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Abstract: Prolonged exposure to environmental oxidative stress can result in visible signs of skin
aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang
5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds
in its bran and husk portions that are known for their natural antioxidant properties. In this study, we
evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing
on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our
findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and
metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control,
approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant
pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and
husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by
about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory
activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells.
Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine
IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential
for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by
decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and
DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced
fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with
type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed
promise as effective natural ingredients for cosmetic applications.
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1. Introduction

The skin serves as the first barrier protecting the human body from the environment.
Antioxidant pathways play a crucial role as the primary defense mechanisms against
external stimuli. Prolonged exposure to oxidative stress may result in damaged cells and
disrupt the homeostasis of skin function. Visible signs of skin aging, including wrinkles,
melasma, and skin thinning, can manifest as a consequence [1,2].

Typically, the nuclear factor erythroid 2-related factor 2 (NRF2)-mediated pathway is
one of the main defense mechanisms for skin damage. Activation of this pathway leads
to the nuclear translocation of NRF2, resulting in the expression of antioxidant proteins
including heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO-1) [3].
Consequently, the expression of antioxidant enzymes such as HO-1 represents the second
phase of antioxidant defenses [4].

Skin inflammation often occurs due to oxidative damage, allergic reactions, or pathogen
invasion. Various reactive oxygen species (ROS), reactive nitrogen species (RNS), and in-
flammatory cytokines such as interleukin (IL)-1β and IL-6 are produced by skin cells and
attract the innate immune cells to the site of skin infection [5]. Moreover, skin inflammation
after exposure to UV light or environmental stressors is associated with NRF2 depletion.
Enhancing these antioxidant mechanisms is an important goal for preventing skin aging as
well as skin-related diseases [4].

Melanin pigments produced in melanocytes are part of the response to oxidative
stress or inflammatory cytokine exposure such as non-radical ROS, endogenous hydrogen
peroxide (H2O2), or nitric oxide (NO) products [6]. Prolonged and unprotected exposure
to external factors might lead to chronic dermatological issues such as melasma [1]. In
particular, the downregulation of antioxidant pathways like NRF2 and HO-1 levels is asso-
ciated with skin hyperpigmentation [7]. Melanocyte-inducing transcription factor (MITF)
is known as a key regulator of melanogenesis in controlling the expression of pigmentary
genes such as tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related
protein-2, also known as dopachrome tautomerase (TRP-2/DCT), respectively [8].

Skin aging is related to the destruction of the dermal extracellular matrix (ECM).
The major components in ECM structure are collagen and elastin, which provide skin
with tensile strength and elasticity, respectively. Exposure to oxidative stress can induce
senescence in normal human dermal fibroblast cells, leading to the secretion of matrix
metalloproteinases (MMPs) that degrade collagen and elastin. Type I collagen (COL1),
which constitutes nearly 90% of adult skin, is particularly affected [2,9]. Previous reports
have shown that senescence skin cells exhibited overexpression of MMPs and a decrease in
collagen synthesis, resulting in alterations to the ECM-supporting structure [10].

Furthermore, there are a large number of natural antioxidants derived from plant
resources that have been utilized for skin protection. Phenolic and flavonoid compounds are
considered to possess effective antioxidant capabilities and fewer side effects, such as skin
itching or erythema, compared to anti-aging chemical compounds such as retinoids [4,11].

Rice (Oryza sativa) is one of the most widely produced food crops in the world. The
forecast for global paddy rice production suggests an increase from 55 million tons in
2022 to 577 million tons by 2032 [12]. Rice by-product has been widely used in cosmetic
applications for the benefits from its anti-wrinkle [13] or anti-hair loss [14] properties. Rice
husk, a major byproduct constituting roughly 20% of rice weight, is initially removed from
paddy rice during the milling process. Afterward, the rice bran is removed to obtain white
rice. In addition, rice bran oil is further extracted from rice bran, serving purposes in
cooking and as a health supplement. During this process, the defatted rice bran is typically
generated as waste [15,16]. Thus, adding value to agricultural byproducts such as defatted
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rice bran and husk will have a positive impact on the environment and reduce the costs
associated with waste removal.

Sang 5 CMU is one of the inbred rice varieties in the northern Thai region. It was
registered under legislative protection in November 2020. Our previous projects focused
on the analysis of bioactive compounds in rice bran and husk among the 12 inbred rice
varieties. We used ethanol, one of the GRAS (generally recognized as safe) solvents, for the
extraction of bioactive compounds from the samples. While water is the safest and cheapest
solvent, ethanol is more suitable for the extraction of poorly soluble bioactive compounds,
such as polyphenols, from plant-based samples [17]. We found that the defatted rice bran of
Sang 5 CMU is primarily composed of quercetin, chlorogenic acid, naringin, or epicatechin.
Furthermore, in the rice husk part of Sang 5 CMU, epigallocatechin gallate is notably
predominant, as it is among all the 12 northern rice cultivars [18,19]. These phenolic and
flavonoid compounds have been recognized as natural antioxidant agents. Due to their
natural phenolic structure, hydroxyl groups normally function as radical scavengers [20].

Regarding these findings, the ethanolic-defatted rice bran (DFRB) and husk (H) extracts
of Sang 5 CMU might possess biological activities for addressing skin aesthetic problems. In
this study, we evaluated the potential candidates for cosmetic applications by investigating
their effects on various pathways. We first screened the antioxidant potential of Sang
5 CMU rice extracts through DPPH, ABTS, and iron chelating assays. We further examined
their antioxidant potential by evaluating the upregulation of genes related to the NRF2-
mediated pathway, including NRF2 and HO-1. Furthermore, we investigated the anti-
inflammatory activity by examining the suppression of nitric oxide production and genes
related to pro-inflammatory cytokines, such as IL-1β and IL-6. Additionally, we analyzed
their anti-melanogenesis activity by assessing intracellular melanin content, the tyrosinase
activity assay, and the downregulation of genes associated with melanogenesis, including
MITF, TYR, TRP-1, and DCT. Moreover, we evaluated their collagen-stimulating effects by
observing the downregulation of MMP-2 using gelatin zymography and the upregulation
of the gene related to type I collagen production, COL1A1.

2. Results
2.1. Crude Extracts Preparation

The crude extract of defatted rice bran appeared as a greasy, dark brown paste. In the
case of rice husk, the sample exhibited a dark brown, sticky, and coarse paste consistency.
The yields obtained from the maceration of defatted rice bran (DFRB) and rice husk (H) were
7.13% and 1.79% based on dry weight, respectively. According to our previous chemical
composition analysis, the rice bran of Sang 5 CMU contains the following phenolic and
flavonoid compounds [18,19], as shown in Table 1.

Table 1. Phenolic and flavonoid contents in rice bran and husk samples.

Substances (mg/g Sample) Defatted Rice Bran Extract Rice Husk Extract

Caffeic acid 0.16 ± 0.01 0.20 ± 0.03
Epicatechin 0.22 ± 0.05 ND

Epigallocatechin gallate 0.42 ± 0.03 2.80 ± 0.04
p-Coumaric 0.23 ± 0.04 0.16 ± 0.00
o-Coumaric 0.55 ± 0.03 2.49 ± 0.04

Naringin 0.58 ± 0.08 6.60 ± 2.15
Naringenin ND 0.33 ± 0.00
Quercetin 1.27 ± 0.01 0.59 ± 0.03

Phytic acid ND 19.42 ± 0.34
Ferulic acid 0.22 ± 0.00 0.76 ± 0.04

Chlorogenic acid 0.79 ± 0.01 1.90 ± 0.10
Kaempferol 0.07 ± 0.01 0.13 ± 0.00

Hydroxybenzoic acid 0.48 ± 0.03 0.53 ± 0.01
Values represent mean ± standard deviation. ND: non detectable.
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2.2. Scavenging Activity
2.2.1. Antioxidant Effects of Sang 5 CMU Extracts against DPPH, ABTS Radicals, and
Ferrous Ion

To screen the antioxidant effects of extracts, DPPH and ABTS radicals scavenging
and iron chelating assays were conducted. The results are expressed as IC50 values. A
high IC50 value is regarded as indicative of poor scavenging activity towards radicals or
metal ions. As shown in Table 2, DFRB possessed stronger antioxidant activity than H
via the DPPH assay (p < 0.05), while both DFRB and H showed no significant scavenging
activity against the ABTS radical. However, H showed more effective iron chelation
than DRFB (p < 0.05). However, higher concentrations of crude extracts are required
to inhibit 50% of the activity of free radicals or metal ions to achieve the same level
of inhibition as the standard scavenger, (+/−)-6-hydroxy-2,5,7,8-tetramethyl-chroman-2-
carboxylic acid (Trolox), and the chelator, ethylene diamine tetra acetic acid (EDTA). To
further determine the scavenging effect in human fibroblast cells, we measured MDA
production after exposure to sources of oxidative stress, such as H2O2.

Table 2. IC50 values (mg/mL) of Sang 5 CMU Extracts in DPPH, ABTS Scavenging, and Iron
Chelating Assays.

Sample
IC50 (mg/mL)

DPPH ABTS Iron Chelation

Defatted rice bran extract (DFRB) 0.98 ± 0.24 b 0.33 ± 0.00 a 0.70 ± 0.05 a

Husk extract (H) 2.97 ± 0.07 a 0.39 ± 0.00 a 0.51 ± 0.01 b

Trolox 0.42 ± 0.00 c 0.06 ± 0.00 b ND
EDTA ND ND 0.03 ± 0.00 c

Experiments were performed in triplicate. Values represent mean ± standard deviation. ND: not determined;
different superscript letters (a, b, and c) were significantly different at p < 0.05, while the same letter showed no
significant difference according to a one-way ANOVA test, followed by LSD post hoc test.

2.2.2. Antioxidant Effects of Sang 5 CMU Extracts after H2O2-induced Oxidative Stress in
Fibroblast Cells

The highest concentration for further experiments was selected based on the SRB
cytotoxic assay, ensuring non-cytotoxicity (>80% viability of fibroblast cells) at 1 mg/mL
for each extract [14]. The measurement of TBARS levels, i.e., the adduction between
MDA and TBA reagents, is a marker for the lipid peroxidation process in cells. After
stimulation with H2O2, the levels of TBARS produced from cells significantly increased,
up to 125.68 ± 13.51% of the control, compared to those of untreated cells (p < 0.05). As
shown in Figure 1, DFRB and H extracts showed noticeably reduced TBARS production
in H2O2-induced fibroblast cells (p < 0.05). Values were found to be 100.92 ± 1.30 and
100.92 ± 2.60% of the control, respectively. Additionally, the scavenging effects of both
extracts were comparable to the L-ascorbic acid treatment group (107.03 ± 1.40% of control).
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Figure 1. Inhibitory effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv. 
Sang 5 CMU on TBARS release from fibroblast cells after exposure to 250 µM hydrogen peroxide 
(H2O2). L-ascorbic acid (L-AA) was used as a positive control. Experiments were performed in trip-
licate. Bars represent mean ± standard deviation. Different superscript letters (a and b) were signif-
icantly different at p < 0.05, while the same letter showed no significant difference according to a 
one-way ANOVA test, followed by LSD post hoc test. 

2.2.3. Effects of Sang 5 CMU Extracts on Gene Expression of Antioxidant-Related Genes 
To confirm the antioxidant effect, mRNA analysis of genes encoding NRF2, a tran-

scription factor involved in cellular defense against oxidative stress, and HO-1, one of the 
antioxidant enzymes, was conducted. After cell exposure to a source of oxidative stress, 
H2O2, the relative expression of HO-1 was slightly downregulated to 0.98 ± 0.04 compared 
to the untreated group. Consistent with the results from the TBARS assay, DFRB and H 
extracts influenced the expression of NRF2 in H2O2-induced fibroblasts with relative ex-
pression values of 1.47 ± 0.11 and 1.36 ± 0.10, respectively, as illustrated in Figure 2a. These 
results indicated that DFRB and H treatments can increase mRNA levels of NRF2 by ap-
proximately 0.75-fold and 0.69-fold compared to L-AA treatment, respectively. Addition-
ally, the mRNA levels of HO-1 considerably rose to 1.33 ± 0.12, 1.72 ± 0.13, and 1.42 ± 0.10, 
in the L-AA, DFRB, and H treatment groups, respectively, compared to the untreated and 
H2O2-treatment groups (Figure 2b). Therefore, DFRB and H treatments can increase 
mRNA levels of HO-1 more greatly than the standard L-AA, by about 1.29 and 1.07 times, 
respectively. 
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Figure 1. Inhibitory effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv. Sang
5 CMU on TBARS release from fibroblast cells after exposure to 250 µM hydrogen peroxide (H2O2).
L-ascorbic acid (L-AA) was used as a positive control. Experiments were performed in triplicate.
Bars represent mean ± standard deviation. Different superscript letters (a and b) were significantly
different at p < 0.05, while the same letter showed no significant difference according to a one-way
ANOVA test, followed by LSD post hoc test.

2.2.3. Effects of Sang 5 CMU Extracts on Gene Expression of Antioxidant-Related Genes

To confirm the antioxidant effect, mRNA analysis of genes encoding NRF2, a tran-
scription factor involved in cellular defense against oxidative stress, and HO-1, one of the
antioxidant enzymes, was conducted. After cell exposure to a source of oxidative stress,
H2O2, the relative expression of HO-1 was slightly downregulated to 0.98 ± 0.04 compared
to the untreated group. Consistent with the results from the TBARS assay, DFRB and
H extracts influenced the expression of NRF2 in H2O2-induced fibroblasts with relative
expression values of 1.47 ± 0.11 and 1.36 ± 0.10, respectively, as illustrated in Figure 2a.
These results indicated that DFRB and H treatments can increase mRNA levels of NRF2
by approximately 0.75-fold and 0.69-fold compared to L-AA treatment, respectively. Ad-
ditionally, the mRNA levels of HO-1 considerably rose to 1.33 ± 0.12, 1.72 ± 0.13, and
1.42 ± 0.10, in the L-AA, DFRB, and H treatment groups, respectively, compared to the
untreated and H2O2-treatment groups (Figure 2b). Therefore, DFRB and H treatments can
increase mRNA levels of HO-1 more greatly than the standard L-AA, by about 1.29 and
1.07 times, respectively.
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Figure 2. Effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv. Sang 5 CMU on
the gene expression of antioxidant-related genes: (a) NRF2; (b) HO-1 in human fibroblast cells after
exposure to 250 µM hydrogen peroxide (H2O2). L-ascorbic acid (L-AA) was used as a positive control.
Experiments were performed in triplicate. Bars represent mean ± standard deviation. Different
superscript letters (a, b, and c) were significantly different at p < 0.05, while the same letter showed
no significant difference according to a one-way ANOVA test, followed by LSD post hoc test.
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2.3. Anti-Inflammation
2.3.1. Anti-Inflammation Effects of Sang 5 CMU Extracts after LPS-Induced Inflammation
in Murine Macrophage and Human Fibroblast Cells

The non-toxic concentrations of Sang 5 CMU extracts were chosen through the SRB
assay. After treating RAW 264.7 macrophage cells with extracts, concentrations of 0.03125,
0.0625, 0.125, 0.25, 0.5, and 1 mg/mL for DFRB and H extracts demonstrated cell viability
above 80%. Consequently, the highest concentration at 1 mg/mL for each extract was se-
lected for the further tests. The nitrite concentration assay in RAW 264.7 was first measured.
The results showed that the levels of nitrite in the LPS treatment group (1.70 ± 0.30 µM)
were notably higher than those in the untreated group (p < 0.05). As demonstrated in
Figure 3a, DFRB and H extracts significantly suppressed the nitrite production in LPS-
induced macrophage cells at 0.71 ± 0.01 and 0.70 ± 0.14 µM, respectively (p < 0.05). The
anti-inflammatory effects of both extracts were comparable to those of the DFN treatment
group (0.61 ± 0.01 µM). Apart from the effects of crude extracts in murine macrophage,
we also performed the nitrite concentration assay in human fibroblast cells to confirm the
application of extracts to the skin. As shown in Figure 3b, the levels of nitrite concentration
in the LPS-treated group were considerably upregulated to 4.70 ± 0.53 µM compared to
the untreated group (p < 0.05). In the DFRB pre-treatment group, nitrite production was
suppressed to 2.99 ± 0.45 µM in LPS-induced fibroblasts (p < 0.05).
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letter showed no significant difference according to a one-way ANOVA test, followed by LSD post
hoc test.

2.3.2. Effects of Sang 5 CMU Extracts on Gene Expression of Inflammation-Related Genes

Nitric oxide (NO) is a mediator produced during cutaneous inflammation. The ex-
pression levels of NO donors following inflammation within the epidermis and dermis
layers could elevate the levels of inflammatory cytokines such as IL-1β and IL-6 [21]. Sub-
sequently, the expression of genes related to inflammatory cytokines was further evaluated
in LPS-induced human fibroblast cells. After LPS exposure to fibroblast cells, the mRNA
levels of pro-inflammatory cytokines, including IL-1β and IL-6, were markedly increased
to 1.70 ± 0.10 and 1.33 ± 0.05, respectively, compared to the control group (p < 0.05). As
shown in Figure 4a, the results indicated that DFRB and H extracts slightly declined the
expression of IL-1β to 1.45 ± 0.01 and 1.63 ± 0.10, respectively. Notably, concerning the
mRNA expression of IL-6, DFRB and H extracts could significantly downregulate the
levels of IL-6 in LPS-stimulated fibroblasts, with relative expression values of 1.00 ± 0.11
and 1.11 ± 0.04, respectively, with a comparable level of DFN treatment (0.73 ± 0.00), as
demonstrated in Figure 4b. DFRB and H treatments can decrease mRNA levels of IL-6 by
approximately 1.37 and 1.52 times compared to DFN treatment, respectively.



Plants 2024, 13, 1795 7 of 20

Plants 2024, 13, x FOR PEER REVIEW 7 of 20 
 

 

demonstrated in Figure 4b. DFRB and H treatments can decrease mRNA levels of IL-6 by 
approximately 1.37 and 1.52 times compared to DFN treatment, respectively. 

(a) (b) 

  
Figure 4. Effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv. Sang 5 CMU 
on the gene expression of inflammation-related genes (a) IL-1β and (b) IL-6 in human fibroblast cells 
after exposure to 1 µg/mL lipopolysaccharides (LPS). Diclofenac sodium (DFN) was used as a pos-
itive control. Experiments were performed in triplicate. Bars represent mean ± standard deviation. 
Different superscript letters (a, b, and c) were significantly different at p < 0.05, while the same letter 
showed no significant difference according to a one-way ANOVA test, followed by LSD post hoc 
test. 

2.4. Anti-Melanogenesis Activity 
2.4.1. Inhibitory Effects of Sang 5 CMU Extracts against Mushroom Tyrosinase Enzyme 

The mushroom tyrosinase inhibition assay is widely used as a screening test to in-
vestigate potential anti-melanogenesis agents. As shown in Table 3, the IC50 value of H 
extract was comparable to that of arbutin. However, we also examined the inhibition ef-
fects of both extracts in human melanoma cells. 

Table 3. IC50 values (mg/mL) of Sang 5 CMU Extracts against Mushroom Tyrosinase. 

Sample Mushroom Tyrosinase Inhibition 
DFRB 0.49 ± 0.00 a 

H 0.27 ± 0.02 b 

Arbutin 0.24 ± 0.06 b 

Experiments were performed in triplicate. Values represent mean ± standard deviation. DFRB: 
defatted rice bran extract of Oryza sativa cv. Sang 5 CMU; H: husk extract of Oryza sativa cv. Sang 5 
CMU; different superscript letters (a and b) were significantly different at p < 0.05, while the same 
letter showed no significant difference according to a one-way ANOVA test, followed by LSD post 
hoc test. 

2.4.2. Inhibitory Effects of Sang 5 CMU Extracts after IBMX-Induced Melanogenesis in 
Human Melanoma Cells 

Before the test, the optimal concentration of each sample was determined based on 
the cell viability test. A concentration of 0.03125 mg/mL for both extracts resulted in the 
G-361 cell viability exceeding 80%. Consequently, the concentration of 0.03125 mg/mL for 
DFRB and H was chosen for subsequent tests. Regarding the melanogenesis activity, the 
measurement involved assessing intracellular melanin levels and tyrosinase activity in 
melanoma cells (Figure 5). IBMX was added to stimulate melanogenesis activity within 
the melanoma cells. The inhibition on melanogenesis activity was reported as relative per-
centages of the untreated group. The IBMX treatment group showed a considerable rise 
in melanin content and tyrosinase activity levels at 128.21 ± 13.72 and 130.07 ± 8.39% of 
the control, respectively. After pre-treatment with samples, DFRB and H substantially de-
creased the levels of melanin content (96.94 ± 8.60 and 108.32 ± 2.54% of control) (Figure 
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on the gene expression of inflammation-related genes (a) IL-1β and (b) IL-6 in human fibroblast
cells after exposure to 1 µg/mL lipopolysaccharides (LPS). Diclofenac sodium (DFN) was used as a
positive control. Experiments were performed in triplicate. Bars represent mean ± standard deviation.
Different superscript letters (a, b, and c) were significantly different at p < 0.05, while the same letter
showed no significant difference according to a one-way ANOVA test, followed by LSD post hoc test.

2.4. Anti-Melanogenesis Activity
2.4.1. Inhibitory Effects of Sang 5 CMU Extracts against Mushroom Tyrosinase Enzyme

The mushroom tyrosinase inhibition assay is widely used as a screening test to investi-
gate potential anti-melanogenesis agents. As shown in Table 3, the IC50 value of H extract
was comparable to that of arbutin. However, we also examined the inhibition effects of
both extracts in human melanoma cells.

Table 3. IC50 values (mg/mL) of Sang 5 CMU Extracts against Mushroom Tyrosinase.

Sample Mushroom Tyrosinase Inhibition

DFRB 0.49 ± 0.00 a

H 0.27 ± 0.02 b

Arbutin 0.24 ± 0.06 b

Experiments were performed in triplicate. Values represent mean ± standard deviation. DFRB: defatted rice bran
extract of Oryza sativa cv. Sang 5 CMU; H: husk extract of Oryza sativa cv. Sang 5 CMU; different superscript letters
(a and b) were significantly different at p < 0.05, while the same letter showed no significant difference according
to a one-way ANOVA test, followed by LSD post hoc test.

2.4.2. Inhibitory Effects of Sang 5 CMU Extracts after IBMX-Induced Melanogenesis in
Human Melanoma Cells

Before the test, the optimal concentration of each sample was determined based on
the cell viability test. A concentration of 0.03125 mg/mL for both extracts resulted in the
G-361 cell viability exceeding 80%. Consequently, the concentration of 0.03125 mg/mL
for DFRB and H was chosen for subsequent tests. Regarding the melanogenesis activity,
the measurement involved assessing intracellular melanin levels and tyrosinase activity in
melanoma cells (Figure 5). IBMX was added to stimulate melanogenesis activity within
the melanoma cells. The inhibition on melanogenesis activity was reported as relative
percentages of the untreated group. The IBMX treatment group showed a considerable
rise in melanin content and tyrosinase activity levels at 128.21 ± 13.72 and 130.07 ± 8.39%
of the control, respectively. After pre-treatment with samples, DFRB and H substantially
decreased the levels of melanin content (96.94 ± 8.60 and 108.32 ± 2.54% of control)
(Figure 5a). As shown in Figure 5b, the intracellular tyrosinase activity in IBMX-stimulated
melanoma was significantly inhibited by DFRB and H, at 106.87 ± 2.32 and 105.63 ± 9.00%
of the control (p < 0.05). The results illustrated that the anti-melanogenesis effects of DFRB
and H are comparable to standard arbutin at the same concentration.
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Figure 5. Inhibitory effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv. Sang
5 CMU on (a) intracellular melanin content and (b) tyrosinase activity in human melanoma cells
after exposure to 100 µM 3-isobutyl-1-methylxanthine (IBMX). (c) Cell pellets after treatment with
each sample for 48 h. Arbutin (Ar) was used as a positive control. Experiments were performed in
triplicate. Bars represent mean ± standard deviation. Different superscript letters (a and b) were
significantly different at p < 0.05, while the same letter showed no significant difference according to
a one-way ANOVA test, followed by LSD post hoc test.

2.4.3. Effects of Sang 5 CMU Extracts on Gene Expression of Melanogenesis-Related Genes

To evaluate further, the transcription factor MITF and downstream target genes includ-
ing TYR, TRP-1, and DCT were examined. As demonstrated in Figure 6, IBMX treatment
significantly upregulated the genes related to melanogenesis, including MITF, TYR, TRP-1,
and DCT, with mRNA relative expression of 1.36 ± 0.24, 1.63 ± 0.00, 1.32 ± 0.02, and
1.31 ± 0.03, respectively, compared to untreated cells (p < 0.05). Consistent with the results
of melanin content and intracellular tyrosinase activity assays, DFRB and H extracts notably
inhibited the expression of MITF, TYR, TRP-1, and DCT after induction by IBMX (p < 0.05).
The expression of the MITF gene decreased to 0.75 ± 0.04 and 0.91 ± 0.00 after treatment
with DFRB and H extracts, respectively (Figure 6a). The gene encoding the tyrosinase
enzyme, TYR, was also suppressed to 0.89 ± 0.11 and 0.86 ± 0.01 after exposure to DFRB
and H, respectively (Figure 6b). As shown in Figure 6c, H extract considerably influenced
the mRNA expression of TRP-1, with a value of 0.83 ± 0.14. Meanwhile, DFRB showed a
strong inhibitory effect on DCT, with a level of mRNA expression of 0.65 ± 0.13 (Figure 6d).
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2.5. Collagen-Synthesis-Promoting Activity
2.5.1. MMP-2 Inhibition Effects of Sang 5 CMU Extracts in Human Fibroblast Cells

To verify that the reduction in proteolytic enzyme activity was associated with the
expression of matrix metalloproteinases in a cell-based model, MMP-2 activity levels were
evaluated through gelatin zymography. As demonstrated in Figure 7a, the molecular
mass of the active MMP-2 form was approximately 60–65 kDa [22,23]. MMP-2 activity
levels were significantly upregulated to 135.71 ± 23.40% of the control after stimulation
with H2O2. After pre-treatment with DFRB and H, the expression of MMP-2 considerably
dropped to 106.47 ± 9.12 and 80.67 ± 13.19% of the control, respectively (Figure 7b).
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3. Discussion 
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inflammation, induce melanin production, and disturb skin homeostasis, ultimately caus-
ing visible signs of aging, such as wrinkles, hyperpigmented lesions, and thinning of the 
skin. Plant-derived natural antioxidant compounds have been extensively studied for 
their potential to address various skin conditions. These antioxidants are effective at at-
tenuating inflamed-skin lesions like atopic dermatitis, protecting the skin from environ-
mental damage induced by oxidative stress, and also reducing the signs of skin aging [4]. 

Figure 7. Inhibitory effects of defatted rice bran (DFRB) and husk (H) extracts of Oryza sativa cv.
Sang 5 CMU on MMP-2 release from fibroblast cells after exposure to 250 µM hydrogen peroxide
(H2O2). (a) MMP-2 expression using gelatin zymography and (b) MMP-2 activity levels. L-ascorbic
acid (L-AA) was used as a positive control. Experiments were performed in triplicate. Bars represent
mean ± standard deviation. Different superscript letters (a and b) were significantly different at
p < 0.05, while the same letter showed no significant difference according to a one-way ANOVA test,
followed by LSD post hoc test.

2.5.2. Effects of Sang 5 CMU Extracts on Gene Expression of Collagen-Synthesis-Related Gene

To confirm whether the inhibitory effect on collagen degradation detected in the prior
experiment was related to the alteration of extracellular matrix structure, the expression of
genes related to the production of collagen in the fibroblast cells was further investigated.
Consistent with the MMP-2 protein expression results, the levels of gene-encoded COL1A1
were slightly increased to 1.14 ± 0.06 in the DRFB treatment group, whereas H treat-
ment considerably upregulated the mRNA relative expression of COL1A1 to 1.28 ± 0.03,
respectively, as demonstrated in Figure 8.
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no significant difference according to a one-way ANOVA test, followed by LSD post hoc test.

3. Discussion

Prolonged exposure to oxidative stress can lead to cellular damage, stimulate skin
inflammation, induce melanin production, and disturb skin homeostasis, ultimately causing
visible signs of aging, such as wrinkles, hyperpigmented lesions, and thinning of the skin.
Plant-derived natural antioxidant compounds have been extensively studied for their
potential to address various skin conditions. These antioxidants are effective at attenuating
inflamed-skin lesions like atopic dermatitis, protecting the skin from environmental damage
induced by oxidative stress, and also reducing the signs of skin aging [4].

Lipid peroxidation is the major consequence of H2O2-induced cell damage. MDA is a
secondary metabolite that is generated from the oxidation of cell membrane lipids [24]. In
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agreement with that, after inducting fibroblast cells with H2O2, MDA production levels
increased, as demonstrated in Figure 1. In particular, prolonged exposure of the skin to
oxidative stress, especially H2O2, leads to the depletion of NRF2 via the phosphorylation of
glycogen synthase kinase 3β (GSK3β) and a consequent reduction in levels of detoxifying
enzymes such as HO-1 and NQO-1 [4]. In this study, the results indicated that treatment
with DFRB and H extracts could reduce MDA production in H2O2-stimulated fibroblast
cells (Figure 1). This effect is attributed to the influence of DFRB and H extracts on
antioxidant capacity via the NRF2 pathway, caused by the upregulation of NRF2 and HO-1
gene expression levels (Figure 2). The activation of the NRF2-mediated pathway as a
primary defense mechanism against skin damage, coupled with the dramatic increase in
the expression of antioxidant enzymes such as HO-1 as a result of the effects of DFRB and H
extracts, indicated their significant role in enhancing antioxidant defenses against oxidative
stress and potential skin damage.

Endogenous nitric oxide (NO) produced by skin cells is part of the defense mechanism
of the skin against external stimuli. Indeed, NO production in the skin contributes to
diverse responses. For instance, NO could stimulate the activity of tyrosinase, thereby
promoting melanogenesis in melanocytes [25]. In the current study, we measured nitrite, a
stable degradation product from NO oxidation pathways, using the Griess reagent [26]. Our
data revealed that DFRB and H extracts alleviated nitrite production in mouse macrophages.
Moreover, DFRB was effective in reducing nitrite accumulation in fibroblast cells following
LPS induction (Figure 3).

Alterations of skin homeostasis due to external stimuli can also surge pro-inflammatory
cytokines such as IL-1β and IL-6, resulting in skin inflammation [27,28]. It was reported that
in mice lacking NRF2, the degree of inflammation is more difficult to return to basal levels
compared to wild-type mice [4]. In accordance with this, activation of the NRF2-mediated
pathway by DFRB and H extracts reduced the expression of the pro-inflammatory marker
IL-6 after LPS stimulation (Figure 4).

Based on our previous studies, we identified various phenolic and flavonoids com-
pounds in the rice bran and husk parts of Sang 5 CMU. Rice bran contains predominantly
quercetin (1.27 ± 0.01 mg/g sample), followed by chlorogenic acid, naringin, epigallocate-
chin gallate, and epicatechin (0.79 ± 0.01, 0.58 ± 0.08, 0.42 ± 0.03, and 0.22 ± 0.05 mg/g
sample, respectively) [19]. On the other hand, rice husk mainly contains naringin, epigal-
locatechin gallate, and chlorogenic acid (6.60 ± 2.15, 2.80 ± 0.04, and 1.90 ± 0.10 mg/g
sample, respectively) [18]. It has been reported that chlorogenic acid, a phenolic compound,
exhibits potent inhibition of oxidative damage and inflammatory responses [29–31] and pre-
vents skin photoaging [2]. Similarly, naringin, a natural flavanone glycoside, also markedly
suppresses oxidative stress and the release of inflammatory cytokines [32–34].

A study on quercetin and Kelch-like ECH-associated protein 1 (Keap1)–NRF2 com-
plexes uncovered the underlying mechanisms that drive synergistic effects and enhance
antioxidant activity. Hydrogen bonds between quercetin derivatives interact with Arg483,
Arg380, Leu365, and Ser508 of the Keap1 domain and contribute to the activating NRF2
function [35]. Furthermore, the residues of targeted inflammatory cytokines such human
IL-6, including Glu93 and Glu172, interact with naringin by forming hydrogen bonds [36].

Melanin pigments function as a skin-protective response to environmental damage
caused by oxidative stress and inflammation. However, excessive melanin production,
coupled with the activation of signaling pathways associated with melanogenesis, not only
contributes to signs of skin aging but also plays a role in the progression or development of
cutaneous melanoma [37].

Generally, in the synthesis of melanin, the initial substrate, L-tyrosine, is converted
by tyrosinase into L-DOPA and L-dopaquinone. The tyrosinase enzyme-mediated first
stage is the rate-limiting step in the melanogenesis process. Subsequently, L-dopaquinone
is further oxidized to L-dopachrome, eventually leading to the production of melanin
pigments [38]. Within the screening of tyrosinase activity, we conducted the mushroom
tyrosinase inhibition assay. Our observations revealed that DFRB and H extracts inhibited
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L-dopachrome formation by disrupting the coupling between the substrate, L-tyrosine,
and mushroom tyrosinase (Table 3). Subsequently, we further performed IBMX-induced
melanin production in human melanoma cells. IBMX is known to upregulate melanin
production through the cAMP cascade [39]. Elevated cAMP levels induce protein kinase A
(PKA) translocation into the nucleus, resulting in the activation of MITF and the expression
of pigmentary genes such as TYR, TRP-1, and DCT [8]. In this study, we found that both
extracts suppressed melanin production and intracellular tyrosinase activity in IBMX-
induced melanoma cells, as shown in Figure 5. Both extracts lowered the levels of genes
related to melanogenesis, including MITF, TYR, TRP-1, and DCT, as illustrated in Figure 6.
Coherent with this, epicatechin, found in rice bran of Sang 5 CMU, and epigallocatechin
gallate, flavanol molecules that are present in both rice bran and husk, have been reported
to have anti-melanogenic effects in B16F10 murine melanoma cells [40,41].

In addition, the correlation analysis revealed correlations between the antioxidant
capacity of samples and the development of melanogenesis in melanoma cells, as illustrated
in Figures S1 and S2. NRF2 mRNA expression in fibroblast cells exhibited obvious negative
correlations with melanin production, intracellular tyrosinase activity, and the expression of
genes related to melanogenesis after DFRB and H treatment. Conversely, the nitrite contents
produced by fibroblasts correlated positively with melanin production and intracellular
tyrosinase activity in melanoma cells. Accordingly, potent natural antioxidants and anti-
inflammatory agents corresponded to lower melanin pigmentation.

The reduction of collagen within the ECM leads to the deterioration of skin structure,
contributing to the appearance of wrinkles and thinning of the skin, which are common
signs of aging skin. The primary cause of ECM degradation is the activation of MMPs,
which are exacerbated by exposure to environmental factors such as radiation, air pollu-
tion, or infections. The breakdown of collagen by MMPs elevates oxidative levels within
damaged fibroblast cells [9,10]. Consistent with this, our findings regarding high TBARS
levels in damaged fibroblasts (Figure 1) corresponded to the results of MMP-2 activity
analysis in H2O2-induced fibroblast cells (Figure 7). The results indicated that oxida-
tive levels, as measured by the TBARS assay, and MMP-2 activity were both elevated in
damaged fibroblasts.

Collagen functions to support the dermal ECM and maintain skin strength and in-
tegrity. Type I collagen (COL1), encoded by the COL1A1 and COL1A2 genes, is the most
abundant collagen within the ECM [42]. Additionally, a previous study demonstrated that
gene expressions of COL1A1, COL4A1, and COL7A1 decreased in human dermal fibroblasts
isolated from elderly female donors [43]. Our findings suggest that the effects of DFRB and
H extracts on upregulating COL1A1 gene expression are consistent with their inhibitory
activities on MMP-2 (Figures 7 and 8). The relationship between COL1A1 gene expression
and MMP-2 activity in DFRB- and H-treated fibroblasts was evaluated using Pearson
correlation. As shown in Figures S1 and S2, we found that the expression of the COL1A1
gene was negatively correlated with MMP-2 protein expression (Pearson r = −0.883 and
−0.635 for DFRB and H treatments, respectively).

This is supported by the fact that quercetin, a flavonol compound found in rice bran
and husk parts of Sang 5 CMU, has been reported to prevent collagen degradation and
accelerate the healing of skin wounds [44–46]. Moreover, epigallocatechin gallate and its
derivatives have been shown to protect against collagen degradation and improve collagen
fibers in photodamaged skin in mice [47,48]. Furthermore, chlorogenic acid, a type of
phenolic acid, has been proven to prevent photoaging by increasing collagen type 1 mRNA
and protein expression [2].

Moreover, molecular interactions are crucial for the high biological activity observed
in complex systems. A previous study revealed that the linear structure of collagen type I
is maintained by a hydrogen bond network within the triple helix structure. These findings
illustrated the complex nature of epigallocatechin gallate and collagen interactions, where
both non-covalent and covalent bonds contribute to the stability and effectiveness of the
complex. These interactions include covalent bonds between C3 and C4 in ring B and
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Lys935; hydrogen bonds between hydroxyl groups and Ala945, Ala932, and Lys935 in
collagen; as well as hydrophobic interactions occurring between the hydrophobic rings of
epigallocatechin gallate and Ala945, Ala932, Ala931, Thr946, and Leu934 in collagen [49].

Ethanolic extracts derived from rice bran and husk parts, enriched with bioactive com-
pounds, could be utilized for skin protection. Considering these findings, H extract from
Sang 5 CMU, exhibiting superior antioxidant, anti-inflammatory, anti-melanogenic, and
collagen-preserving properties compared to DFRB, shows more potential for preventing
skin damage. However, further evaluation is necessary to determine their potential based
on clinical trials.

4. Materials and Methods
4.1. Sample Preparation

The rice variety Sang 5 CMU was obtained from the Lanna Rice Research Center, Chi-
ang Mai University, Chiang Mai, Thailand, in October 2021. Herbarium voucher specimens
of O. sativa var. Sang 5 CMU (PNPRDU65006) were deposited in the Pharmaceutical and
Natural Products Research and Development Unit (PNPRDU), Chiang Mai University,
Chiang Mai, Thailand. Crude extracts of rice bran and husk extracts were prepared as
previously described [13]. In brief, 100 g of rice husks were initially collected and subjected
to maceration with 6 L of 95% ethanol for 48 h. Subsequently, de-oiled rice bran (100 g),
which was completely stripped of oil using screw pressing and dichloromethane, was
soaked in 95% ethanol (6 L) for 48 h. The resulting ethanolic extracts were evaporated at
50 ◦C using a rotary evaporator (Hei-VAP value, Heidolph, Schwabach, Germany) until
completely dried. Ethanolic extracts of defatted rice bran and husk portions of O. sativa var.
Sang 5 CMU were labeled as DFRB and H, respectively. All samples were stored at 4 ◦C
before further analysis.

4.2. Cell Culture and Cell Viability Assessment

Human fibroblast cells (JCRB1006.4F) and G-361 human melanoma (IFO50009) cells
were obtained from the JCRB cell bank (Osaka, Japan). Murine RAW 264.7 macrophage
cells were obtained from the American Type Culture Collection (Rockville, MD, USA).
Human fibroblast and murine macrophage cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco, Grand Island, NY, USA, 121000-046, lot no. 2641717) supplemented
with 10% fetal bovine serum and maintained in a humidified incubator at 37 ◦C with 5%
CO2. Human melanoma cells were grown in Eagle’s minimal essential medium (Gibco,
Grand Island, NY, USA, 41500-034, lot no. 2787087) supplemented with 10% fetal bovine
serum (HyClone™ Cytiva, Pasching, Austria, cat no. SV30160.03, lot no. RJ20230003) at
37 ◦C with 5% CO2. All cells from passages 3 to 10 were used in the tests. Prior to sample
treatment, cell viability was assessed using the sulforhodamine B (SRB) cytotoxicity assay
according to the previous study [14]. Rice bran and husk extracts were diluted within a
concentration range of 0.0156 to 1 mg/mL. Cells were seeded into 96-well microplates at
the concentration of 1 × 103 cells/well and grown to reach 80% confluency. After that, cells
were exposed to each sample for 24 h and 48 h of incubation, respectively. Surviving cells
were fixed with 50% trichloroacetic acid solution (PanReac AppliChem, Barcelona, Spain)
and stained with 0.04% SRB dye solution (Sigma Aldrich, St. Louis, MO, USA). Plates were
washed with 1% acetic acid and left to dry overnight. A 10 mM Tris base (Vivantis, Shah
Alam, Selangor, Malaysia) was added to solubilize the dye in living adherent cells. The
absorbance of bound dye was measured using a microplate reader at 515 nm. Culture
medium was used as the control. Cell viability was calculated from absorbance values as
relative percentages of the control group.

4.3. Scavenging Activity
4.3.1. DPPH Radical Scavenging Assay

The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-
bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals and ferrous ion–ferrozine
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complex was determined according to the previous study [13]. Briefly, a sample (100 µL) in
range of 0.01–1 mg/mL was reacted with 0.1 mM DPPH solution (50 µL) (Sigma Chemical,
St. Louis, MO, USA) for 30 min. The absorbance of the solution was measured at 515 nm.
Trolox was used as the positive control. The percentage of DPPH inhibition was calculated
from the following formula: the scavenging activity against DPPH radical (%) = [(A − B)
− (C − D)]/(A − B) × 100, where A and B represent the absorbance of solvent control
with or without DPPH radical, and C and D represent the absorbance of sample with or
without DPPH radical, respectively. The scavenging activity against DPPH radicals was
expressed as IC50 values, which is the sample concentration that yielded 50% DPPH radical
scavenging activity.

4.3.2. ABTS Radical Scavenging Assay

First, the ABTS stock solution was prepared by mixing 7 mM ABTS (Sigma Chemical,
St. Louis, MO, USA) in 2.45 mM potassium persulfate solution (a ratio of 2:1 v/v) for 16–18 h.
Subsequently, the ABTS stock solution was diluted with water until the absorbance of the
ABTS working solution reached 0.7–0.9 units at 734 nm. Each sample (25 µL) was reacted
with the ABTS working solution (200 µL) for 10 min. The absorbance of the solution was
measured at 734 nm. Trolox was used as the positive control. The percentage of ABTS
inhibition was calculated from the following formula: the scavenging activity against ABTS
radical (%) = [(A − B) − (C − D)]/(A − B) × 100, where A and B represent the absorbance
of solvent control with or without ABTS radical, and C and D represent the absorbance of
sample with or without ABTS radical, respectively. The scavenging activity against ABTS
radical was expressed as IC50 values, which is the sample concentration that yielded 50%
ABTS radical scavenging activity.

4.3.3. Ferrous Ion Chelating Assay

Briefly, a sample (100 µL) was mixed with 5 mM ferrozine (50 µL) (Sigma Chem-
ical, St. Louis, MO, USA) and then reacted with 2 mM iron (II) chloride tetrahydrate
(FeCl2 · 4H2O) (Sigma Chemical, St. Louis, MO, USA). The reaction was left at room tem-
perature for 30 min. The absorbance of the solution was measured at 562 nm. EDTA was
used as the positive control. The percentage of iron chelation was calculated from the follow-
ing formula: the chelating activity against iron (%) = [(A − B) − (C − D)]/(A − B) × 100,
where A and B represent the absorbance of solvent control with or without ferrous-ferrozine
complex, and C and D represent the absorbance of the mixture of sample and ferrous ion
with or without ferrozine, respectively. The chelating activity against the ferrous–ferrozine
complex was expressed as IC50 values, which is the sample concentration that yielded 50%
iron chelating activity.

4.3.4. Thiobarbituric Acid Reactive Substances Assay in Human Fibroblast Cells

The levels of reactive metabolites from lipid peroxidation were assessed as previ-
ously described [13] by measuring malondialdehyde (MDA) production. Fibroblast cells
(2.5 × 105 cells/well) were seeded into 6-well plates. Then, cells were pre-exposed to each
sample for 24 h and subsequently incubated with 0.2 mM hydrogen peroxide (H2O2) for
another 24 h. After treatment, cell lysates were collected to react with 0.6% (w/v) thiobar-
bituric acid (TBA, BDH Chem. Ltd., Poole, UK) at 100 ◦C for 10 min. The reaction was
stopped immediately by placing it in a freezer (−20 ◦C) for 5 min. The absorbance of the
reaction mixture between TBA and MDA released from cells or thiobarbituric acid reactive
substances (TBARS) was measured at 532 nm. L-ascorbic acid (L-AA) was used as the
positive control. The level of reactive substances was calculated from absorbance values as
relative percentages of the untreated group.
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4.4. Anti-Inflammatory Activity
Nitrite Concentration Assay in Murine Macrophage and Human Fibroblast Cells

The measurement of nitrite concentration was adapted from the previous work [50].
RAW 264.7 macrophage and human fibroblast cells were seeded into 96-well microplates
at a concentration of 1 × 103 cells/well and left for 24 h. Cells were pre-treated with
each sample for 1 h and further incubated with 1 µg/mL lipopolysaccharides (LPS, Sigma
Chemical, St. Louis, MO, USA) for an additional 24 h. The amount of nitrite concentration
released in the cell supernatant was evaluated using the Griess reagent kit (Invitrogen,
Thermo Fisher Scientific, Eugene, OR, USA, cat no. G7921) according to the manufacturer’s
procedure. Diclofenac sodium (DFN) was used as the positive control. The level of nitrite
concentration was calculated from a sodium nitrite standard curve in the range of 1–100 µM
(y = 0.011x, R2 = 0.999).

4.5. Anti-Melanogenesis Activity
4.5.1. Mushroom Tyrosinase Inhibition Assay

The inhibitory activity against the mushroom tyrosinase enzyme was performed as
previously described [13], with a slight modification. Briefly, each sample (40 µL) was
mixed with 0.1 M phosphate buffer (80 µL) and 100 units/mL mushroom tyrosinase (Sigma
Chemical, St. Louis, MO, USA) in phosphate buffer (40 µL). Afterward, the mixture solution
was reacted with the substrate solution (40 µL), 1.5 mM L-tyrosine (Bio Basic, Markham,
ON, Canada). Plates were left for 30 min. After incubation, the absorbance of L-dopachrome
formation was measured at 475 nm. Arbutin (Ar) was used as the positive control. The per-
centage of mushroom tyrosinase inhibition was calculated from the following formula: the
inhibition activity against mushroom tyrosinase (%) = [(A − B) − (C − D)]/(A − B) × 100,
where A and B represent the absorbance of solvent control with or without mushroom
tyrosinase, and C and D represent the absorbance of sample with or without mushroom
tyrosinase, respectively. The inhibition activity against mushroom tyrosinase was ex-
pressed as IC50 values, which is the sample concentration that yielded 50% mushroom
tyrosinase inhibition.

4.5.2. Melanin Content Assay in Human Melanoma Cells

Cellular melanin content was measured as previously described [13], with slight
modifications. Briefly, melanoma cells (2.5 × 105 cells/well) were seeded into 6-well plates
and left for 24 h. Then, cells were pre-treated with samples for 1 h and then exposed
to 100 µM 3-isobutyl-1-methylxanthine (IBMX, Sigma Aldrich, St. Louis, MO, USA, cat
no. I5879) for another 48 h. Afterward, cells were washed with phosphate-buffered saline
and harvested by trypsinization using 0.25% trypsin-EDTA solution (Gibco, Grand Island,
NY, USA, 15400-054, lot no. 25337762). Cell suspension was centrifuged at 10,000× g for
5 min to obtain the cell pellet. A 1N NaOH solution containing 10% (v/v) DMSO was used
to dissolve the intracellular melanin in the cell pellets at 80 ◦C for 1 h. The absorbance of
the solution was measured at 405 nm. Ar was used as the positive control. Melanin content
was calculated from absorbance values as relative percentages of the untreated group.

4.5.3. Intracellular Tyrosinase Inhibition Assay in Human Melanoma Cells

The inhibitory activity against the tyrosinase enzyme was performed according to
previous report [13], with some modifications. Briefly, melanoma cells were pre-exposed
to each sample for 1 h and further induced by 100 µM IBMX for 48 h. Treated cells were
harvested by trypsinization, lysed using 1% Triton X-100 solution (VWR Life Science, Solon,
OH, USA), and immediately placed in a freezer (−20 ◦C) for 30 min. Then, the solution
was transferred into the 96-well microplates to react with 5 mM L-dihydroxyphenylalanine
(L-DOPA, Sigma Chemical, St. Louis, MO, USA) at 37 ◦C for 1 h. The absorbance of
the reaction mixture was measured at 492 nm. The cellular active tyrosinase level was
calculated from absorbance values as relative percentages of the untreated group.
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4.6. Collagen-Synthesis-Promoting Activity
MMP-2 Inhibition Assay in Human Fibroblast Cells

The inhibitory activity against the expression of MMP-2 protein was performed using
the gelatin zymography technique, as previously reported [51], with some modifications.
Briefly, cell supernatant (10 µL) was loaded onto 10% sodium dodecyl sulfate (SDS-PAGE)
gels containing 0.1% gelatin and separated using a gel electrophoresis system (BioRad,
Hercules, CA, USA) at 130 V for 80 min. Then, the gels were washed with 2.5% Triton X-100
solution at 37 ◦C for 1 h and then soaked with buffer containing 50 mM Tris, 5 mM CaCl2,
and 0.01% sodium azide at 37 ◦C for 18 h. Gels were stained with 0.5% Coomassie brilliant
blue R-250 solution (Bio Basic, Markham, ON, Canada) to visualize the bands. Protein
bands were detected using the Gel Doc™ EZ System (Version 3.0; Bio-Rad) and analyzed
through the Image Lab™ software 6.1 (Bio-Rad, Hercules, CA, USA). L-AA was used as
the positive control. The level of MMP-2 protein was calculated from the band intensity as
relative percentages of the untreated group.

4.7. Semi-Quantitative Reverse Transcription and Polymerase Chain Reaction

The expression of antioxidant-related genes (NRF2 and HO-1), inflammatory genes
(IL-1β and IL-6), melanogenesis-related genes (MITF, TYR, TRP-1, and DCT), as well as reg-
ulatory gene of collagen synthesis (COL1A1) was determined as previously described [14],
with minor modifications. The total RNA of treated cells was extracted using the E.Z.N.A.®

Total RNA Kit I (Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer’s
procedure. The RNA concentration was determined using the NanoDrop™ OneC Micro-
volume UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The
cDNA was synthesized using the MyTaq™ One-Step RT-PCR Kit (Meridian Bioscience™,
BIO-65049, lot no. RA387-B110430, Cincinnati, OH, USA). The sequences of target genes
are illustrated in Table 4. Nucleic acid was amplified through DW-T960 Gradient PCR
Thermal Cycler (Drawell, Shanghai, China). GAPDH was used as an internal control gene
for expression normalization. Afterward, RT-PCR products were loaded onto 1% agarose
gel stained with ViSafe Red Gel Stain (Vivantis, Shah Alam, Selangor, Malaysia, SD0103, lot
no. 6013). The bands were separated in the gels by electrophoresis at 120 V for 60 min in
the chamber containing 1X TAE buffer. The measurement of gene expression was carried
out using the Gel Doc™ EZ System and the Image Lab™ software.

Table 4. Primer Sequences.

Gene Forward Sequence (5′ to 3′) Reverse Sequence (5′ to 3′) Reference

NRF2 AAACCAGTGGATCTGCCAAC GTTGGCAGATCCACTGGTTT Nguyen et al. [52]
HO-1 AACTTTCAGAAGGGCCAGGT ACCTGGCCCTTCTGAAAGTT Gao et al. [53]
IL-1β CTGAGCTCGCCAGTGAATG CATTCACTGGCGAGCTCAG Garcin et al. [54]
IL-6 ACTCACCTCTTCAGAACGAATTG CAATTCGTTCTGAAGAGGTGAGT Cui et al. [55]

MITF ACCGTCTCTCACTGGATTGGT ACCAATCCAGTGAGAGACGGT Javelaud et al. [56]
TYR TTGGCATAGACTCTTCTTGTTGCGG CCGCAACAAGAAGAGTCTATGCCAA Javelaud et al. [56]

TRP-1 TGGCAAAGCGCACAACTCACCC GGGTGAGTTGTGCGCTTTGCCA Javelaud et al. [56]
DCT TGTGGAGACTGCAAGTTTGGC GCCAAACTTGCAGTCTCCACA Javelaud et al. [56]

COL1A1 GTGCGATGACGTGATCTGTGA TCACAGATCACGTCATCGCAC Zhang et al. [57]
GAPDH GGAAGGTGAAGGTCGGAGTC CTCAGCCTTGACGGTGCCATG Khantham et al. [14]

4.8. Statistical Analysis

All data were obtained in triplicate and are presented as mean ± standard deviation.
Statistical analysis of data was performed using one-way analysis of variance (ANOVA),
followed by the LSD post hoc test (SPSS 23.0 software, Chicago, IL, USA). Significance was
considered at p-value < 0.05. The correlation coefficients were calculated using Pearson’s
correlation coefficient (r).
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5. Conclusions

This study demonstrated that DFRB and H extracts from Oryza sativa variety Sang
5 CMU, which are composed of phenolic (chlorogenic acid) and flavonoid (naringin, epi-
catechin, epigallocatechin gallate, and quercetin) contents, possess antioxidant properties
against TBARS levels, as evidenced by an increase in NRF2 and HO-1 mRNA expres-
sion. Additionally, they exhibited anti-inflammatory activities by reducing nitric oxide
production in mouse macrophages and human fibroblasts, according to their significant
suppression of the pro-inflammatory cytokine IL-6. Furthermore, the effects of DRFB
and H extracts on anti-melanogenic potential were observed through the inhibition of
melanin content and intracellular tyrosinase activity in human melanoma cells, achieved
by inhibiting the transcription factor MITF and the expression of pigmentary genes TYR,
TRP-1, and DCT. Moreover, both extracts enhanced collagen production by stimulating
COL1A1 gene expression and decreasing MMP-2 expression. Taken together, ethanolic
extracts from the rice cultivar Sang 5 CMU have potential for various cosmetic functions,
including anti-inflammation, anti-wrinkle, and whitening applications. The use of ethanol
as a GRAS solvent underscores the safety and suitability of these extracts for incorporation
into cosmetic formulations, with a recommended concentration of 1–2% extract.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13131795/s1, Figure S1: Pearson’s correlation analysis between
biological activities of defatted rice bran (DFRB) extract of Oryza sativa cv. Sang 5 CMU; Figure S2:
Pearson’s correlation analysis between biological activities of rice husk (H) extract of Oryza sativa cv.
Sang 5 CMU.
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