrix.
Accuracy measures the proportion of correctly classified instances, providing a basic
measure of the model’s overall performance. The F1-score, the harmonic mean of precision
and recall, balances these two metrics and is especially useful for imbalanced datasets. The
confusion matrix provides a detailed breakdown of correct and incorrect classifications for
each grasp type, helping to understand the errors the model makes and identify specific
classes that are harder to classify correctly. By employing these evaluation metrics, we can
comprehensively assess the performance of our proposed CNN-BiLSTM model for grasp
classification, allowing us to understand the strengths and weaknesses of the model and
ensuring a thorough evaluation of its effectiveness in classifying the different grasp types
in our dataset.

4. Results

This section presents a comprehensive analysis of the proposed CNN-BiLSTM (Glove-
Net) model’s classification performance using three different data type scenarios: angle data,
force data, and combined angle and force data. By evaluating key performance metrics
such as accuracy, precision, recall, and F1-score, we aim to compare and contrast the efficacy
of each data type in grasp classification. Confusion matrices are included to provide a
detailed breakdown of model predictions for each grasp type. Additionally, we analyze
the validation accuracy curves to assess the generalization capabilities of the models.
Comparative graphs are provided to visualize the differences in performance across the
various models. This section highlights the advantages of using multimodal combined data
and hybrid deep learning model for achieving higher accuracy and reliability in robotic
grasp classification.

4.1. Classification with Angle Data

The CNN-BiLSTM model was trained using only the angle data from the dataset,
which focuses on the bending angles of each finger. The model achieved an overall accuracy
of 90.83%. This indicates a strong performance in classifying different grasp types based
on finger-bending patterns alone. As detailed in Table 2, the model demonstrated high
precision, recall, and F1-scores across most grasp types. For instance, it achieved a precision
of 1.00 for both DVG and SG, indicating that the model made very few false positive
predictions for these grasp types. Furthermore, the recall for LP, EG, and SG was also
perfect at 1.00, suggesting that the model successfully identified all these grasps within the
test set.

The confusion matrix for the angle data, depicted in Figure 6, provides a detailed
breakdown of the model’s prediction performance for each grasp type. Each cell in the
matrix represents the number of times a predicted grasp type matched the actual grasp
type with diagonal elements indicating correct predictions and off-diagonal elements
representing misclassifications. The cells are color-coded to reflect the density of the
values: darker green indicates higher correct predictions, while darker red indicates higher
misclassification. The values in the confusion matrix are normalized to reflect the percentage
accuracy for each class. The matrix shows that the model correctly classified PP with an
average of 5.07 correct predictions, although it misclassified some instances as DVG with
2.60. This translates to an accuracy of 63.33% for PP. LP achieved a perfect classification
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score of 8.00, reflecting the model’s high accuracy for this grasp type at 100%. Similarly,
DVG and CG showed strong performance, with most predictions falling on the diagonal at
7.27 and 7.00, respectively, corresponding to accuracies of 90.83% and 87.50%.

Table 2. Classification report for angle data.

Grasp Type Precision Recall F1-Score Accuracy (%)

Pulp Pinch (PP) 0.84 0.63 0.72 63.33
Lateral Pinch (LP) 0.88 1.00 0.94 100.00
Diagonal Volar Grip (DVG) 1.00 0.91 0.95 90.83
Cylindrical Grip (CG) 0.73 0.88 0.80 87.50
Extension Grip (EG) 0.95 1.00 0.98 100.00
Tripod Pinch (TP) 0.94 0.96 0.95 95.83
Spherical Grip (SG) 1.00 1.00 1.00 100.00
Hook Grip (H) 0.96 0.89 0.92 89.17

Accuracy (Average) 90.83%

Figure 6. Confusion matrix angle.

However, some misclassifications were noted. For example, a few instances of PP were
misclassified as DVG, with a normalized value of 2.60, contributing to a misclassification
rate of approximately 32.50%. CG had some misclassifications into PP with a normalized
value of 1.00, reflecting a misclassification rate of 12.50%. Despite these misclassifications,
the model’s overall performance using angle data was robust, demonstrating high precision,
recall, and F1-scores for most grasp types. These results highlight the model’s ability to
effectively leverage finger-bending angles for accurate grasp classification, although some
types were more challenging to distinguish than others. Nonetheless, the performance
could potentially be enhanced by integrating additional data types.

4.2. Classification with Force Data

The CNN-BiLSTM model was further trained using only the force data, which includes
the fingertip forces exerted during grasping. The model achieved an overall accuracy of
73.12%. While this performance is reasonable, it indicates that force data alone may not
be sufficient for achieving high classification accuracy across all grasp types. As detailed
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in Table 3, the model exhibited varying precision, recall, and F1-scores for different grasp
types. For instance, it achieved a high precision of 0.96 for lateral pinch (LP), indicating
a low rate of false positive predictions for this grasp type. However, the recall for pulp
pinch (PP) was relatively low at 0.56, suggesting that many instances of this grasp were not
accurately identified.

Table 3. Classification report for force data.

Grasp Type Precision Recall F1-Score Accuracy (%)

Pulp Pinch (PP) 0.74 0.56 0.64 55.83
Lateral Pinch (LP) 0.96 0.67 0.79 66.67
Diagonal Volar Grip (DVG) 0.77 0.80 0.78 80.00
Cylindrical Grip (CG) 0.61 0.77 0.68 76.67
Extension Grip (EG) 0.71 0.63 0.67 63.33
Tripod Pinch (TP) 0.63 0.99 0.77 99.17
Spherical Grip (SG) 0.74 0.65 0.69 65.00
Hook Grip (H) 0.86 0.78 0.82 78.33

Accuracy (Average) 73.12%

The confusion matrix for the force data, shown in Figure 7, provides insights into the
model’s performance in predicting each grasp type based solely on force data.

Figure 7. Confusion matrix force.

From the matrix, it is clear that the model correctly classified PP with an average of
4.50 correct predictions, but it misclassified instances into other grasp types, such as 1.82
into DVG. This translates to an accuracy of 55.83% for PP. LP had a correct classification
count of 5.38 but showed misclassifications into SG with 1.21, corresponding to an accuracy
of 66.67%. DVG achieved 6.45 correct classifications, indicating a strong performance with
an accuracy of 80%, although some misclassifications into PP with 0.81 (light red) were
noted. However, the model faced significant challenges with certain grasp types. EG had
an accuracy of 63.33% with several misclassifications into other types, such as 2.35 into CG.
SG achieved an accuracy of 65%, indicating some difficulties in accurately identifying this
grasp type, with misclassifications into DVG and H. Despite these challenges, the model
exhibited strong performance in certain areas. For instance, TP achieved a near-perfect
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classification accuracy of 99.17%, demonstrating the model’s ability to leverage force data
effectively for this particular grasp type. However, the overall performance, as indicated
by the precision, recall, and F1-scores, was generally lower compared to the model trained
on angle data. These results suggest that while force data provide valuable information for
grasp classification, it may not be sufficient on its own for achieving high accuracy across
all grasp types.

Overall, the performance of the CNN-BiLSTM model trained on force data alone
underscores the need for additional data types to improve classification accuracy. This
observation leads to the hypothesis that integrating angle and force data could potentially
enhance the classification performance by leveraging the strengths of both data types.

4.3. Classification with Combined Angle and Force Data

Finally, the proposed Glove-Net model was trained using the combined angle and
force data, leveraging the complementary information from both data types to improve
classification accuracy. This multimodal approach aimed to provide a more comprehensive
representation of the grasp types, integrating the strengths of both angle and force data.
The model achieved an overall accuracy of 98.75%, indicating a significant improvement
over the models trained with angle or force data alone. As detailed in Table 4, the combined
model demonstrated exceptional performance across all grasp types with precision, recall,
and F1-scores consistently high. For instance, the model achieved perfect scores (1.00) in
precision and recall for DVG, TP, and SG, reflecting its robust capability to correctly identify
these grasp types with no false positives or false negatives.

Table 4. Classification report for combined data.

Grasp Type Precision Recall F1-Score Accuracy (%)

Pulp Pinch (PP) 0.97 0.99 0.98 99.17
Lateral Pinch (LP) 0.95 1.00 0.98 100.00
Diagonal Volar Grip (DVG) 1.00 0.97 0.98 96.67
Cylindrical Grip (CG) 1.00 0.97 0.98 96.67
Extension Grip (EG) 0.99 0.99 0.99 99.17
Tripod Pinch (TP) 1.00 0.99 1.00 99.17
Spherical Grip (SG) 1.00 1.00 1.00 100.00
Hook Grip (H) 0.99 0.99 0.99 99.17

Accuracy (Average) 98.75%

The confusion matrix for the combined data, illustrated in Figure 8, showcases the
model’s prediction performance for each grasp type. From the matrix, it is clear that the
model correctly classified PP with an average of 7.93 correct predictions, misclassifying
only a minimal number of instances, translating to an accuracy of 99.17%. LP achieved a
perfect classification score of 8.00, reflecting a 100% accuracy. DVG and CG showed strong
performance, with most predictions falling on the diagonal at 7.73 and 7.73, respectively,
corresponding to accuracies of 96.67%. However, the model faced minimal challenges
with certain grasp types. For instance, CG had a minor misclassification into PP with
a normalized value of 0.27, but this did not significantly impact its overall accuracy of
96.67%. EG, TP, and SG achieved high accuracies of 99.17% and 100%, demonstrating
the model’s effective use of combined data for accurate grasp classification. The overall
high performance across all metrics and grasp types underscores the efficacy of combining
multimodal data for grasp classification.
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Figure 8. Confusion matrix combined data.

The comparative performance of the models trained on angle data, force data, and
combined data is further illustrated in Figure 9. This figure shows the precision, recall, and
F1-score for each grasp type across the three models, highlighting the superior performance
of the combined data model. The validation accuracy comparison across epochs for the
three models, shown in Figure 10, further supports this conclusion with the combined
data model consistently achieving higher accuracy than the individual angle and force
data models. In summary, the proposed CNN-BiLSTM Glove-Net model trained on the
combined angle and force data significantly outperformed the models trained on individual
data types. This demonstrates the advantage of integrating multiple modalities to leverage
complementary information, ultimately enhancing the robustness and accuracy of grasp
classification. The findings strongly suggest that a multimodal approach is highly effective
for this application, providing a more accurate and reliable classification framework.

Figure 9. Evaluation matrices (precision, recall and F1-score) comparision.
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Figure 10. Validation accuracy curves comparision for the three classification scenarios.

4.4. Train–Test Split Comparative Analysis

To further validate these findings, we performed additional experiments using dif-
ferent train–test split ratios across three data types: angle data, force data, and combined
data. Throughout these additional experiments, the validation split ratio is kept at 10%.
Each experiment was repeated ten times to ensure robustness, and the results were av-
eraged to compute the mean accuracy and standard deviation. This analysis aimed to
determine how the proportion of training data affects the model’s accuracy and to compare
the performance across the different data modalities. The results of this evaluation are
summarized in Table 5. For each data type, the model was trained and evaluated ten times
for each train–test split ratio to ensure the robustness of the results. The mean accuracy and
standard deviation of accuracy were calculated across these iterations.

Table 5. Mean accuracy and standard deviation for different data types and train–test split ratios.

Data Type Train–Test Split Ratio Accuracy ± Standard Deviation (%)

Angle Data 60:30 84.09 ± 1.68

Angle Data 70:20 87.19 ± 1.75

Angle Data 80:10 90.83 ± 0.37

Force Data 60:30 69.15 ± 1.68

Force Data 70:10 71.36 ± 1.58

Force Data 80:10 73.12 ± 1.88

Combined Data 60:30 92.39 ± 0.77

Combined Data 70:20 96.73 ± 0.73

Combined Data 80:10 98.75 ± 0.80

The results indicate that the model’s performance improves with an increased propor-
tion of training data, as evidenced by the higher mean accuracies observed for the 80:10
train–test split ratio across all data types. Specifically, the model trained on combined
data achieved the highest mean accuracy of 98.75% with a standard deviation of 0.80%
for the 80:10 split, highlighting both high accuracy and low variability. This underscores
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the superior performance and reliability of the multimodal approach, which leverages
both angle and force data for enhanced classification accuracy. In comparison, the model
trained solely on angle data achieved a mean accuracy of 90.83% with a standard deviation
of 0.37% for the 80:10 split. While this performance is commendable, it is significantly
lower than that of the combined data model. The model trained on force data alone ex-
hibited the lowest mean accuracy, with a maximum of 73.12% and a standard deviation
of 1.88% for the 80:10 split, underscoring the limitations of using force data in isolation
for grasp classification. These findings support the hypothesis that integrating multiple
data modalities can significantly enhance the performance of grasp classification models.
The combined data model consistently outperformed the individual data models across all
train–test split ratios, demonstrating the efficacy of a multimodal approach in capturing
the complexities of human grasping patterns. Figure 11 provides a comparison bar plot
of mean accuracies with error bars representing standard deviations. This plot clearly
shows the superior performance of the combined data model across all train–test split
ratios, featuring higher accuracies and lower variability compared to models trained on
angle or force data alone. Notably, as the training proportion increases from 60% to 80%,
the improvement in accuracy is most pronounced for the combined data model, further
emphasizing its robustness and efficacy.

Figure 11. Training and testing accuracy comparison across different models.

4.5. Comparative Analysis of Model Performance

In this section, we compared the performance of the proposed CNN-BiLSTM model
with contrast models (CNN and LSTM) utilizing angle only, force only, and combined
angle and force datasets (Figure 12). The CNN-BiLSTM model trained on combined
data achieved the highest performance with a training accuracy of 99.04% and a testing
accuracy of 98.75%. This superior performance underscores the efficacy of integrating
multimodal data and leveraging the strengths of both CNN and BiLSTM architectures.
In contrast, models trained on individual data types, such as CNN-Force and LSTM-
Force, exhibited lower accuracies, with the CNN-Force model achieving 73.14% training
and 69.38% testing accuracy, while the LSTM-Force model achieved 72.34% training and
70.52% testing accuracy. The models trained on angle data alone performed better than
those trained on force data yet still fell short of the combined data models. Specifically,
the CNN-Angle model achieved 90.93% training and 88.09% testing accuracy, while the
LSTM-Angle model achieved 91.50% training and 86.03% testing accuracy. The CNN-
Combined and LSTM-Combined models also demonstrated significant improvements with
accuracies of 93.95%/93.51% and 95.92%/92.19% for training/testing, respectively. These
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results collectively validate the superiority of the combined multimodal data approach for
enhancing classification accuracy and reliability in grasp classification tasks.

Figure 12. Training and testing accuracy comparision across different models.

Figure 12 clearly illustrates the superior performance of the combined data model
across all train–test split ratios, with notably higher accuracies and lower variability than
the models trained on angle data and force data alone. This comprehensive evaluation
underscores the importance of combining multimodal data for grasp classification, provid-
ing a compelling case for integrating angle and force data to achieve higher classification
accuracy and reliability. The results validate the superior performance of the CNN-BiLSTM
model with combined data and highlight the potential for further advancements in robotic
grasping applications. The consistent improvement in performance with increasing training
data proportions further reinforces the robustness of the multisensory approach.

5. Discussion

The results of our study provide significant insights into the efficacy of using a hybrid
CNN-BiLSTM model for grasp classification, particularly when leveraging a multimodal
dataset comprising both angle and force data. The comparative analysis of classification
performance across different data types and models underscores the importance of multi-
modal data integration. The CNN-BiLSTM model, when trained on combined angle and
force data, demonstrated the highest classification accuracy with a mean testing accuracy
of 98.75%. This superior performance can be attributed to the model’s ability to capture
both spatial and temporal features inherent in the multimodal dataset. While effective, the
standalone CNN and LSTM models showed limitations when trained on a single data type.
The CNN model trained on angle data achieved a testing accuracy of 88.09%, indicating
that angle data alone provide substantial information for grasp classification. However, the
performance of the CNN model trained on force data was significantly lower, with a testing
accuracy of 69.38%, highlighting the insufficiency of using force data alone for accurate
classification. The LSTM models, designed to capture temporal dependencies, performed
better than their CNN counterparts when trained on angle data with a testing accuracy of
86.03%. The LSTM model trained on force data, however, still lagged, achieving a testing
accuracy of 70.52%. These results indicate that while temporal features are important, they
are not sufficient without the complementary spatial features provided by angle data.
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The hybrid CNN-BiLSTM model’s ability to combine the strengths of both CNNs
and LSTMs is evident from its performance. The CNN component effectively extracts
spatial features from the raw sensor data, while the BiLSTM component captures the
temporal dependencies inherent in sequential grasp patterns. This combination allows the
hybrid model to achieve higher classification accuracy and reliability, as demonstrated by
its performance on the combined dataset. The results highlight the model’s robustness
and generalization capabilities, particularly in handling the complexities of human grasp
patterns. The hybrid model’s superior performance across different train–test split ratios
further validates its efficiency and effectiveness. Integrating multimodal data significantly
enhances the model’s ability to classify grasps accurately, leveraging the complementary
information provided by both angle and force data.

To evaluate the performance of our proposed CNN-BiLSTM (Glove-Net) model against
other classification algorithms, we conducted a comparative analysis using the same dataset.
Table 6 presents the comparison of various models, including traditional machine learning
algorithms and deep learning networks. The results demonstrate that the Glove-Net model
outperforms all other methods, achieving the highest accuracy of 98.75%. This highlights
the effectiveness of our hybrid approach in integrating spatial and temporal features for
precise grasp recognition.

Table 6. Comparison of different classification networks for the dataset.

Model Time (s) Accuracy (%)

SVM 0.42 89.38
Logistic Regression 0.61 93.67
Random Forest 1.39 94.36
KNN 0.22 88.38
ANN 0.31 91.33
CNN 6.20 93.51
LSTM 7.87 92.19
BiLSTM 4.92 93.85
CNN-LSTM 5.21 96.12
CNN-BiLSTM (Glove-Net) 6.56 98.75

Furthermore, we compared the classification accuracy of our proposed CNN-BiLSTM
(Glove-Net) network with various state-of-the-art algorithms as summarized in Table 7. Our
analysis shows that the Glove-Net model outperforms existing methods in recognizing different
grasp types, achieving a higher classification accuracy. This superior performance demon-
strates the effectiveness and robustness of our hybrid approach in leveraging both spatial and
temporal features of grasp data, setting a new benchmark in grasp recognition tasks.

Table 7. Comparison of classification algorithms from literature.

Authors Classification Algorithm Number of Movements Accuracy (%)

Nassour et al. [33] Linear Regression 15 89.4
Chen et al. [27] SVM 16 89.4
Ayodele et al. [4] CNN 6 88.3
Maitre et al. [34] Random Forest 8 95
Maitre et al. [45] CNN-LSTM 13 93
Lin et al. [35] Linear Regression 3 98.0
Zhang et al. [3] RBFNN 8 93.3
Calado et al. [29] ANN 10 93.9
Dutta et al. [30] SVM 19 92.0
Zheng et al. [23] DBDF 52 93.15
Proposed Work CNN-BiLSTM 24 98.75

The findings of this study have broader significance and implications for the fields of
orthotics and prosthetics. In orthotics, accurately classifying grasps using a hybrid model
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trained on multimodal data can lead to more advanced and adaptable rehabilitation systems.
The enhanced grasp classification capabilities in prosthetics can contribute to developing
more intuitive and responsive devices for amputee users. By incorporating multimodal
sensory feedback, these devices can provide users with a more natural and functional
experience, closely mimicking the capabilities of the human hand [57]. Furthermore,
by accurately monitoring and classifying hand movements, therapists can design more
effective rehabilitation protocols tailored to individual needs, ultimately improving patient
outcomes. However, the dataset used in this study, while comprehensive, may not capture
the full range of real-world grasp variations, limiting the model’s ability to generalize
to novel or untrained grasp types, especially in dynamic environments. Additionally,
the model’s performance needs further validation in uncontrolled settings with diverse
object properties and subjects with varied neurological conditions. Future research should
expand the dataset to include a wider array of grasp types and conditions and explore
the integration of continuous human manipulation tasks and additional sensor modalities,
such as EEG and EMG data, to enhance the model’s generalization and applicability.

6. Conclusions and Future Work

This study presents a significant contribution to grasp classification by demonstrating
the superior performance of a hybrid CNN-BiLSTM model, Glove-Net, using a multisensory
data glove. The glove captures finger-bending angles and fingertip forces, providing a
comprehensive dataset that enhances classification accuracy. The hybrid model achieved a
mean testing accuracy of 98.75%, significantly outperforming standalone CNN and LSTM
models. This underscores the effectiveness of integrating multiple data modalities for
improved grasp classification. This study highlights the potential of hybrid neural network
architectures in leveraging multimodal data for robust grasp classification. The integration
of angle and force data offers a comprehensive understanding of grasp dynamics, paving
the way for significant advancements in robotic manipulation, prosthetics, and rehabili-
tation. In future studies, along with other sensory data, the real-time control of orthosis
based on different manipulation tasks will be carried out.
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