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Abstract: Brain stroke, or a cerebrovascular accident, is a devastating medical condition that disrupts
the blood supply to the brain, depriving it of oxygen and nutrients. Each year, according to the World
Health Organization, 15 million people worldwide experience a stroke. This results in approximately
5 million deaths and another 5 million individuals suffering permanent disabilities. The complex
interplay of various risk factors highlights the urgent need for sophisticated analytical methods to
more accurately predict stroke risks and manage their outcomes. Machine learning and deep learning
technologies offer promising solutions by analyzing extensive datasets including patient demograph-
ics, health records, and lifestyle choices to uncover patterns and predictors not easily discernible by
humans. These technologies enable advanced data processing, analysis, and fusion techniques for
a comprehensive health assessment. We conducted a comprehensive review of 25 review papers
published between 2020 and 2024 on machine learning and deep learning applications in brain stroke
diagnosis, focusing on classification, segmentation, and object detection. Furthermore, all these
reviews explore the performance evaluation and validation of advanced sensor systems in these areas,
enhancing predictive health monitoring and personalized care recommendations. Moreover, we also
provide a collection of the most relevant datasets used in brain stroke analysis. The selection of the
papers was conducted according to PRISMA guidelines. Furthermore, this review critically examines
each domain, identifies current challenges, and proposes future research directions, emphasizing the
potential of AI methods in transforming health monitoring and patient care.

Keywords: brain stroke; deep learning; machine learning; classification; segmentation; object detection

1. Introduction

Brain stroke, also known as a cerebrovascular accident, is a critical medical condition
that occurs when the blood supply to part of the brain is interrupted or reduced, preventing
brain tissue from receiving oxygen and nutrients. This condition can lead to devastating
consequences, including paralysis, difficulties in speech, and sometimes memory loss,
among others [1]. Brain strokes can be divided primarily into two types: ischemic stroke,
which is caused by blockages (such as blood clots), and hemorrhagic stroke, caused by
bleeding in or around the brain [2]. According to the World Health Organization [3],
15 million people worldwide suffer a stroke per year. Among those, 5 million die, and
another 5 million end up being permanently disabled. While brain stroke commonly
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occurs in people over 40 years old, it can also strike younger individuals and is the main
cause of high blood pressure in those under 40. In children, particularly those with
sickle cell disease, stroke occurs in about 8% of cases [4–6]. Older adults are particularly
susceptible to brain strokes due to physiological changes that accompany aging, such as
the stiffening of blood vessels and the increased prevalence of age-related diseases such as
atrial fibrillation, hypertension, and diabetes. These factors significantly elevate the risk of
brain stroke. Furthermore, recovery in older patients can be complicated by pre-existing
health conditions, where the impact of brain stroke can be more severe, leading to greater
functional decline and a need for long-term care. Environmental and socioeconomic factors,
such as pollution exposure and limited healthcare access, further compound these risks.
Preventative strategies for all ages, including lifestyle modifications and the management
of underlying conditions, are crucial to mitigating the risk of brain stroke [7].

The complexity and interplay of brain stroke risk factors underscore the need for
advanced data processing, analysis, and fusion techniques for a comprehensive health
assessment. Machine learning (ML) and deep learning (DL) offer promising solutions in this
area. By analyzing vast datasets on patient demographics, health records, lifestyle choices,
and genetic information, ML and DL algorithms can uncover patterns and predictors
of brain stroke risk that are not immediately apparent to humans. This capability is
crucial for the development of predictive health monitoring systems and personalized care
recommendations, optimizing healthcare resources and improving patient outcomes.

Moreover, the performance evaluation and validation of advanced sensor systems in
brain stroke diagnosis through image recognition algorithms are essential. These technolo-
gies quickly and accurately interpret magnetic resonance imaging (MRI) and Computed
Tomography (CT) scans, potentially speeding up the decision-making process for treat-
ments such as clot-busting medications or surgical interventions [8,9].

As we delve deeper into the potential of ML and DL in the context of brain stroke
management, it becomes clear that integrating technology with traditional healthcare
approaches can lead to early detection and therefore to possible mitigation actions [10]. This
paper aims to provide a comprehensive review of review papers within the field of ML and
DL in the clinical analysis of brain strokes. Our focus is primarily on three interconnected
ML and DL approaches that are crucial for diagnosis: classification, segmentation, and
object detection problems. Classification algorithms identify whether a brain stroke has
occurred and classify its type; segmentation techniques localize the affected brain areas,
and object detection algorithms highlight abnormalities in brain scans. These methods
collectively improve diagnostic accuracy and are vital for developing targeted therapeutic
strategies. The legitimacy and relevance of focusing on these three areas are well-supported
by the existing literature, for example, the review study of Yedavalli et al. [11]. Moreover,
to the best knowledge of the authors, this is the first comprehensive review that collects
and discusses the most pertinent literature reviews across these fields within a single paper.

Following this introduction, Section 2 will provide a theoretical overview of the three
fields in ML and DL. Section 3 will describe the search process used to collect the most
relevant literature, including a detailed analysis of common applications of ML and DL in
brain stroke detection, and a review of crucial papers on classification problems in stroke
analysis. Based on this search process, several research questions are formulated to be
addressed by the end of the paper. In Section 4, application fields will be introduced and
discussed, summarizing key findings and methodologies from major review papers in a
tabular format. Additionally, Section 4 will present the most relevant datasets in brain
stroke management. Section 5 will outline the challenges and suggest future directions to
assist researchers in this area, based on our analysis of the review papers, aiming to enhance
the integration of ML and DL technologies within traditional healthcare frameworks for
better stroke management. In Section 6, we will address the formulated research questions
based on our conclusions and inferences from the review papers. Finally, in Section 7, we
will draw our conclusions.
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2. Theorethical Overview

Before delving into the comprehensive review of the most pertinent literature in each
field of ML and DL related to brain stroke, this section will first provide a theoretical
overview of the primary methodologies employed: classification, segmentation, and object
detection. The aim is to outline the fundamental formulations and applications of these
techniques. This overview will not only set the stage for the detailed review to follow
but also serve as a guide for new researchers in the fields of ML and DL, helping them to
understand the foundational concepts and direct their learning efforts more effectively.

Classification is aimed at categorizing data into distinct groups or classes. This is
achieved by employing algorithms that analyze training data, which are pre-labeled with
the correct output, to discern patterns that can be applied to new, unseen data. The
mathematical formulation of such algorithms often holds on probability theory, logical, and
geometrical problems. Such algorithms are typically handled through supervised learning,
where a model is trained on a dataset that includes both the features (inputs) and the
labels (outputs). As models are built and refined, their performance must be quantitatively
evaluated. This involves metrics like accuracy, precision, recall, and the F1 score, all of
which provide insights into the model’s efficacy and areas for potential improvement. The
most common algorithms applied encompass Logistic Regression (LR), Naïve Bayes (NB),
Decision Trees (DTs), Support Vector Machines (SVMs), and ensemble algorithms, which
typically include Random Forests (RFs) and Gradient Boosting (GB) algorithms. For more
detailed reading concerning these algorithms and their formulations, readers are directed
to [12–21]. Concerning classification problems in DL, the basic computational unit of a
deep neural network is the neuron. Each neuron receives inputs, applies a set of weights to
these inputs, adds a bias, and passes the result through a non-linear activation function.
For a single neuron, this process can be described mathematically, as its output is

a = f (wTx + b) (1)

where f commonly represents a non-linear activation function, such as ReLU, which
introduces the ability to model non-linear relationships within the data. DL networks learn
through an iterative process called backpropagation, where the network adjusts its weights
to minimize the error in its predictions. The error is quantified using a cost function, such as
cross-entropy loss in classification tasks. For a deeper understanding of DL networks, the
readers are directed to [12–21]. Figure 1 shows a typical process for a classification problem.

Figure 1. Example of a classification problem.

Segmentation is a critical task in deep learning where the goal is to partition an
image into segments, or pixels, with each segment corresponding to different objects or
regions of interest. In the context of deep learning, segmentation models are designed to
understand and delineate the boundaries of objects within images, making it a fundamental
tool for image analysis and interpretation. The most common segmentation models are
Convolutional Neural Networks (CNNs). They are specialized deep-learning architectures
that learn spatial hierarchies of features from images. For segmentation tasks, CNNs can
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be trained to classify each pixel in an image, thus segmenting the image into meaningful
regions. Figure 2 shows a typical segmentation problem.

Figure 2. Example of a segmentation problem.

Object detection, a critical task in computer vision, extends beyond classification and
segmentation by not only identifying the objects present in an image but also pinpointing
their location with bounding boxes. This capability enables a deeper understanding of
images by providing not just the “what” but also the “where” of objects, making it essential
for applications like surveillance, image medical synthesis, autonomous driving, and
structural damage recognition, among others. Object detection algorithms can be broadly
categorized into one-stage and two-stage approaches. One-stage algorithms, such as
You Only Look Once (YOLO) and single-shot detectors (SSDs) perform detection and
classification in a single pass, offering faster processing times. Two-stage algorithms, such
as Region Convolutional Neural Networks (Faster R-CNN), first generate region proposals
and then classify these regions, typically achieving higher accuracy. Figure 3 shows a
typical object detection problem.

Figure 3. Example of an object detection problem.

It is noteworthy to mention that several models can be applied to solve each of these
mentioned tasks. Moreover, Table 1 summarizes the most relevant models, with the
corresponding paper reference so readers can be directed. Moreover, the most common
metrics as well as the losses employed in each task are also described in the table.
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Table 1. Overview of the most common models, metrics, and losses used in classification, segmenta-
tion, and object detection problems.

Classification
Segmentation Object Detection

ML 1 DL

Models

• LR
• DT
• RF
• SVM
• NB
• GB
• ANN 1

• ANN 2

• AlexNet [22]
• VGG [23]
• ResNet [24]
• Inception [25]
• DenseNet [26]
• EfficientNet [27]

• FCN [28]
• U-Net [29]
• SegNet [30]
• DeepLab [31]
• Mask R-CNN [32]

• Faster R-CNN [33]
• YOLO [34]
• SSD [35]
• RetinaNet [36]
• DETR [37]

Metrics

• Accuracy
• Precision
• Recall
• F1 Score
• ROC-AUC
• Confusion Matrix

• Pixel Accuracy
• Intersection over

Union
• Dice Coefficient
• Boundary Accuracy

• Precision and Recall
• Average Precision
• Mean Average

Precision (mAP)
• Intersection over

Union (IoU)

Losses

• Binary Cross-Entropy Loss
• Hinge Loss
• Multi-Class Cross-Entropy Loss
• Categorical Cross-Entropy Loss
• Sparse Categorical
• Cross-Entropy Loss

• Dice Loss
• Cross-Entropy Loss
• Jaccard Loss

• Focal Loss
• Smooth L1 Loss
• Combined

Objectness and Class
Specificity Loss

• Region Proposal
Network Loss

1 All algorithms of ML can be consulted in [12–21]. 2 ANN percepton based on ML and ANN hidden layer for DL.

3. Search Strategy

The search strategy was designed to explore the most pertinent aspects of brain stroke
analysis using ML and DL techniques. The review encompassed the literature from the
ScienceDirect database, featuring papers published by Elsevier. Additionally, the Semantic
Scholar database was consulted, which included articles from IEEE, PubMed, Taylor and
Francis, MDPI, PLOS ONE, Springer, Hindawi, Frontiers, and SAGE journals. The selection
of papers was based not only on keyword searches but also on their relevance, as indicated
by the number of citations and the Frequency of CitedWorks Indicator (FCWI). Figure 4
shows the selection of the papers for the different fields based on the keyword search. It is
important to note that PRISMA [38] guidelines were used to outline the retrieval process.

Following the screening strategy, 10 papers discuss issues related to classification in
ML or DL. Given its fundamental nature, it is unsurprising that many review papers focus
on classification tasks related to brain strokes. This focus suggests a strong, established
interest in using ML and DL, to classify types of brain strokes or predict outcomes based
on imaging, symptoms, or other clinical data. Additionally, 11 review papers address
segmentation issues. In DL, particularly in medical imaging, segmentation involves divid-
ing an image into segments to simplify its representation or to make it more meaningful
and easier to analyze. It is commonly used to identify regions of interest, such as stroke
lesions in brain scans. The number of papers on segmentation roughly equals those on
classification, highlighting its significance in precisely localizing affected areas in medical
images. Moreover, four papers explore object detection issues. Object detection, a distinct
field from segmentation, aims to localize regions of interest by drawing bounding boxes
around objects rather than segmenting them. This approach integrates elements of both
classification and segmentation to locate and classify individual objects within an image.
Object detection is a more specialized task than the broader applications of classification
and segmentation, which may explain the fewer papers on this topic. This disparity could
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indicate that object detection is either a newer or less explored area in the context of brain
stroke within the Artificial Intelligence (AI) community. The higher numbers of review
papers in classification and segmentation likely reflect their direct applicability and urgency
in clinical settings for diagnosis and treatment planning. Moreover, areas like object detec-
tion present fewer research papers, compared with classification and segmentation, due to
their difficulty in application when compared with classification and segmentation. This
strategic search, therefore, leads to formulating Research Questions (RQs) of paramount
importance in the field of ML and DL concerning brain stroke, such as the following:

• RQ1: What are the cases where machine learning and deep learning are more appro-
priate for building a robust and accurate model for classification problems?

• RQ2: What are the challenges and limitations of current AI segmentation techniques
in analyzing complex brain imaging data?

• RQ3: Why object detection studies are less studied when compared to segmentation?
• RQ4: What are the most prominent challenges and future directions in machine

learning and deep learning considering stroke diagnosis?

Figure 4. Search strategy.
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4. Results on the Papers Found for Each Field in Brain Stroke Diagnosis

As stated in Section 3, the discussion of the papers will be conducted per field of
application. Therefore, this section is subdivided into subsections, each representing the
field of application. Furthermore, a final subsection will is also included to report the most
relevant datasets found in the field of brain stroke analysis.

4.1. Classification

In the field of classification problems for brain stroke detection research, the integra-
tion of ML and DL has marked a transformative phase, bridging the gap between rapid
diagnosis and effective treatment strategies. Sirsat et al. [1] provides a comprehensive
review of studies, systematically categorizing them into these key areas, thereby offering
invaluable guidance for researchers diving into specific aspects of stroke management
using ML. This organized approach highlights the diverse applications of ML techniques
in improving patient care and outcomes. Simultaneously, Wang et al. [39] focuses on ML
in stroke imaging applications, highlighting the scarcity of comprehensive reviews that
integrate structured data to predict stroke outcomes. They specifically note the predomi-
nant use of algorithms such as SVMs, RFs, DTs, and Artificial Neural Networks (ANNs) for
mortality prediction, offering detailed insights through tabulated study characteristics.

Gagana and Padma [40] and Mushtaq and Saini [41] explore the efficacy of ML models
in risk prediction, employing a mix of clinical, demographic, and imaging data to refine the
accuracy of these models. The integration of such data not only improves the prediction
outcomes but also enhances the practical utility of ML in clinical settings. Bashir et al. [42]
extend this discussion to brain stroke detection, analyzing the performance and generalization
capabilities of ML models across different frameworks.

Cui et al. [43] discuss the application of DL in managing acute ischemic stroke, detailing
how DL models facilitate rapid and accurate assessments crucial for effective treatment
planning. They particularly highlight the advancements in early diagnosis and functional
outcome prediction. The work of Tan et al. [44] emphasizes the diagnostic superiority of CNNs
in analyzing imaging data, which has significantly transformed ischemic stroke prediction.

In a comparative analysis, Bajaj et al. [45] and Daidone et al. [46] discuss the roles of
various ML and DL techniques in stroke detection and the potential of these technologies
in paving the way for precision medicine. They note the specific effectiveness of CNNs due
to their capability to autonomously learn from complex imaging data.

Adding to the spectrum of reviewed studies, Ruksakulpiwat et al. [47] evaluate ML-
based classification systems for stratifying stroke patients. They report the use of multiple
ML algorithms, with SVM, RF, DT, and GB being predominant. Their findings highlight
the importance of age and gender as frequent features in classification models, while also
pointing out the variable usage of other critical data like glucose levels and hypertension
status. This review emphasizes that no single algorithm universally outperforms others
across all stroke classification tasks, underscoring the necessity to select algorithms based
on specific data characteristics and clinical contexts.

Tables 2–4 show a summary of the aforementioned studies, highlighting the number
of found review papers, the range of work found, key points of the paper, strengths,
limitations, and challenges/opportunities.
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Table 2. Summary of the key points of each review paper for classification.

Author, Year N. Papers Range Paper Objectives

Sirsat et al. [1], 2020 39 papers 2007–2019 They conducted a systematic categorization of the studies into stroke
prevention, diagnosis, treatment, and prognostication.

Wang et al. [39], 2020 18 papers 1990–2019 They provide a table summarizing the included studies, offering in-
sights ML algorithm adopted, type of data, and predicted outcomes.

Gagana and Padma [40], 2021 10 papers N/A
The primary goal was to identify and analyze ML techniques that have
been proven effective in predicting strokes. The paper reviews past
research focusing on mortality rates and functional outcomes.

Cui et al. [43], 2022 21 papers 2017–2022

They present a summary of five clinical applications of DL in acute
ischemic stroke: early stroke diagnosis, automated ASPECT calculation,
the detection of Large vessel occlusion, the evaluation of ischemic core
and penumbra/prognosis, and the prediction of imaging function
outcomes.

Ruksakulpiwat et al. [47], 2023 12 papers 2015–2021
Twelve studies were included, utilizing 15 different algorithms. The
studies used a variety of input features, with age and gender being the
most common.

Mushtaq and Saini [41], 2023 22 papers N/A The review aimed to analyze the different studies using the Healthcare
Kaggle stroke dataset with various performance metrics.

Bashir et al. [42], 2023 12 papers 2019–2022 The paper reviews 12 studies on machine learning for stroke prediction,
focusing on techniques, datasets, models, performance, and limitations.

Tan et al. [44], 2023 25 papers 2016–2022

They review several papers aiming to answer three research questions:
RQ1: What are the data needed for predicting ischemic stroke using
deep learning? RQ2: Which methods of deep learning have the best
performance in terms of the accuracy of detecting ischemic stroke?
RQ3: What is the prediction of ischemic stroke used for?

Bajaj et al. [45], 2023 10 papers N/A
The authors divide the studies into ML and DL, discussing the ad-
vantages and disadvantages of these methods; they also present eight
public datasets for stroke.

Daidone et al. [46], 2024 10 papers 2014–2020

The paper highlights the increasing adoption of ML techniques
in stroke medicine, which facilitates the efficient analysis of large
datasets and support advanced personalized and precision medicine
approaches.

Table 3. Summary of the strengths and limitations of each review paper for classification.

Author, Year Strengths and Limitations

Sirsat et al. [1], 2020
• The paper categorizes four types of stroke that help the readers to dive into stroke manage-

ment areas where ML has been applied
• It could further explore and discuss future research directions in more detail.

Wang et al. [39], 2020

• First systematic review that reviewed not only the reporting quality of the ML studies but
also the development of the ML models

• Including information on performance metrics would improve the understanding of the
effectiveness of the models and clinical applicability

Gagana and Padma [40], 2021

• The comparison includes metrics such as sensitivity, specificity, accuracy, and area under
the ROC curve, which are crucial for evaluating model performance.

• The paper concludes without recommending a specific ML technique as superior for stroke
prediction, suggesting that the choice depends on the scenario, datasets, and parameters.

Cui et al. [43], 2022

• The paper highlights several key clinical applications of DL in stroke care, including early
stroke diagnosis, automated ASPECTS calculation, and large vessel occlusion detection.

• While the review offers an overview of various DL models, the discussion might lack the
depth required for readers seeking to understand its parameterization.
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Table 3. Cont.

Author, Year Strengths and Limitations

Ruksakulpiwat et al. [47], 2023

• By reviewing studies that used various machine learning algorithms for different aspects
of stroke classification, the paper provides a holistic view of the field’s current state.

• While acknowledging the need for larger datasets, the review could provide a more
detailed discussion on the impact of data size and quality on ML model performance,
which is crucial for real-world applications

Mushtaq and Saini [41], 2023

• The paper clearly outlines several research gaps, such as the challenges of imbalanced
datasets, the need to consider a wider range of medical attributes, and the importance of
evaluating models based on execution time.

• Further research is necessary to determine the optimal combination of predictors and how
best to integrate these predictors into clinical practice.

Bashir et al. [42], 2023

• The paper identifies crucial research gaps and challenges, such as the lack of reliable
biomarkers, limited sensitivity and availability of imaging techniques, and the need for
standardized diagnostic criteria.

• While accuracy is frequently mentioned, there is limited discussion on the importance of
other performance metrics such as precision, recall, F1 score, and their relevance in the
clinical diagnosis of stroke.

Tan et al. [44], 2023

• Offers an extensive analysis of the types of data (e.g., CT scans and MRI images) used in
the literature for predicting ischemic stroke, highlighting the prevalence and significance
of each type.

• The paper focuses on the advantages and application of deep learning techniques but does
not provide a detailed exploration of the limitations, challenges, and potential pitfalls of
applying these methods in clinical settings.

Bajaj et al. [45], 2023

• Offers detailed tabular forms comparing the performances of ML and DL models. More-
over, it includes a valuable list of open datasets.

• The review does not address challenges for future works on either ML or DL models for
stroke detection.

Daidone et al. [46], 2024

• The paper thoroughly examines the range of machine learning techniques from logistic
regression to advanced neural networks, providing an overview of their applications in
stroke medicine.

• While the paper presents a table with principal fields of application of ML in stroke
medicine, it does not present the metrics adopted or results for further discussion.

Table 4. Summary of the challenges/opportunities of each review paper for classification.

Author, Year Challenges/Opportunities

Sirsat et al. [1], 2020 • Challenges are not mentioned by the authors

Wang et al. [39], 2020 • Challenges are not mentioned by the authors

Gagana and Padma [40], 2021 • While ML models exhibit promising results in stroke prediction, challenges such as data
standardization, model validation, and the need for real-time applicability persists.

Cui et al. [43], 2022

• Lack of interpretability still observed in DL models.
• Confidential issues that prevent the external validation of the models and therefore

poor generalization
• Lack of interpretability still observed in DL models
• Need for larger datasets to validate efficiency of DL models as well as explore different

scenarios.

Ruksakulpiwat et al. [47], 2023 • Choosing the most appropriate ML algorithm for a specific dataset and objective is complex
due to the diverse nature of stroke-related data.

Mushtaq and Saini [41], 2023

• Improved on the issue of imbalanced datasets, which is used in previous works and
included other ranges of features (e.g sytolic and diastolic blood pressure, and pulse) that
could enhance the model performance.

• The execution time of the model, an important aspect for real-time applications.
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Table 4. Cont.

Author, Year Challenges/Opportunities

Bashir et al. [42], 2023

• There is a notable absence in the literature of reliable biomarkers for the early detection of
brain stroke, hindering prompt and accurate diagnosis.

• Current imaging techniques suffer from limited sensitivity, making it challenging to detect
stroke early.

• The accessibility of advanced imaging techniques is limited, especially in resource-
constrained settings.

• There is no universally accepted set of diagnostic criteria for stroke, complicating the
consistency of diagnosis across different healthcare settings.

• The biological and physiological mechanisms underlying stroke are not fully understood,
limiting the development of targeted interventions.

Tan et al. [44], 2023 • Challenges are not mentioned by the authors

Bajaj et al. [45], 2023 • Challenges are not mentioned by the authors

Daidone et al. [46], 2024
• The lack of standardized data formats and interoperability across systems poses significant

challenges in developing and applying effective ML models in stroke medicine as well as
model validation and generalization

4.2. Segmentation

Segmentation in medical imaging analysis represents a very important field in DL
modeling since it provides valuable and critical information for tasks such as lesion de-
tection, which is important for further clinical diagnosis. These technologies particularly
leverage MRI and CT scans to provide precise, automated lesion segmentation, which is
crucial for effective treatment planning.

A collection of reviews emphasized the utility of MRI for brain stroke lesion segmen-
tation. Saad et al. [48], Isa et al. [49], and Subudhi et al. [50] discuss a range of manual to
automated segmentation methods, including advanced machine learning models. These
studies highlight the precision of MRI in detailing soft tissue contrast, making it highly effec-
tive for early stroke detection and characterization. The comparative benefits of MRI versus
CT are critically analyzed in the literature. While MRI is favored for its detailed tissue
contrast, the rapid imaging capabilities of CT scans make them indispensable in emergency
settings, as discussed in Karthik et al. [51]. Nonetheless, the work of Inamdar et al. [52]
further explores computer-aided systems in acute stroke diagnosis, demonstrating how
computational models enhance diagnostic workflows.

DL models, particularly U-Net architectures, have revolutionized medical image
segmentation. Liu et al. [53] explores various U-Net adaptations that enhance feature
extraction and lesion delineation. Abbasi et al. [54] and Malik et al. [55] both highlight how
CNNs and their variants have been instrumental in segmenting ischemic and hemorrhagic
stroke lesions, integrating attention mechanisms and multi-dimensional networks to man-
age the complexities of neuroimaging data. [56] extends this discussion to brain tumors,
assessing how deep learning outperforms traditional methods in tumor identification
and classification.

Emerging trends such as the application of AI tools in chronic conditions are detailed
in [57], which evaluates the effectiveness of AI in chronic stroke analysis. Thiyagarajan and
Murugan [58] and Saad et al. [48] both stress the need for robust, scalable models capable
of integrating multimodal data to improve diagnostic accuracy and operational efficiency.
Tables 5–7 show a thorough summary of the main objectives of each review paper as well
as strengths and limitations and some challenges that they propose.
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Table 5. Summary of the key points of each review paper in the field of segmentation.

Author, Year N. Papers Range Paper Objectives

Karthik et al. [51], 2020 113 papers Until 2020

They evaluate the advancements of DL models in the detection
and segmentation of brain stroke lesions by exploring different
architectures with focus on CNNs and FCNs, applied across
modalities such as CT and MRI.

Isa et al. [49], 2020 23 papers N/A

The paper reviews both automated and semi-automated segmen-
tation methods, discussing the advantages and limitations of
existing algorithms, and also presents a comparative review of
the studies in terms of performance modeling.

Liu et al. [53], 2020 more than
100 papers N/A They provide a comprehensive review of U-Shaped networks

used in medical imaging segmentation.

Inamdar et al. [52], 2021 177 papers 2010–2021

The authors aimed to review advancements in computer-aid
diagnosis for acute brain stroke, underlining the modalities and
methodologies used in neuroimaging for stroke identification
and classification.

Saad et al. [48], 2021 13 papers 2015–2021

The review paper aims to evaluate existing image segmentation
techniques applied to MRI scans in diagnosing brain stroke le-
sions. The paper discusses manual, semi-automatic, and fully
automatic segmentation techniques.

Thiyagarajan and Murugan [58],
2021 4 papers N/A

The paper systematically evaluates the different techniques em-
ployed in the segmentation and classification of ischemic stroke
lesions using MRI technology. It discusses automated and semi-
automated techniques that improve the accuracy and efficiency
of diagnosing ischemic stroke.

Subudhi et al. [50], 2022 153 papers 1990–2021

The paper synthesizes the current knowledge on the application
of ML techniques to MRI-based ischemic stroke characterization.
The paper also discusses various ML algorithms used in the
segmentation and classification of ischemic stroke lesions.

Jyothi and Singh [56], 2023 60 papers 2014–2021
The main objective is to evaluate and review the existing tech-
niques for MRI-based brain tumor segmentation, which includes
traditional automated methods as well as modern DL models.

Ahmed et al. [57], 2023 34 papers 2019–2022
The main goal is to evaluate the efficiency and effectiveness of
AI-based segmentation tools developed and tested using the
ATLAS dataset.

Abbasi et al. [54], 2023 22 papers 2017–2023

The primary aim of the review is to evaluate the performance of
various DL models in segmenting ischemic stroke lesions from
brain MRI and CT images. The paper covers significant studies
that use DL for stroke lesion segmentation, providing a critical
analysis of methodologies, datasets, and results.

Malik et al. [55], 2024 28 papers 2018–2023

The main objective of the paper is to present a comprehensive
survey of DL applications in stroke lesion segmentation using
MRI and CT images. The paper covers several DL models such
as CNNs and transformers used in stroke lesion segmentation.
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Table 6. Summary of the strengths and limitations of each review paper on segmentation.

Author, Year Strengths and Limitations

Karthik et al. [51], 2020

• It successfully breaks down complex methodologies and compares them across different
criteria, providing a solid foundation for both new and established researchers.

• The authors claim that the keyword usage might have limited them to a certain type of
studies, hence the neglect of relevant works.

Isa et al. [49], 2020
• Thoroughly covers a wide range of segmentation techniques and evaluates them critically.
• Image acquisition and pre-processing methods could be deeply investigated such as in

terms of how they would be relevant to the performance of the models.

Liu et al. [53], 2020

• Very comprehensive and complete review of U-shape networks and their variations.
Extensive perspective of U-shape applications in different areas.

• The discussion on the problems involved in the complexity of the image segmentation
tasks to be used in clinical diagnosis could be a more detailed analysis.

Inamdar et al. [52], 2021

• In-depth coverage of imaging modalities and diagnostic techniques. Comprehensive
review tables summarize the contributions, providing clarity on the performance and
reliability of different methods.

• While the authors provide a very insightful in-depth discussion of the reviewed papers, the
authors could provide a more thorough discussion of open challenges and future directions
that could be provided, mainly on the heterogeneity of the data from segmentation images.

Saad et al. [48], 2021

• The paper covers a wide range of segmentation techniques, providing a thorough dive
into each method and use case.

• A lack of a well-defined search strategy, which may lead the readers to struggle to under-
stand the most relevant papers selected for the research.

Thiyagarajan and Murugan [58],
2021

• Thoroughly assesses both established and emerging techniques, providing a detailed
comparison of their clinical utility.

• The selection of only a few studies. Although the revision is thorough and accurate, a lack
of a broader revision of other papers covering the same fields is missing.

Subudhi et al. [50], 2022
• Detailed discussion on the advantages and limitations of various machine learning tech-

niques as well as segmentation techniques.
• More detailed discussions on future directions as well as open challenges are missing.

Jyothi and Singh [56], 2023

• The paper provides a broad revision of segmentation technologies, giving a detailed
comparison of their performance.

• The thorough discussion of conclusions regarding unsupervised methods to generate
labels to assist segmentation tasks could be better discussed and some challenges could be
provided for future research.

Ahmed et al. [57], 2023

• The paper provides a broad variety of studies, providing robust comparisons of different
methodologies.

• The authors acknowledge some limitations such as the consideration of only one dataset
(ATLAS), and lack of discussion on interpretable models (explainable AI).

Abbasi et al. [54], 2023

• The paper provides a critical evaluation of MRI and CT modalities, which yields insightful
guidelines for medical practitioners and researchers.

• Limitations and future directions on ischemic stroke segmentation are slightly discussed
and could be further detailed.

Malik et al. [55], 2024

• The paper provides a comprehensive review of DL techniques in the context of stroke
lesion segmentation.

• The effective synthesis of comparative data between MRI and CT modalities, offering
valuable insights for medical practitioners and researchers.

• The paper presents some limitations such as the inclusion of only English technical studies,
which offers a partial overview of the topic, the limited keyword search, and the inclusion
of studies solely on lesion segmentation.
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Table 7. Summary of the challenges/opportunities of each review paper on segmentation.

Author, Year Challenges/Opportunities

Karthik et al. [51], 2020

• The authors claim the lack of public datasets as a challenge as well as the high class
imbalance among them.

• Transfer learning can be problematic since a great part of the datasets are trained on Ima-
geNet.

• Many DL approaches are reported on for the detection, classification, and segmentation of
ischemic and hemorrhagic stroke, but there exists a vital need to develop DL regression
algorithms in the assessment of modified Rankin scale to help physicians decide on
appropriate treatment procedures for recovery patients.

Isa et al. [49], 2020
• Medical image fusion to reduce the time to diagnose multiple modalities.
• The usage of the color segmentation model to improve the performance of the model on

the identification of the damaged zones.

Liu et al. [53], 2020 • The paper identifies ongoing challenges such as handling limited training samples, improv-
ing model generalization, and reducing computational costs for 3D image segmentation.

Inamdar et al. [52], 2021 • The authors denote challenges in the application of ML/DL techniques to stroke diagnosis,
such as data heterogeneity, model interpretability, and computational demands.

Saad et al. [48], 2021 • The authors do not present any challenges

Thiyagarajan and Murugan [58],
2021

• The authors emphasize the intrinsic challenges in segmenting stroke lesions, such as the
variability in lesion appearance across patients and the subtle differences between lesion
tissues and normal brain tissues.

• The development of more robust models that can handle the heterogeneity of stroke lesions
and the integration of multimodal imaging data.

• Model generalization to perform well across diverse datasets.

Subudhi et al. [50], 2022 • The authors conclude with future directions emphasizing the need for efficient and robust
deep learning models for quantitative brain MRI analysis.

Jyothi and Singh [56], 2023

• The authors conclude with a discussion on the current challenges in brain tumor segmen-
tation, which include data scarcity, the variability of MRI scans, and the need for models
that can generalize across different imaging protocols.

• The authors also suggest future directions, the development of more robust and efficient
DL models, the improvement of dataset quality, and exploring novel network architectures
and training strategies.

Ahmed et al. [57], 2023

• The authors highlight the need for more robust AI architectures capable of handling the
spatial heterogeneity of chronic stroke lesions.

• The authors also mention that future research could focus on developing new models,
improving dataset quality, and exploring the integration of multimodal imaging data.

Abbasi et al. [54], 2023 • The authors addresses challenges such as data scarcity, class imbalance, and the generaliz-
ability of models across different datasets and imaging modalities.

Malik et al. [55], 2024
• The authors claim a need to analyze advanced pre-processing techniques in conjunction

with lesion segmentation as well as the need for the improvement of transfer learning for
model generalization.

4.3. Object Detection

Object detection is crucially important in the analysis of brain strokes, leveraging
advanced imaging technologies to improve diagnostic accuracy and treatment efficacy.
This task involves the identification and classification of various structures within the
brain using algorithms that interpret complex imaging data. Concerning the context of
brain stroke, object detection helps in the quick detection of areas of the brain affected by
strokes (clots or hemorrhages), thus facilitating timely interventions. Since object detection
enables detailed visualizations of the impact of a stroke, it becomes a valuable tool for
supporting critical decisions regarding the most appropriate patient recovery strategies. It
is noteworthy to mention that object detection is highly connected to segmentation in the
field of medical imaging. While object detection focuses on the area by providing an output
such as bounding boxes around the lesion found, segmentation goes further by dividing
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the image into segments and isolating these detected objects with precise boundaries.
While conducting this comprehensive survey, the amount of work found directly with the
keyword search of object detection was very scarce when compared to segmentation.

As stated in Section 3, the field of object detection does not offer as detailed and widely
accepted state-of-the-art methodologies for brain stroke analysis compared to segmentation
and classification. This is due to the relatively recent development of the methodologies
employed in object detection and the complexity of extracting relevant features. While
object detection is valuable, it often focuses on identifying discrete objects or anomalies
within an image. In the context of brain strokes, objects such as blood clots might not
be as discretely definable as in other applications, such as identifying tumors, making
segmentation a more practical choice for analysis. Another reason is related to data avail-
ability and quality. High-quality annotated datasets are more common for segmentation
than for object detection, which accelerates the improvement of segmentation techniques,
therefore making a more viable tool for current brain stroke diagnosis methods. Object
detection requires more precision in annotated data (i.e., location of boundaries), which
are less commonly compiled in stroke-related datasets. Additionally, the clinical relevance
of segmentation is significant. Segmentation directly aids in quantifying affected brain
areas and visualizing damage, whereas object detection might not provide complementary
insights, such as identifying smaller or emerging pathological features, which are crucial
for immediate clinical decision making. Moreover, segmentation algorithms are easier
to integrate into clinical workflows, providing clear and immediate benefits to medical
professionals, such as radiologists or neurologists, who are responsible for assessing the
extent of brain damage.

Therefore, due to the smaller body of literature, it is reasonable to analyze papers that
focus more on the implementation of brain stroke detection and extrapolate findings from
other review papers that do not focus specifically on brain stroke detection. The following
Tables 8–10 summarize the aforementioned studies, highlighting key points, strengths,
limitations, and challenges/opportunities, respectively, in brain stroke detection.

Table 8. Summary of the key points of each paper in the field of object detection.

Author, Year N. Papers Range Paper Objectives

Jiang et al. [59], 2023 N/A 1 N/A
They aimed to provide an in-depth review of deep learning-based methods
for multiple-lesion recognition from medical images. This includes classifica-
tion, detection, and segmentation techniques.

Sailaja and Pattani [60], 2023 N/A N/A The primary objective was to develop a deep learning model incorporating
YOLOv5 and SSD for predicting brain strokes from MRI images.

Ayoub et al. [61], 2023 N/A N/A The primary objective was to enhance the ViT architecture for the multi-slice
classification and localization of brain strokes using CT scans.

Zhang et al. [62], 2021 N/A N/A
The primary objective was to develop automated lesion detection methods
for ischemic stroke using deep learning techniques, specifically applying
Faster R-CNN, YOLOv3, and SSD networks.

1 Although the number of papers they analyze are not mentioned, the authors retrieved papers related to the
recognition method based on deep learning with human main organs and tissues in the last two years.
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Table 9. Summary of the strengths and limitations of the papers on object detection.

Author, Year Strengths and Limitations

Jiang et al. [59], 2023

• The paper covers a wide range of deep learning techniques and their applications in
multiple-lesion recognition.

• The analysis includes various body regions and types of lesions, providing a thorough
understanding of the field.

Sailaja and Pattani [60], 2023

• The model demonstrates high accuracy (96.43%) in predicting brain strokes, indicating its
effectiveness in identifying stroke lesions.

• The study is based on a sample dataset of 459 MRI stroke images, which may not be sufficient
to generalize the findings across diverse populations and imaging conditions.

Ayoub et al. [61], 2023

• The proposed framework achieved an overall accuracy of 87.51% in classifying brain CT scan
slices, demonstrating its effectiveness in stroke diagnosis.

• The study was based on a dataset of 730 patients, which, while diverse, may not fully
represent the wide range of variations in patient demographics and imaging conditions.

Zhang et al. [62], 2021

• The SSD network achieved the highest precision of 89.77% for lesion detection, demonstrating
the effectiveness of the approach.

• Although substantial, the dataset is still relatively limited in diversity, and further validation
on larger and more diverse datasets is necessary.

Table 10. Summary of the challenges/opportunities of each paper on object detection.

Author, Year Challenges/Opportunities

Jiang et al. [59], 2023

• Ensuring a diverse and high-quality dataset is crucial for training robust models. The variation
in imaging modalities, patient demographics, and disease presentations adds to the challenge.

• Developing more sophisticated data augmentation techniques and generating synthetic data
can help mitigate the issues caused by limited datasets. Utilizing pre-trained models and trans-
fer learning can improve model performance, especially when working with small datasets.

Sailaja and Pattani [60], 2023

• Adapting and integrating the model into existing clinical workflows and ensuring that it meets
the regulatory and ethical standards are significant challenges.

• Conducting real-world clinical trials and validations can enhance the credibility and adoption
of the model in healthcare settings.

Ayoub et al. [61], 2023

• Ensuring that the model generalizes well across different populations and clinical settings
remains a significant challenge.

• Future research can focus on validating the model on larger and more diverse datasets to
further assess its robustness and generalizability.

Zhang et al. [62], 2021

• Adapting the deep learning models for seamless integration into clinical workflows, including
handling variations in MRI machines and protocols, is crucial for practical implementation.

• Enhancing the interpretability and explainability of the AI models will help gain trust from
healthcare professionals and improve adoption rates.

4.4. Relevant Datasets for Stroke Diagnosis

In building upon our examination of classification, segmentation, and object detection,
it becomes evident that the efficiency of these techniques relies significantly on the quality
and appropriateness of the datasets. In the domain of brain stroke diagnosis specifically,
customized datasets are not just beneficial but essential for training robust models. These
datasets must accurately reflect the heterogeneous nature of stroke symptoms and patient
demographics to ensure that models are both precise and generalizable across real-world
conditions. This section aims to present the datasets that are most relevant for stroke
diagnosis, detailing their composition, source, and the unique challenges that they help
address in the context of applying advanced diagnostic algorithms. A summary of the
datasets can be seen in Table 11.

Among these, the Stroke Prediction Dataset is essential for developing tabular pre-
dictive models focused on risk assessment and early warning signs of stroke. The Brain
MRI Segmentation and ISLES datasets are critical image datasets for training algorithms to
identify and segment brain structures affected by strokes. The Cerebral Vasoregulation in
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Elderly with Stroke dataset provides valuable insights into cerebral blood flow regulation
post stroke, useful for both tabular analysis and image-based modeling.

Additionally, the National Institutes of Health Stroke Scale (NIHSS) Annotations for
the MIMIC-III dataset offer detailed annotations within a comprehensive tabular dataset,
facilitating nuanced models that predict stroke severity and outcomes. The China National
Stroke Registry (CPSS) combines clinical information and outcomes of stroke patients in
China across both tabular and image data formats. For comparative analyses in stroke-
related brain damage, the Brain Tumor Segmentation (BraTS2020) dataset, though primarily
used for brain tumor studies, also provides relevant imaging data.

The Anatomical Tracings of Lesions After Stroke (ATLAS) dataset is designed for
detailed studies of post-stroke lesions, supporting advanced segmentation tasks. Publicly
accessible datasets like the Healthcare Dataset Stroke Data and the CDC Diabetes Health
Indicators offer tabular data widely used in predictive modeling for stroke diagnosis and
identifying stroke risk correlations. The Framingham Heart Study dataset and the Health
and Retirement Study (HRS) dataset provide longitudinal data that has informed numerous
models over decades, particularly in cardiovascular and cerebrovascular diseases. Lastly,
the MIMIC dataset provides a rich source of both tabular and image data from intensive
care units, including detailed stroke patient records.

While the datasets discussed previously are crucial for enhancing stroke diagnosis
through advanced computational models, it is equally important to consider broader
innovations in medical imaging that can further inform and improve these efforts. The
methodologies and findings from studies such as Tian et al. [63], Wenxuan et al. [64],
Zhang et al. [65], Wang et al. [66], Naval Marimont and Tarroni [67], Li et al. [68], and
Tian et al. [69] highlight a spectrum of approaches that tackle various challenges in medical
imaging. These studies not only push the boundaries of what is technologically possible
but also provide valuable insights that could be adapted for more effective stroke diagnosis
and treatment planning. For instance, the precision in localization and segmentation
demonstrated in tumor studies could enhance the accuracy of identifying stroke-affected
areas in the brain. Similarly, techniques developed for anomaly detection in unsupervised
settings might be applied to identify unusual patterns in stroke imaging that precede visible
symptoms, thereby enabling earlier intervention. By integrating knowledge from these
diverse yet related areas of medical imaging, researchers and clinicians can develop more
nuanced and powerful tools for diagnosing and treating strokes. This holistic approach
ensures that advancements in one area can benefit broader medical applications, fostering
innovation and improving outcomes across various domains of healthcare.

Table 11. Relevant datasets for stroke diagnosis.

Dataset Reference Type Access

Stroke prediction dataset [70] tabular Open

Brain MRI segmentation [71] images Open

ISLES [72] images Restricted

Cerebral Vasoregulation in Elderly with Stroke [73] tabular Open

NIHSS Annotations for the MIMIC-III Database [74] tabular Restricted

CPSS [75] tabular Restricted

BraTS2020 [76] images Open

ATLAS [77] images Open

Healthcare Dataset Stroke Data [78] Tabular Open

CDC Diabetes Health Indicators [79] Tabular Open

Framingham heart study dataset [80] Tabular Open

MIMIC [81] Tabular Open

HRS Dataset [82] Tabular Open
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5. Open Challenges and Future Directions

From the reviewed papers, we concluded that while ML and DL continue to advance
brain stroke diagnosis through improved classification, segmentation, and object detection,
several significant challenges persist. These challenges not only highlight the gaps in
current methodologies but also outline potential areas for future research. Addressing
these issues will be crucial for enhancing the diagnostic accuracy, reliability, and clinical
applicability of ML and DL models. In this section, we identify and discuss key challenges
and propose future research directions that, based on our analysis of the review papers,
could lead to more robust, interpretable, and effective stroke diagnosis tools.

5.1. Need for Explainability and Interpretability

Explainable AI (xAI) seeks to address one of the significant challenges in deep learning
and AI, the black-box nature of many AI models. As AI systems, particularly deep neural
networks, become increasingly complex, understanding the decision-making process be-
hind their predictions becomes both challenging and essential. Regulatory authorities have
established policies that enforce greater accountability in algorithmic decision making [83].
These guidelines aim to ensure transparency and fairness in the use of algorithms across
various sectors, particularly in the healthcare sector. Concerning the medical field, a great
amount of the literature can already be found aiming to propose explainable algorithms
to support the decision-making process [84–92]. Concerning the field of stroke diagnosis,
there has been some work published. Gurmessa and Jimma [93] reviewed several works
in the field of stroke analysis. Most of the works found by the authors point to Post Hoc
approaches, i.e., additional algorithms are used to interpret black-box models. However,
it is noteworthy to point out that other types of approaches could be used in this field.
For example, intrinsically explainable methods are indeed more challenging to develop;
however, it is possible to combine a single model with a hybrid approach with a transparent
and black-box model. Although some performance could be lost, it would be gain in inter-
pretability. One famous example of such an approach is the ProtoPNet [94]. Another issue
that remains a challenge in explainable AI involves the adopted metrics. Rosenfeld [95]
claimed that some studies wrongly assume that low explanations should be accepted for
some tasks. However, the same author proposes some metrics to quantify the explainability.
However, those metrics remain a challenge due to the vast amount of different domains
across the literature.

5.2. Need for Generative Models

Generative AI encompasses models and techniques that focus on generating new
data samples consistent with the distribution of a given dataset. Unlike discriminative
models that predict a label or outcome, generative models can create new data instances,
such as images, and tabular in the training data. This ability opens up the possibility of
enriching the datasets and improving the performances of the models. At the moment,
the most famous generative approaches found in the literature are the Generative
Adversarial Networks (GANs) [96], Variational Autoencoders (VAEs) [97], and diffusion
models [98]. In the field of medical analysis, some discussions have been presented
in the literature, wherein it is noteworthy to mention Ali et al. [99], Laino et al. [100],
Dayarathna et al. [101], Kazerouni et al. [102], Ferreira et al. [103]. These works have
been provided through comprehensive reviews of medical image synthesis, highlighting
their applications in generating images with high fidelity. Concerning the field of stroke
diagnosis, a comprehensive review was conducted by Gong et al. [104] where the authors
pointed out a work conducted by Wang et al. [105], where the Consistent Perception
Generative Adversarial Network (CPGAN) was introduced to enhance the effect of brain
stroke lesion prediction for unlabeled data. Although generative models present valuable
tools for image generation, some challenges remain, especially in domain adaptation and
domain generalization. The literature review claims that there is still a lot of space for
improvement in the performance of the models when faced with a new domain unseen.
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Another interesting challenge to address is the usage of diffusion approaches for tabular
data. So far, there are several works on image synthesis. However, many datasets on
stroke diagnosis are tabular and most of the time, the number of samples is very low and
highly imbalanced. Adopting generative approaches for tabular data could serve as an
interesting study, as there are very few approaches on tabular data, and to the knowledge
of the authors, this can be highlighted in the work of Kotelnikov et al. [106].

5.3. Multi-Modality in Medical Domain

Multi-modality refers to integrating data from multiple sources to improve the learning
capabilities of the model. In the context of the medical domain, multi-modality allows
one to point out the strengths of different imaging modalities. However, some challenges
are still encountered, as discussed by Zhou et al. [107], Tawfik et al. [108], Li et al. [109],
and Fawzi et al. [110]. The data heterogeneity of each modality (e.g., MRI, CT) provides
unique and complementary information with distinct statistical probability distributions,
making it challenging to integrate and synchronize data across modalities effectively.
Algorithmic complexity and computational resources, particularly those that require real-
time processing, add significant computational costs, which can be a barrier with limited
resources. Another challenge is the scalability and model efficiency. Ensuring that multi-
modal models can scale efficiently with increasing data volume and variety without loss in
performance is a critical factor for their adoption. Robustness and generalization are other
challenges that multi-modals face as there is a lack of generalization on the models and a gap
between model training environments and real-world medical settings. Missing modalities
can also often occur in many real-world scenarios, where some expected data modalities
may be unavailable, which can degrade the model performance if not handled correctly.
These challenges reveal the need for continuous research in data processing techniques,
model architectures, computational strategies, and regulatory compliance to fully leverage
the potential of multi-modal deep learning in the medical domain. Addressing these
challenges will enhance the practical applicability of the models, ensuring that multi-modal
DL can offer a valuable tool in clinical applications.

5.4. Tabular to Image Data in Medical Domain

Transforming tabular medical data into image formats presents unique challenges that
must be addressed to fully harness the potential of image-based deep learning techniques.
One major challenge is the design of effective encoding schemes that accurately represent
complex medical data as images without losing critical information. Data dimensionality
and sparsity also pose significant problems. Tabular medical datasets are often composed
of hundreds of features (thus increasing the colinearity), each representing different aspects
of patient health. Being able to efficiently compress tabular data into two-dimensional
image formats without increasing the size of the model with irrelevant information or
losing crucial information is a challenging task. Moreover, medical data can be highly
sparse and imbalanced, which complicates the training of CNNs that perform best with
dense, evenly distributed data. The interpretability of the transformations is another critical
challenge. Medical decisions require high confidence and transparency to ensure trust and
reliability. Transformations that obscure the meaning of the data could lead to diagnostics
that are hard to interpret by healthcare professionals, potentially impeding their adoption.
To embrace these challenges, the readers are directed to read the following works of
Borisov et al. [111], Fonseca and Bacao [112], and Damri et al. [113].

5.5. Computational Efficiency

In the context of the medical domain, it is necessary that the algorithms are capable of
executing in real time to ensure timely decision making and interventions. This requires
not only fast data processing speeds but also algorithms that can efficiently handle large
volumes of complex, multidimensional data generated by modern medical equipment.
Therefore, a significant challenge lies in the development of scalable computational frame-
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works that maintain accuracy and speed despite the increase in data sizes and complexity.
Future directions could include exploring the integration of quantum computing to manage
these complexities more effectively and the use of distributed computing architectures to
enhance the scalability and responsiveness of medical systems. So far, the state-of-the-art
methods offer some strategies for efficient computation. Some of them are pruning [114],
quantization [115,116], and knowledge distillation [117]. Additional works in the literature
include the optimal search of an architecture model that enhances the best accuracy with
the fastest inference time. These works can be found within the field of Neural Architecture
Search (NAS). In the medical domain, NAS can be particularly beneficial for customizing
neural network architectures to specific tasks such as medical image analysis, disease
diagnosis, or personalized medicine. This field of work already presents relevant literature,
as can be seen in the works of Zhu et al. [118] and Weng et al. [119]. However, there is a lack
of research in the field of brain stroke, presenting an opportunity for future investigations.

5.6. Data Quality and Availability in Medical Domain

One of the foundations of effective ML and DL, particularly in the healthcare sector,
is based on the quality and availability of data. High-quality data are crucial for training
models that are accurate, reliable, and capable of generalizing from training environments
to real-world applications. However, several challenges persist in ensuring the quality and
accessibility of data, such as the following:

• Data Integrity and Accuracy: Ensuring data integrity involves maintaining the accu-
racy, consistency, and reliability of data throughout their lifecycle. In medical datasets,
errors in data collection, processing, or handling can lead to significant biases in
model training, potentially compromising patient safety. For example, in the work of
Kruse et al. [120], the authors discuss several data challenges in healthcare, emphasiz-
ing the critical need for maintaining data integrity to avoid biases that could affect
patient outcomes and safety.

• Data Annotation: Annotated medical data are crucial for supervised learning mod-
els. However, this process is very intensive and expensive, requiring expert knowl-
edge that is occasionally lacking. For example the work of Rajpurkar et al. [121]
highlighted the labor-intensive nature of preparing datasets for training diagnostic
AI systems. Each image in the validation set had to be individually reviewed by
multiple radiologists, a process that is both time-consuming and expensive due
to the expertise required. As an alternative, to reduce the dependency on exten-
sive annotated datasets, self-supervised and unsupervised learning techniques
offer promising avenues. For a deeper understanding of self-supervised and un-
supervised learning methods, the readers are directed to the following references:
Doersch and Zisserman [122], Xie et al. [123].

• Data Diversity: Often, medical datasets may not adequately represent the diversity of
the patient population, including variations in ethnicity, age, gender, and underlying
health conditions. This lack of diversity can lead to models that perform well on the
majority group but poorly on underrepresented groups. Chen et al. [124] address these
concerns by investigating the sources of bias in datasets that lead to discriminatory
outcomes in AI applications, emphasizing the importance of diverse data represen-
tation to prevent such biases. Moreover, the over-representation of one class further
leads to a common problem of datasets exhibiting class imbalances. This imbalance
can skew model training, leading to poor performance on less common but often more
critical conditions.

• Data Accessibility and Sharing: While there are vast amounts of medical data, privacy
concerns, regulatory restrictions, and proprietary interests often limit data sharing
between institutions and researchers. Beam and Kohane [125] explore these issues by
discussing the potential of big data in transforming healthcare and the barriers that
inhibit its full utilization, including data sharing limitations.
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• Legal and Ethical Considerations: The use of AI in healthcare raises significant ethical
and legal challenges, particularly concerning data privacy, consent, and the potential
for the misuse of sensitive health information. Cohen et al. [126] discuss the ethical
and legal challenges associated with deploying AI in healthcare, highlighting the need
for robust frameworks to manage these issues.

6. Answering the Research Questions

As a final discussion of this review, the following section focuses on answering the
research questions formulated in Section 3.

6.1. RQ1—What Are the Cases Where Machine Learning and Deep Learning Are More
Appropriate for Building a Robust and Accurate Model for Classification Problems?

After a careful review of the review papers concerning classification problems in brain
stroke diagnosis, it is important to highlight that the efficiency of the computational models
largely depends on the nature of the dataset used. Traditional machine learning algorithms
such as DTs, RFs, SVMs, and GB are generally more effective with datasets composed of
tabular data. These algorithms are highly effective at managing structured data, enabling
them to effectively capture and model the intricate and often non-linear relationships
among various variables that are typical in medical datasets. On the other hand, DL
approaches, particularly CNNs, show greater suitability for image-based datasets. These
models leverage their architecture, which is vital for interpreting the high-dimensional data
typical of medical images, such as CT scans or MRIs. This ability is crucial for identifying
subtle patterns indicative of strokes and classifying different types of strokes with high
accuracy. Moreover, it is important to note here that traditional ML techniques might not
capture complex patterns in high-dimensional spaces adequately, where DL models can
autonomously learn and make predictions based on the hierarchical features of the data.
While ML models often provide more interpretability than DL models, which is a significant
advantage in clinical settings, as understanding the decision-making process is paramount
for trust and ethical considerations, DL models typically offer superior performance on
tasks involving complex visual data, sacrificing transparency for higher accuracy. Given the
answer based on the comprehensive research conducted here, it is noteworthy to mention
that the combination of both worlds, i.e., the integration of both tabular and imaging data to
create hybrid models that utilize the strengths of both ML and DL approaches to therefore
improve the robustness and accuracy of predictions by providing a more comprehensive
view on diagnosing a given patient.

6.2. RQ2—What Are the Challenges and Limitations of Current AI Segmentation Techniques in
Analyzing Complex Brain Imaging Data?

According to the review conducted, the integration of AI segmentation techniques into
medical imaging analysis has significantly enhanced the capabilities of MRI and CT scans
in lesion detection, crucial for the diagnosis and treatment planning of stroke. However,
some challenges and limitations persist in the segmentation of complex brain imaging data.
Concerning data complexity and quality, DL models require large volumes of high-quality,
annotated imaging data to train effectively. However, the availability of such data is often
limited due to privacy concerns, a lack of expertise in these annotations, and high costs of
data curation. Moreover, for example, MRI scans, which provide a great soft tissue contrast,
making them ideal for early stroke detection, can vary significantly in quality and detail.
These adversities can affect the performances of DL models. Another well-known challenge
pointed out in the literature is model generalization. For example, U-Net architectures, are
prone to overfitting due to their complexity and depth of features. While these models
perform well when the probability distribution is known, they tend to fail to generalize
across datasets that differ slightly in terms of acquisition parameters or demographic
characteristics of the subjects. This limitation is critical in clinical settings, in which the
deployment of such models relies on how well they can generalize to other cases. Compu-
tational demands are also quite a challenge in DL since the computational requirements are
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significant. They require substantial GPU resources for processing, which can be a barrier
in many cases when there is limited technological infrastructure. These limitations are
discussed with the open challenges, where solutions such as the pruning or quantization of
the models could be of valuable interest for limited hardware capabilities. Lastly, issues
related to interpretability, also discussed previously on the open challenges, are a major
concern for this kind of DL models, as most of them are of a black-box nature. The lack
of interpretability can be a significant barrier in the decision-making process in clinical
practice, where understanding the decision of the model is of paramount importance.

6.3. RQ3—Why Object Detection Studies Are Less Studied When Compared to Segmentation?

Based on this review, it was concluded that object detection and segmentation are both
critical in medical imaging for enhancing diagnostic accuracy. However, several distinct
factors have been identified that explain why segmentation studies are more prevalent
than object detection. First was the clinical utility. Segmentation provides detailed maps of
lesions that are critical for treatment planning, whereas object detection primarily identifies
and locates lesions without detailing their extent. Secondly, in terms of data availability,
high-quality annotation datasets are more common for segmentation tasks than object
detection. Thirdly, in terms of feature complexity, stroke lesions display complex, variable
features that are challenging to delineate using object detection. Moreover, segmentation
approaches are better fit to be included in clinical workflows, offering valuable insights
for immediate clinical intervention, unlike object detection, which lacks the granularity
needed for clinical intervention.

6.4. RQ4—What Are the Most Prominent Challenges and Future Directions in Machine Learning
and Deep Learning Considering Stroke Diagnosis?

To conclude this review, it is pertinent to address this RQ that highlights the significant
challenges and illuminates the path forward in the application of ML and DL technologies
in stroke diagnosis. This question not only captures the essence of our findings, based on
what we could conclude from the review papers, but also sets the stage for addressing
crucial obstacles and opportunities in future research. DL models in stroke diagnosis face
challenges due to their black-box nature, impeding clinical trust. The effectiveness of these
models depends heavily on the availability of high-quality, well-annotated data, which,
in the real application of object detection, is more scarce compared with segmentation.
Generative models such as GANs, VAEs, and diffusion models help with the augmentation
of the datasets but can struggle with domain adaptation and generalization. Additionally,
integrating multi-modal data and meeting the computation demands for real-time pro-
cessing are significant challenges. Future advancements could include the development of
transparent, explainable models and more efficient computation strategies such as quantum
computing. Techniques for transforming tabular data into images without losing relevant
information and NAS for optimizing the model designs are also promising directions.
Addressing these issues could significantly enhance the accuracy, efficiency, reliability, and
fairness of AI in stroke diagnosis.

7. Conclusions

We provided a comprehensive review by analyzing review papers on brain stroke
analysis, focusing on classification, segmentation, and object detection. Through this review,
we identified and analyzed 25 pertinent review papers. Most papers were selected based
on a keyword search, citation count, and the FCWI. Each study was rigorously analyzed
to gather extensive data and organized into comprehensive tables highlighting findings,
strengths, limitations, and ongoing challenges.

This structured analysis enhanced our understanding of the current landscape and
allowed us to infer that it was possible to answer the research questions posed at the begin-
ning of this study. In the areas of classification and segmentation, our review highlights
advancements in algorithmic precision and the integration of deep learning techniques
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that have significantly improved diagnostic accuracies. For object detection, although less
studied, we identified significant potential for future applications that could substantially
improve rapid diagnosis processes.

From our analysis of the review papers, it was possible to infer, and therefore discuss,
pertinent open challenges and prospective directions for ML and DL in medical imaging,
emphasizing the need for more transparent, explainable models to promote greater trust
and integration into clinical practices. The exploration of advanced computational methods
and innovative model architectures promises to address these issues effectively. Further-
more, based on our analysis of the review papers, we answered our proposed research
questions, providing insights into the appropriate applications of ML and DL for classifica-
tion, the challenges of current segmentation techniques, the reasons for the limited focus
on object detection studies, and the prominent challenges and future directions in the field.
Specifically, we highlighted the suitability of traditional ML for structured data and DL
for image-based data, the need for high-quality annotated data for effective segmentation,
the clinical utility driving the prevalence of segmentation over object detection, and the
importance of developing explainable models and efficient computational strategies to
enhance AI-driven stroke diagnosis.

To conclude this review, it is important to acknowledge our limitations. Firstly, our
study was confined to papers published in English, potentially excluding significant re-
search conducted in other languages and published in non-English journals. Secondly,
our keyword search might have excluded relevant works that could enrich our compre-
hensive review. Thirdly, the papers reviewed were limited to those accessible through
specific academic databases, potentially omitting relevant studies published in less acces-
sible or non-indexed journals. Additionally, while our review provides a comprehensive
examination of the literature from 2020 to 2024, it is important to acknowledge the in-
herent limitations associated with our methodology and scope. Our study is confined to
English-language papers accessible through major academic databases, which may exclude
significant research published in other languages or in less accessible journals. Addition-
ally, the nature of academic publishing and our review’s cut-off date inherently limit our
coverage of the latest developments that may emerge post publication. Recognizing these
limitations is crucial for readers to understand the context and constraints under which
this review was conducted. This acknowledgment not only highlights the potential gaps
in our review but also underlines the dynamic and evolving nature of research in brain
stroke diagnosis.

Author Contributions: Conceptualization: J.N.D.F. and V.E.M.C.; methodology, J.N.D.F.; validation:
V.E.M.C., A.C.-C. and A.P.; investigation: J.N.D.F. and V.E.M.C.; writing—original draft preparation:
J.N.D.F.; supervision: A.C.-C. and A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was co-funded by the PRR—Recovery and Resilience Plan and the European
Union, www.recuperarportugal.gov.pt (accessed on 15 May 2024) (PRR—Investment RE-C05-i02:
Interface Mission—CoLAB).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created. All data mentioned herein are referenced
with the appropriate paper and/or website link.

Conflicts of Interest: The authors declare no conflicts of interest.

www.recuperarportugal.gov.pt


Sensors 2024, 24, 4355 23 of 27

Abbreviations

ML Machine Learning
MRI Magnetic resonance imaging
CT Computed Tomography
DL Deep Learning
AI Artificial Intelligence
xAI Explainable AI
SVM Support Vector Machine
DT Decision Tree
RF Random Forest
NB Naïve Bayes
GB Gradient Bosting
LR Logistic Regression
CNN Convolution Neural Network
GAN Generative Adversarial Network
VAE Variational Autoencoder
ANN Artificial Neural Network
NAS Neural Architecture Search
RQ Research Question
ViT Vision Transformer
NIHSS National Institutes of Health Stroke Scale
CPSS China National Stroke Registry
BraTS2020 Brain Tumor Segmentation
ATLAS Anatomical Tracings of Lesions After Stroke
HRS Health and Retirement Study
mAP Mean Average Precision
IoU Intersection over Union
FCWI Frequency of Cited Works Indicator
YOLO You Only Look Once
SSD Single-Shot Detector
Faster R-CNN Region Convultional Neural Networks
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